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ON AN INTERPOLATION PROCESS

OF LAGRANGE–HERMITE TYPE

Giuseppe Mastroianni, Gradimir V. Milovanović,

and Incoronata Notarangelo

Abstract. We consider a Lagrange–Hermite polynomial, interpolating a func-
tion at the Jacobi zeros and, with its first (r −1) derivatives, at the points ±1.
We give necessary and sufficient conditions on the weights for the uniform
boundedness of the related operator in certain suitable weighted Lp-spaces,
1 < p < ∞, proving a Marcinkiewicz inequality involving the derivative of the
polynomial at ±1. Moreover, we give optimal estimates for the error of this
process also in the weighted uniform metric.

1. Introduction

Let us denote by Lm,r(vα, f) the polynomial of Lagrange–Hermite type based
on the Jacobi zeros xk = xm,k(vα) related to the weight vα(x) = (1 − x2)α and

whose jth order derivatives at ±1 are equal to f (j)(±1), j = 0, 1, . . . , r − 1, i.e.,

Lm,r(vα, f, xk) = f(xk), k = 1, . . . , m,

Lm,r(vα, f)(j)(±1) = f (j)(±1), j = 0, 1, . . . , r − 1,

where f (0) ≡ f .
This interpolation process is sometimes useful in the numerical treatment of

differential equations with boundary conditions. The authors had already took into
consideration a similar procedure obtaining some results that the reader can find
in [3, pp. 260, 272]. In the present paper we are going to study the behaviour
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of the sequence {Lm,r(vα, f)}m in certain suitable weighted Lp-spaces and give
necessary and sufficient conditions on the weights for the uniform boundedness of
{Lm(vα)}m. Optimal estimates of the error will be given and a Marcinkiewicz
inequality involving the derivatives of the polynomial at ±1 will be proved. The
results of this paper cover the ones available in literature.

In Section 2 we will state our main results and in Section 3 we will prove them.

2. Main Results

In the following C denotes a positive constant which may have different values
in different formulas. We will write C 6= C(a, b, . . .) to say that C is independent of
the parameters a, b, . . . If A, B > 0 are quantities depending on some parameters,
we write A ∼ B, if there exists a positive constant C independent of the parameters
of A and B, such that B/C 6 A 6 CB.

Now we introduce some function spaces, related to a Jacobi weight of the form

(2.1) vγ(x) = (1 − x2)γ , γ > 0, x ∈ (−1, 1).

Letting Lp, 1 6 p < ∞, denote the space of all measurable functions f with

‖f‖p
p =

∫ 1
−1 |f |p, we say f ∈ Lp

vγ if fvγ ∈ Lp, i.e., ‖f‖p
Lp

vγ
=

∫ 1
−1 |fvγ |p < ∞. For

p = ∞ and γ > 0, we set L∞
vγ = Cvγ =

{

f ∈ C0(−1, 1) : lim|x|→1(fvγ)(x) = 0
}

and Cv0 ≡ C0[−1, 1]. Moreover, we set

C0
r =

{

f ∈ C0(−1, 1) : f is (r − 1) − times differentiable at ± 1
}

,

where r > 1 is an integer number. Of course, C0
r ⊂ Cvγ , γ > 0, and C0

r ⊃
Cr−1[−1, 1], where Cr−1[−1, 1] is the collection of all functions whose (r − 1)th
derivative is continuous on [−1, 1].

The Sobolev type spaces are defined as follows

W s
p = W s

p (vγ) =
{

f ∈ Lp
vγ : f (s−1) ∈ AC(−1, 1) and ‖f (s)ϕsvγ‖p < ∞

}

,

where ϕ(x) =
√

1 − x2, AC(−1, 1) is the set of the absolutely continuous functions
in every compact of (−1, 1), 1 6 p 6 ∞ and s > 1 is an integer.

Let vα(x) = (1 − x2)α, α > −1, and {pm(vα)}m be the corresponding sequence
of orthonormal polynomials with positive leading coefficients. For every function
f ∈ C0

r , r > 1, an expression of the polynomial Lm,r(vα, f, x), α > −1, is given by

Lm,r(vα, f, x) =
m

∑

k=1

vr(x)
lk(x)

vr(xk)
f(xk)

+ (1 − x)rpm(vα, x)

r−1
∑

i=0

(1 + x)i

i!

