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Abstract. For every directed graph 𝐷 we consider the complex of all directed
subforests Δ(𝐷). The investigation of these complexes was started by D.
Kozlov. We generalize a result of Kozlov and prove that complexes of directed
trees of complete multipartite graphs are shellable. We determine the ℎ-vector
of Δ(−→𝐾𝑚,𝑛) and the homotopy type of Δ(−→𝐾𝑛1,𝑛2,...,𝑛𝑘 ).

1. Introduction

A directed tree is a tree in which one vertex is selected as the root and all edges
are oriented away from the root. If 𝑇 = (𝑉 (𝑇 ), 𝐸(𝑇 )) is a directed tree with root
𝑟, then for every 𝑥 ∈ 𝑉 (𝑇 ) there exists a unique directed path from 𝑟 to 𝑥. We
say that a vertex 𝑦 is below vertex 𝑥 in a directed tree 𝑇 if there exists a unique
directed path from 𝑥 to 𝑦. A directed forest is a family of disjoint directed trees.
In this paper we write −→𝑥𝑦 for a directed edge from 𝑥 to 𝑦.

An abstract simplicial complex Δ is a collection of finite nonempty sets such
that 𝐴 ⊆ 𝐵 ∈ Δ ⇒ 𝐴 ∈ Δ. The element 𝐴 of Δ is called a face ( simplex) of Δ
and its dimension is |𝐴| − 1. The vertex set of Δ is the union of all faces of Δ.
The dimension of the complex Δ is defined as the largest dimension of any of its
faces. A facet of Δ is any simplex that is not a face of any larger simplex of Δ. A
simplicial complex is pure if every of its facets has the same dimension. We denote
the number of 𝑖-dimensional faces of Δ by 𝑓𝑖, and 𝑓(Δ) = (𝑓−1, 𝑓0, . . . , 𝑓𝑑−1, 𝑓𝑑) is
called the 𝑓 -vector. A new invariant, the ℎ-vector of a 𝑑-dimensional complex Δ is
ℎ(Δ) = (ℎ0, ℎ1, . . . , ℎ𝑑, ℎ𝑑+1) defined by the formula

ℎ𝑘 =
𝑘∑︁

𝑖=0
(−1)𝑘−𝑖

(︂
𝑑 + 1 − 𝑖

𝑑 + 1 − 𝑘

)︂
𝑓𝑖−1.

We refer the reader to [8] for definitions of topological concepts used in this paper.
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Definition 1.1. Let 𝐷 be a directed graph. The vertices of the complex of
directed trees Δ(𝐷) are oriented edges of 𝐷. The faces of Δ(𝐷) are all directed
forests that are subgraphs of 𝐷.

The question of shellability of complexes of directed trees was posed by R.
Stanley. Kozlov in [6] showed that the existence of a complete source in a directed
graph provides a shelling of its complex of directed trees. The complex of directed
trees of a graph 𝐺 is recognized in [3] as a discrete Morse complex of a 1-dimensional
complex. These complexes are also studied in [4] and [7].

Geometrically, a shelling of a cell complex is a way of gluing it together from its
maximal cells in a well-behaved way. In this paper we use the following definition
of shellability for pure simplicial complexes.

Definition 1.2. A pure simplicial complex Δ is shellable if there exists a linear
ordering (shelling order) 𝐹1, 𝐹2, . . . , 𝐹𝑘 of facets of Δ such that for every 𝑖 < 𝑗 6 𝑘
there exist some 𝑙 < 𝑗 and a vertex 𝑣 of 𝐹𝑗 such that

𝐹𝑖 ∩ 𝐹𝑗 ⊆ 𝐹𝑙 ∩ 𝐹𝑗 = 𝐹𝑗 r {𝑣}.