(

f

(1 − · )rpm(vα)

)(i)

(−1)

+ (1 + x)rpm(vα, x)

r−1
∑

i=0

(1 − x)i

i!

(

f

(1 + · )rpm(vα)

)(i)

(1)

=: A(x) + B1(x) + B2(x),(2.2)
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where xk, k = 1, . . . , m, are zeros of pm(vα) and

lk(x) =
pm(vα, x)

p′
m(vα, xk)(x − xk)

, k = 1, . . . , m.

We complete the definition of Lm,r(vα, f) setting Lm,0(vα, f) = Lm(vα, f).
Finally, letting Pm be the space of all polynomials of degree at most m, we

denote by Em(f)vγ ,p = infPm∈Pm
‖(f − Pm)vγ‖p, 1 6 p 6 ∞, the error of best

polynomial approximation in Lp
vγ .

Now we are able to study the behaviour of the sequence {Lm,r(vα)}m, r > 1,
in the above introduced function spaces.

Theorem 2.1. Let vα and vγ be two Jacobi weight functions defined in (2.1),
with γ > 0 and α > −1. Then, for every f ∈ C0

r , r > 1, we have

(2.3) ‖Lm,r(vα, f)vγ‖∞ 6 C
{

‖fvγ‖∞ log m +
1

m2γ

r−1
∑

j=0

|f (j)(−1)| + |f (j)(1)|
j! m2j

}

,

where C 6= C(m, f), if and only if

(2.4)
α

2
+

1

4
6 γ + r 6

α

2
+

5

4
.

Moreover, if f ∈ Cr−1[−1, 1], the condition (2.4) implies

(2.5) ‖[f − Lm,r(vα, f)]vγ‖∞ 6 CEm+2r−1(f)vγ ,∞ log m, C 6= C(m, f).

The above theorem includes some special cases that are well-known in litera-
ture. For example, for γ = 0 and r > 1 we get Theorem 4.2.5 in [3, p. 260]. In the
case r = 0 and γ > 0 we obtain Theorem 2.2 in [4] (see also [3, p. 272]), and for
γ = r = 0 we get Theorem 14.4 in [9, p. 335].

Theorem 2.2. Let 1 6 p < ∞, γ > 0, and α > −1. Then, for every function

f ∈ C0
r , r > 1, there exists a constant C 6= C(m, f) such that

(2.6) ‖Lm,r(vα, f)vγ‖p 6 C
{

‖fvγ‖∞ +
1

m2γ+2/p

r−1
∑

j=0

|f (j)(−1)| + |f (j)(1)|
j! m2j

}

if and only if

(2.7)
vγ+r

√
vαϕ

∈ Lp and

√
vαϕ

vγ+r
∈ L1

i.e.,

−1

p
< γ + r − α

2
− 1

4
< 1.

Letting

(2.8) σm(f) =

r−1
∑

j=0

|f (j)(−1)| + |f (j)(1)|
j!m2j

,
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it is easy to deduce from the proof of the above theorem that the only condition
vγ+r/

√
vαϕ ∈ Lp is necessary and sufficient to obtain the bound

‖Lm,r(vα, f)vγ‖p 6 C‖f‖∞ +
σm(f)

m2γ+2/p
, 1 6 p < ∞,

which, for r = 0, follows from a well-know theorem of P. Nevai [7, p. 680].

The following theorem is a refinement of the previous one and implies some
interesting consequences.

Theorem 2.3. Let 1 < p < ∞, γ > 0, and α > −1. Then, for every function

f ∈ C0
r , r > 1, there exists a constant C 6= C(m, f) such that

‖Lm,r(vα, f)vγ‖p 6 C
{( m

∑

k=1

∆xk|fvγ |p(xk)

)1/p

(2.9)

+
1

m2γ+2/p

r−1
∑

j=0

|f (j)(−1)| + |f (j)(1)|
j!m2j

}

(2.10)

if and only if

(2.11)
vγ+r

√
vαϕ

∈ Lp and

√
vαϕ

vγ+r
∈ Lq, q−1 + p−1 = 1,

i.e.,

−1

p
< γ + r − α

2
− 1

4
<

1

q
.

Now we state some estimates of the error f − Lm,r(vα, f) for f varying in the
previously introduced spaces.

Proposition 2.1. For any f ∈ Cr−1[−1, 1], r > 1, under the assumptions

(2.7) we have

(2.12)
∥

∥[f − Lm,r(vα, f)]vγ
∥

∥

p
6 CEm+2r−1(f)vγ ,∞,

where 1 6 p < ∞ and C 6= C(m, f). Moreover, if f ∈ W r
p , r > 1, and 1 < p < ∞,

then the conditions (2.11) imply

(2.13)
∥

∥[f − Lm,r(vα, f)]vγ
∥

∥

p
6

C
mr

∥

∥f (r)ϕrvγ
∥

∥

p
, C 6= C(m, f).

Note that (2.13) shows that, if f ∈ W r
p , with r > 1 and 1 < p < ∞, the poly-

nomial Lm,r(vα, f) converges with the order of the best polynomial approximation
in Lp

vγ . Therefore, in the usual way, we can establish the next corollary that shows
the uniform boundedness (with respect to m) of the operator Lm,r(vα) in Sobolev
spaces (under the assumptions (2.11)).

Corollary 2.1. Under the conditions (2.11), for every f ∈ W r
p with r > 1

and 1 < p < ∞, we have

(2.14) sup
m

∥

∥Lm,r(vα, f)
∥

∥

W r
p

6 C
∥

∥f
∥

∥

W r
p

, C 6= C(f).
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Coming back to Theorem 2.3, the estimate (2.9) with the notation (2.8) can
be written as

∥

∥Lm,r(vα, f)vγ
∥

∥

p
6 C

{( m
∑

k=1

∆xk|fvγ |p(xk)

)1/p

+
σm(f)

m2γ+2/p

}

=: Γm(f).

Of course, if f is a polynomial P of degree m + 2r − 1, the inequality

Γm(P ) > C‖Lm,r(vα, P )vγ‖p = C‖P vγ‖p, 1 < p < ∞,

is equivalent to the conditions (2.11).
Moreover, it is easy to prove that for arbitrary α > −1, γ > 0, and r > 1, the

inverse inequality Γm(P ) 6 C‖P vγ‖p holds true for 1 6 p < ∞. In fact, the bound

(2.15)

( m
∑

k=1

∆xk|P vγ |p(xk)

)1/p

6 C‖P vγ‖p

is well-known (see, for example, [7, p. 675]). In order to obtain

σm(P )

m2γ+2/p
6 C‖P vγ‖p

it suffices to apply the inequalities of Markov, Schur and Nikol’skĭı.
Therefore, we can state a new Marcinkiewicz inequality involving the deriva-

tives of a polynomial at ±1.

Corollary 2.2. Let xk, k = 1, . . . , m, be the zeros of the mth Jacobi polyno-

mial pm(vα) and let 1 < p < ∞. Then, for every polynomial P ∈ Pm+2r−1, the

following equivalence

(2.16) ‖P vγ‖p ∼
( m

∑

k=1

∆xk|P vγ |p(xk)

)1/p

+
σm(P )

m2γ+2/p

holds true, with the constants in “∼" independent of m and P , if and only if

−1

p
< r + γ − α

2
− 1

4
<

1

q
(p−1 + q−1 = 1).

Finally, we want to observe that if we introduce the mth Christoffel function
of the weight vγp,

λm(vγp, x) =

[m−1
∑

k=0

p2
k(vγp, x)

]−1

∼ vγp(x)

√
1 − x2

m
,

then the sum in (2.16) can be replaced by

( m
∑

k=1

λm(vγp, xk)|P (xk)|p
)1/p

.
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3. Proofs

In this section we will frequently use the Remez-type inequality in the following
form

(3.1) (∀Pm ∈ Pm) ‖Pmvγ‖p 6 C‖Pmvγ‖Lp(Am),

where Am =
[

−1 + am−2, 1 − am−2
]

, with a > 0 fixed, and C 6= C(m, Pm).