For a fixed shelling order 𝐹1, 𝐹2, . . . , 𝐹𝑘 of Δ, the restriction ℛ(𝐹𝑗) of the facet
𝐹𝑗 is defined by ℛ(𝐹𝑗) = {𝑣 is a vertex of 𝐹𝑗 : 𝐹𝑗 r {𝑣} ⊂ 𝐹𝑖 for some 1 6 𝑖 < 𝑗}.
The type of the facet 𝐹 in the given shelling order is the cardinality of ℛ(𝐹 ), i.e.,
type(𝐹 ) = |ℛ(𝐹 )|. If we build up Δ according to a shelling order, then ℛ(𝐹 )
is the unique minimal new face that appears when we add the facet 𝐹 . For a
shellable simplicial complex we have the following combinatorial interpretation of
its ℎ-vector: ℎ𝑘(Δ) = |{𝐹 is a facet of Δ : type(𝐹 ) = 𝑘}|. Further, we know
that a shellable 𝑑-dimensional simpilicial complex Δ is homotopy equivalent to
a wedge of ℎ𝑑 spheres of dimension 𝑑. A set of maximal simplices 𝒢 of Δ is
a generating set of simplices if the removal of interiors of all simplices from 𝒢
makes Δ contractible. For a shellable simplicial complex Δ the set of simplices
𝒢 = {𝐹 is a facet of Δ : ℛ(𝐹 ) = 𝐹} is a generating set of Δ, i.e., the simplicial
complex Δ r

(︀⋃︀
𝐹 ∈𝒢 𝐹

)︀
is contractible.

For more information on shellability see [1], [2] and chapter 8 of [9].

2. Graphs with a dominant pair

Kozlov in [6] used the following variant of a shelling. Let ℱ(Γ) denote the set
of all facets of a pure simplicial complex Γ. Assume that we can partition ℱ(Γ)
into the blocks ℱ0, ℱ1, ℱ2, . . . , ℱ𝑚 such that the following holds:

|ℱ0| = 1; for all 𝑖 6 𝑗 and two different facets 𝐹 ∈ ℱ𝑖, 𝐹 ′ ∈ ℱ𝑗 ,
there exists 𝑘 < 𝑗, a facet 𝐹 ′′ ∈ ℱ𝑘, and a vertex 𝑣 ∈ 𝐹 ′(2.1)

such that 𝐹 ∩ 𝐹 ′ ⊆ 𝐹 ′′ ∩ 𝐹 ′ = 𝐹 ′ r {𝑣}.

It is easy to check that any linear order that refines partition ℱ0, ℱ1, ℱ2, . . . , ℱ𝑚

(for 𝑖 < 𝑗 we list facets from ℱ𝑖 before facets from ℱ𝑗) is a shelling order of Γ in
the sense of Definition 1.2.

A vertex 𝑐 is a complete source in a digraph 𝐷 if −→𝑐𝑥 ∈ 𝐸(𝐷) for all 𝑥 ∈
𝑉 (𝐷) r {𝑐}. The partition of ℱ(Δ(𝐷)) defined by Kozlov in [6] substantially uses
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the out-degree 𝑑𝑇 (𝑐) = |{𝑥 : −→𝑐𝑥 ∈ 𝐸(𝑇 )}| of 𝑐:
ℱ𝑖 = {𝑇 ∈ ℱ(Δ(𝐷)) : 𝑑𝑇 (𝑐) − 1 − 𝑖}.

It is not complicated to prove for a digraph with a complete source, that the
above partition of the facets of Δ(𝐷) satisfies the condition described in (2.1) (see
the proof of Theorem 3.1 in [6]).

We now describe a broader family of graphs whose complexes of directed trees
are shellable. For a directed graph 𝐷 and a vertex 𝑢 ∈ 𝑉 (𝐷) we set 𝑁(𝑢) = {𝑥 ∈
𝑉 (𝐷) : −→𝑢𝑥 ∈ 𝐸(𝐷)}. We say that a directed graph 𝐷 has a dominant pair of
vertices if there exist vertices 𝑢, 𝑣 ∈ 𝑉 (𝐷) such that

(i) 𝑉 (𝐷) = 𝑁(𝑢) ∪ 𝑁(𝑣). Therefore, we have that −→𝑢𝑣, −→𝑣𝑢 ∈ 𝐸(𝐷).
(ii) For all 𝑥 ∈ 𝑁(𝑢)r𝑁(𝑣) and 𝑦 ∈ 𝑁(𝑣)r𝑁(𝑢) we have that −→𝑥𝑦, −→𝑦𝑥 ∈ 𝐸(𝐷).

Theorem 2.1. If a directed graph 𝐷 has a dominant pair of vertices the complex
Δ(𝐷) is shellable.

Proof. We will define a partition of the facets of Δ(𝐷) and show that this
partition satisfies (2.1). Recall that facets of the complex Δ(𝐷) correspond to
subtrees of 𝐷.