If I is a subinterval of (−1, 1), the Hilbert transform H(f, t) is defined as follows

H(f, t) =

∫

I

f(x)

x − t
dx, t ∈ I,

where the integral is understood in the Cauchy principal value sense. For 1 < p <
∞, the following property is well-known:

∫

I

gH(f) = −
∫

I

fH(g), f ∈ Lp and g ∈ Lq,
1

p
+

1

q
= 1.

Moreover, with vσ(x) = (1 − x2)σ and 1 < p < ∞, one has

‖(Hf)vσ‖p 6 C‖fvσ‖p if and only if − 1

p
< σ <

1

q
.

Now, recalling (2.2) with the notation (2.8), we can state the following lemma:

Lemma 3.1. With the notation (2.2), we have

‖(B1 + B2)vγ‖∞ 6
C

m2γ
σm(f), C 6= C(f, m),

if and only if α
2 + 1

4 6 γ + r 6 α
2 + 5

4 . Moreover, for p ∈ [1, ∞), we get

‖(B1 + B2)vγ‖p 6
C

m2γ+2/p
σm(f), C 6= C(f, m),

if and only if − 1
p < γ + r − α

2 − 1
4 < 1

q .

Proof. We estimate only the norm ‖B1vγ‖p, 1 6 p 6 ∞, since the estimate
of ‖B2vγ‖p is similar. Using the Remez inequality (3.1) and letting

Āi =
1

i!

(

f

(1 − · )rpm(vα)

)(i)

(−1),

we can write

‖B1vγ‖p 6 C‖B1vγ‖Lp(Am)

6

r−1
∑

i=0

|Āi|‖(1 − x)r(1 + x)i(1 − x2)γpm(vα, x)‖Lp(Am) =:

r−1
∑

i=0

|Āi|bi.(3.2)

Of course, we have

bi 6
∥

∥(1 − x)r(1 + x)i(1 − x2)γpm(vα, x)
∥

∥

Lp(−1+a/m2, 0)

+
∥

∥(1 − x)r(1 + x)i(1 − x2)γpm(vα, x)
∥

∥

Lp(0,1−a/m2)

:= I1 + I2.
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Moreover, by virtue of the estimate |pm(vα, x)| 6 Cv− α
2 − 1

4 (x), |x| 6 1 − a/m2, we
have

I1 + I2 6 C
{

∥

∥(1 + x)γ+i− α
2 − 1

4

∥

∥

Lp(−1+a/m2, 0)
+

∥

∥(1 − x)γ+r− α
2 − 1

4

∥

∥

Lp(0,1−a/m2)

}

.

Now, under the assumptions on the parameters α, γ and r (and only in this case),

the first summand is dominated by C
(

m−2
)γ+i− α

2 − 1
4 + 1

p , with γ + i− α
2 − 1

4 + 1
p 6 0,

1 6 p 6 ∞, while the second summand is bounded. In particular, for p < ∞ we
have γ + i − α

2 − 1
4 + 1

p < 0, while for p = ∞ we have γ + i − α
2 − 1

4 = 0 only in

the case i = r − 1. In any case, since |pm(vα, ±1)| ∼ mα+1/2 (see for instance [3,
p. 251, formula (4.2.10)]) we conclude that

I1 + I2 6
C

m2γ+2/p

|pm(vα, −1)|
m2i

, 1 6 p 6 ∞,

taking into account that 2γ + 2i = α + 1/2 for i = r − 1 and p = ∞. Therefore,
recalling (3.2), we have

‖B1vγ‖p 6 C |pm(vα, −1)|
m2γ+2/p

r−1
∑

i=0

Āi

m2i
.

It remains to estimate Āi, i = 0, 1, . . . , r − 1. We have

∣

∣Āi

∣

∣ 6
1

i!

i
∑

j=0

(

i

j

)

∣

∣f (j)(−1)
∣

∣

∣

∣

∣

∣

( 1

(1 − x)r

1

pm(vα, x)

)(i−j)
(−1)

∣

∣

∣

∣

and, taking into account that [7, p. 674, formula (23)]
( 1

pm(vα, x)

)(k)
(−1) 6 C m2k

|pm(vα, −1)| ,

we obtain
∣

∣

∣

∣

( 1

(1 − x)r

1

pm(vα, x)

)(i−j)
(−1)

∣

∣

∣

∣

6 C m2i−2j

|pm(vα, −1)| .

Hence we get

|Āi| 6
C

i! |pm(vα, −1)|

i
∑

j=0

(

i

j

)

∣

∣f (j)(−1)
∣

∣m2i−2j

and, for 1 6 p 6 ∞,

‖B1vγ‖p 6
C

m2γ+2/p

r−1
∑

i=0

1

i!

i
∑

j=0

(

i

j

)

∣

∣f (j)(−1)
∣

∣

m2j

=
C

m2γ+2/p

r−1
∑

j=0

∣

∣f (j)(−1)
∣

∣

m2j

r−1
∑

i=j

1

i!

(

i

j

)

6
C

m2γ+2/p

r−1
∑

j=0

∣

∣f (j)(−1)
∣

∣

j!m2j
,

which completes the proof. �
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Proof of Theorem 2.1. In Lemma 3.1, we proved that

‖(B1 + B2)vγ‖∞ 6
C

m2γ
σm(f).

Then, it remains to prove that ‖Avγ‖∞ 6 C‖fvγ‖∞ log m. But, the latter inequality
can be found in [3, p. 262] with a minor change. So, the proof of (2.3) is complete.

Concerning the estimate of the error (2.5), we refer to the proof of Proposi-
tion 2.1. �

We are going to prove Theorem 2.3 before Theorem 2.2.

Proof of Theorem 2.3. Taking into account Lemma 3.1, to prove the the-
orem, it suffices to show that the inequality

(3.3) ‖Avγ‖p
p 6 C

m
∑

k=1

∆xk|fvγ |p(xk), 1 < p < ∞,

is equivalent to the conditions (2.11).
We first prove that (2.11) implies (3.3). To this end, using (3.1) and, letting

g = vγ(p−1)|A|p−1 sgn A in the interval Am, we can write

‖Avγ‖p
Lp(Am) =

∫

Am

m
∑

k=1

vγ+r(x)
lk(x)f(xk)

vr(xk)
g(x) dx,

where

lk(x) =
pm(vα, x)

p′
m(vα, xk)(x − xk)

,

whence we deduce

‖Avγ‖p
Lp(Am) =

m
∑

k=1

f(xk)vγ(xk)

p′
m(vα, xk)vγ+r(xk)

∫

Am

vγ+r(x)pm(vα, x)

x − xk
g(x) dx

6 C
m

∑

k=1

∆xk|fvγ |(xk)

vγ+r− α
2 − 1

4 (xk)

∣

∣

∣

∣

∫

Am

vγ+r(x)pm(vα, x)
g(x)

x − xk
dx

∣

∣

∣

∣

,

since, with ∆xk = xk+1 − xk, 1/|p′
m(vα, xk)| ∼ ∆xkv

α
2 + 1

4 (xk). Denoting by G(xk)
the absolute value of the integral at the right-hand side and using the Hölder
inequality, we get

‖Avγ‖p
Lp(Am) 6

( m
∑

k=1

∆xk|fvγ |p(xk)

)1/p( m
∑

k=1

∆xk

[√
vαϕ

vγ+r
(xk)G(xk)

]q)1/q

.

It remains to prove that the Lq norm is bounded by C‖Avγ‖p−1
Lp(Am). We note that

for an arbitrary polynomial Q ∈ Pm, we can write

G(xk) =

∣

∣

∣

∣

∫

Am

pm(vα, x)Q(x) − pm(vα, xk)Q(xk)

x − xk
vγ+r(x)

g(x)

Q(x)
dx

∣

∣

∣

∣

.

Therefore, G(t) is a polynomial of degree 2m − 1. Then, using the Marcinkiewicz
inequality (2.15), the Lq norm is dominated by a positive constant C times the norm
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∥

∥

√
vαϕ

vγ+r G
∥

∥

Lq(Am)
that is bounded under the assumption

√
vαϕ

vγ+r ∈ Lq. Moreover,

denoting by H the Hilbert transform defined on the interval Am, we can write
∥

∥

∥

∥

√
vαϕ

vγ+r
G

∥

∥

∥

∥

Lq(Am)
6

∥

∥

∥

∥

√
vαϕ

vγ+r
H(pm(vα)vγ+rg)

∥

∥

∥

∥

Lq(Am)

+

∥

∥

∥

∥

√
vαϕ

vγ+r
Qpm(vα)H

(gvγ+r

Q

)

∥

∥

∥

∥

Lq(Am)
.

Taking also into account the assumption vγ+r

√
vαϕ

∈ Lp, the Hilbert transform is a

bounded operator and the first norm is dominated by
∥

∥

∥

∥

√
vαϕ

vγ+r
pm(vα)vγ+rg

∥

∥

∥

∥

Lq(Am)
6 C‖g‖Lq(Am) = ‖Avγ‖p−1

Lp(Am),

since |pm(vα, x)
√

(vαϕ)(x)| 6 C.

In order to prove the estimate of the second norm at the right-hand side, we
choose a polynomial Q such that Q(x) ∼ vγ+r(x) for x ∈ Am (see [2]). Conse-
quently, the second norm is dominated by

∥

∥

∥

∥

H

(

gvγ+r

Q

)∥

∥

∥

∥

q

6 C
∥

∥

∥

∥

gvγ+r

Q

∥

∥

∥

∥

q

6 C‖g‖q = ‖Avγ‖p−1
Lp(Am).

Then (2.11) implies (3.3).
Now, we prove that (2.11) is a consequence of (3.3). To this end, for any

f ∈ C0
r , we consider a piecewise linear function Fm such that











F
(i)
m (±1) = 0, i = 0, 1, . . . , r − 1,

Fm(xk) = 0, for xk ∈ [−a, a], with a < 1
4 fixed,

Fm(xk) = |f(xk)| sgn {−xkp′
m(vα, xk)} , for xk /∈ [−a, a].

Taking into account that sgn(−xk) = sgn(x − xk) for x ∈ [−a, a] and xk /∈ [−a, a],
we get

|Lm,r(vα, Fm, x)vγ(x)| = |vγ+r(x)pm(vα, x)|
m

∑

k=1

|Fmvγ |(xk)

|p′
m(vα, xk)vγ+r(xk)||x − xk|

> C
∣

∣

∣

∣

vγ+r(x)

2
pm(vα, x)

∣

∣

∣

∣

m
∑

k=1

∆xkvα+ 1
4 −γ−r(xk)|Fmvγ |(xk),

since |p′
m(vα, xk)|−1 ∼ ∆xkv

α
2 + 1

4 (xk) and |x − xk| 6 2. Moreover, by virtue of a
result in [6], we have

lim inf
m→∞

‖vγ+rχapm(vα)‖p > C
∥

∥

∥

∥

vγ+rχa√
vαϕ

∥

∥

∥

∥

p

> C,

being χa the characteristic function of [−a, a].
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Then, collecting the previous inequalities, by (3.3), we obtain
m

∑

k=1

∆xk

√
vαϕ

vγ+r
(xk)|Fmvγ |(xk) 6 ‖Lm,r(vα, Fm)χavγ‖Lp(Am)

6 C
( m

∑

k=1

∆xk|Fmvγ |p(xk)

)1/p

.(3.4)

Now, letting

ak = (∆xk)1/q

√
vαϕ

vγ+r
(xk), ck = (∆xk)1/p|Fmvγ |(xk), ‖c̄‖∗

p =

( m
∑

k=1

|ck|p
)1/p

,

where c̄ = (c1, c2, . . . , cm), we can write (3.4) as
∑m

k=1 akck 6 C‖c̄‖∗
p and, since

C 6= C(m, Fm),

sup
m

sup
c̄

m
∑

k=1

ak
ck

‖c̄‖∗
p

6 C.

Hence, we get supm (
∑m

k=1 |ak|q)
1/q

6 C, i.e.,

sup
m

( m
∑

k=1

∆xk

(√
vαϕ

vγ+r
(xk)

)q )1/q

6 C.

The latter inequality is equivalent to
∥

∥

√
vαϕ

vγ+r

∥

∥

q
< ∞ which is, therefore, a conse-

quence of (3.3).

Finally, we prove that (3.3) implies also
∥

∥

vγ+r

√
vαϕ

∥

∥

p
< ∞. To this end, since (3.3)

holds true for every f ∈ C0(−1, 1), letting g(x) = f(x)vr(x), we have

‖Avγ‖Lp(Am) = ‖Lm(vα, f)vγ+r‖Lp(Am) 6 C‖fvγ+r‖∞,

i.e.,
sup

m
sup

‖fvγ+r‖∞=1
‖Lm(vα, f)vγ+r‖Lp(Am) 6 C, C 6= C(m, f).

Therefore, using [5], we get supm ‖pm(vα)vγ+r‖p 6 C, i.e., vγ+r

√
vαϕ

∈ Lp, and the

proof is complete. �

Proof of Theorem 2.2. We first show that (2.7) implies (2.6). Taking into
account Lemma 3.1, it remains to estimate only the quantity ‖Avγ‖p

Lp(Am), where

A is given by (2.2). Using the same argument of the previous proof, we have

‖Avγ‖p
Lp(Am) 6 C‖fvγ‖∞

m
∑

k=1

∆xkv−γ−r+ α
2 + 1

4 (xk)|G(xk)|

and

G(xk) =

∫

Am

vγ+r(x)
pm(vα, x)

x − xk
g(x)dx

=

∫

Am

pm(vα, x)Q(x) − pm(vα, xk)Q(xk)

x − xk
vγ+r(x)

g(x)

Q(x)
dx,
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where, as in the proof of Theorem 2.3, Q ∈ Pm is equivalent to the weight vγ+r

in the interval Am. Then G(t) is a polynomial of degree 2m − 1 and, using a
Marcinkiewicz inequality, we get

‖Avγ‖p
Lp(Am) 6 C‖fvγ‖∞‖v−γ−r+ α

2 + 1
4 G‖L1(Am)

and the L1 norm is bounded under our hypotheses. In fact, expressing G by means
of the Hilbert transform, we have

‖v−γ−r+ α
2 + 1

4 G‖L1(Am) 6 ‖v−γ−r+ α
2 + 1

4 H(pm(vα)vγ+rg)‖L1(Am)

+
∥

∥

∥
v−γ−r+ α

2 + 1
4 pm(vα)QH

(vγ+rg

Q

)∥

∥

∥

L1(Am)
.

Concerning the second summand at the right-hand side, using the Hölder inequality,
the boundedness of H and Q ∼ vγ+r, we get

∥

∥

∥
v−γ−r+ α

2 + 1
4 pm(vα)QH

(vγ+rg

Q

)∥

∥

∥

L1(Am)
6

∥

∥

∥
H

(vγ+rg

Q

)∥

∥

∥

1
6 C‖g‖q.

In order to estimate the first summand, we note that the function under the sign
of the Hilbert transform is bounded and the one outside is L(log+ L) (see [8]).
Therefore, with Γ = sgn H(pm(vα)vγ+rg) and ̺ = γ + r − α/2 − 1/4, we can write

‖v−̺H(pm(vα)vγ+rg)‖L1(Am) 6 ‖pm(vα)vγ+rgH(v−̺Γ)‖L1(Am)

6 C‖v̺gH(v−̺Γ)‖L1(Am)

6 C‖g‖q‖v̺H(v−̺Γ)‖Lp(Am)

6 C‖g‖q,

since the Lp-norm is bounded (see, for example, [7, p. 676]). Therefore, (2.7)
implies (2.6).

In order to prove that (2.6) is a consequence of (2.7) it suffices use the same
arguments of the proof of Theorem 2.3 (the part dealing with the necessary con-
dition (2.9) ⇒ (2.11)) replacing p by ∞ and q by 1. So, the theorem is completely
proved. �

Proof of Proposition 2.1. The proof is based on the following result due
to Gopengauz [1]: “For every function f ∈ Cs, s > 0, there exists a polynomial

q ∈ Pm+2s−1 such that, for i = 0, 1, . . . , s, one has q(i)(±1) = f (i)(±1) and

∣

∣

(

f (i)(x) − q(i)(x)
)∣

∣ 6 C
(

√
1 − x2

m

)s−i

ω

(

f (i),

√
1 − x2

m

)

∞
, |x| 6 1,

where C 6= C(m, f, x) and ω(·, ·)∞ is the ordinary modulus of smoothness” (in the
uniform norm).

Then, if f ∈ Cr−1, we have

vγ(x)
∣

∣f(x) − Lm,r(vα, f, x)
∣

∣ =
∣

∣f(x) − q(x)
∣

∣vγ(x) +
∣

∣

∣
vγ+r(x)Lm,r

(

vα,
f − q

vr
, x

)∣

∣

∣
,

whence, using (2.6),
∥

∥[f − Lm,r(vα, f)]vγ
∥

∥

p
6 C

∥

∥(f − q)vγ
∥

∥

∞.
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Therefore, for every polynomial P of degree m + 2r − 1, we get
∥

∥[f − Lm,r(vα, f)]vγ
∥

∥

p
6 C

∥

∥[(f − q) − P ]vγ
∥

∥

∞

and, assuming the infimum on P , the estimate (2.12) follows.
Now we prove (2.13). Using the polynomial q of Gopengauz and (2.9), we get

(3.5)
∥

∥[f − Lm,r(vα, f)]vγ
∥

∥

p
6 C

∥

∥(f − q)vγ
∥

∥

p

+ C
( m

∑

k=1

∆xk

[

ω
(

f,
ϕ(xk)

m

)

∞
vγ(xk)

]p
)1/p

.

Now, we have

|f(x) − q(x)|vγ(x) 6 Cvγ(x) ω
(

f,
ϕ(x)

m

)

∞

6 Cvγ(x)

∫ x+ ϕ(x)
m

x− ϕ(x)
m

|f ′(t)| dt 6
C
m

m

ϕ(x)

∫ x+ ϕ(x)
m

x− ϕ(x)
m

|f ′ϕvγ |(t) dt,

since 1 ± x ∼ 1 ± t if |x − t| 6 C ϕ(x)
m for x, t ∈ [x1, xm].

Then, using the maximal function of f ′ϕvγ , the first summand in (3.5) is
dominated by

C
m

(
∫ 1

−1

(

m

ϕ(x)

∫ x+ ϕ(x)
m

x− ϕ(x)
m

|f ′ϕvγ |(t) dt

)p

dx

)1/p

6
C
m

‖f ′ϕvγ‖p.

Concerning the sum in (3.5), for a sufficiently large s, we have

ω
(

f,
ϕ(xk)

m

)

∞
vγ(xk) 6 s ω

(

f,
ϕ(xk)

sm

)

∞
vγ(xk)

6 C s

∫ x+
ϕ(xk)

sm

xk− ϕ(xk)

sm

|f ′(t)|vγ(t) dt 6 C
∫ xk+1

xk−1

|f ′vγ |(t) dt.

Then, using the Hölder inequality in the latter integral, we get

∆xk

[

ω
(

f,
ϕ(xk)

m

)

∞

]p

6 C(∆xk)p

∫ xk+1

xk−1

|f ′vγ |p(t) dt 6
C

mp

∫ xk+1

xk−1

|f ′ϕvγ |p(t) dt,

for k = 1, . . . , m and x0 = −1. Adding up on k, we obtain that also the second
term in (3.5) is dominated by C

m ‖f ′ϕvγ‖p. Consequently, in a usual way, we deduce

‖[f − Lm,r(vα, f)]vγ‖p 6
C
m

Em+2r−2(f ′)vγ ϕ,p .

Iterating the latter relation, (2.13) follows. �

Proof of Corollary 2.1. The bound (2.14) is a consequance of (2.13) and
the well-known estimate

‖(f − Lm,r(vα, f))(r)vγϕr‖p 6 Cmr‖(f − Lm,r(vα, f))vγ‖p + ‖f (r)ϕrvγ‖p

which holds for any f ∈ W r
p , 1 < p < ∞, and r > 1. We omit the details. �
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