Let 𝐷 be a graph with a dominant pair of vertices 𝑢, 𝑣. For a directed tree 𝑇
with the root 𝑟 let ℎ𝑇 (𝑥) denotes the length of the unique directed path from 𝑟
to 𝑥. We classify directed trees of 𝐷 by using 𝑑𝑇 (𝑢), 𝑑𝑇 (𝑣), ℎ𝑇 (𝑢) and ℎ𝑇 (𝑣). The
trees of 𝐷 in which the above defined parameters are the same form a block

ℱ𝑝,𝑞,𝑟,𝑠 = {𝑇 : 𝑑𝑇 (𝑢) = 𝑝, 𝑑𝑇 (𝑣) = 𝑞, ℎ𝑇 (𝑢) = 𝑟, ℎ𝑇 (𝑣) = 𝑠}
of our partition of the facets of Δ(𝐷). We say that ℱ𝑝,𝑞,𝑟,𝑠 is before ℱ𝑝′,𝑞′,𝑟′,𝑠′ , and
write ℱ𝑝,𝑞,𝑟,𝑠 < ℱ𝑝′,𝑞′,𝑟′,𝑠′ , if and only if 𝑝 > 𝑝′, or 𝑝 = 𝑝′ and 𝑞 > 𝑞′, or 𝑝′ = 𝑝,
𝑞 = 𝑞′ and 𝑟 < 𝑟′, or 𝑝′ = 𝑝, 𝑞 = 𝑞′, 𝑟 = 𝑟′ and 𝑠 < 𝑠′. Note that the first block
in this partition ℱ|𝑁(𝑢)|,|𝑁(𝑣)r𝑁(𝑢)|−1,0,1 contains only the tree with the edge set
{−→𝑢𝑥 : 𝑥 ∈ 𝑁(𝑢)} ∪ {−→𝑣𝑦 : 𝑦 ∈ 𝑁(𝑣) r (𝑁(𝑢) ∪ {𝑢})}.

Now, we consider two different directed trees 𝑇 ∈ ℱ𝑝,𝑞,𝑟,𝑠, 𝑇 ′ ∈ ℱ𝑝′,𝑞′,𝑟′,𝑠′ such
that ℱ𝑝,𝑞,𝑟,𝑠 6 ℱ𝑝′,𝑞′,𝑟′,𝑠′ . Assume that the edges 𝐸(𝑇 ) ∩ 𝐸(𝑇 ′) span a directed
forest 𝐹 = 𝑇1 ∪ 𝑇2 ∪ · · · ∪ 𝑇𝑚, and let 𝑟𝑖 denote the root of 𝑇𝑖. Assume that 𝑟𝑖0

is the root of 𝑇 ′. Note that 𝐸(𝑇 ′) r 𝐸(𝑇 ) contains 𝑚 − 1 edges of the form −→𝑥𝑟𝑖,
where 𝑖 ̸= 𝑖0.

The following analysis will show that there is a tree 𝑇 ′′ such that 𝑇, 𝑇 ′ and 𝑇 ′′

satisfy the conditions described in (2.1). First, we consider the case when 𝑢, 𝑣 are
in the same tree of 𝐹 (w.l.o.g. we assume 𝑣, 𝑢 ∈ 𝑇1).

(1) If the root of 𝑇 ′ is a vertex 𝑟𝑖 ̸= 𝑟1, then there exists −→𝑥𝑟1 ∈ 𝐸(𝑇 ′) r 𝐸(𝑇 )
such that 𝑥 ̸= 𝑢 and 𝑥 ̸= 𝑣. We set 𝑇 ′′ = 𝑇 ′ r {−→𝑥𝑟1} ∪ {−→𝑢𝑟𝑖} (if 𝑟𝑖 ∈ 𝑁(𝑢))
or 𝑇 ′′ = 𝑇 ′ r {−→𝑥𝑟1} ∪ {−→𝑣𝑟𝑖} (if 𝑟𝑖 /∈ 𝑁(𝑢)).

(2) Assume that 𝑟1 is the root of 𝑇 ′. If there is a vertex 𝑟𝑗 ∈ 𝑁(𝑢) for some
𝑗 > 1, the assumption 𝑑𝑇 (𝑢) > 𝑑𝑇 ′(𝑢) guarantees that there exists an edge
−→𝑥𝑟𝑖 ∈ 𝐸(𝑇 ′) r 𝐸(𝑇 ) such that 𝑥 ̸= 𝑢, 𝑖 > 1 and 𝑟𝑖 ∈ 𝑁(𝑢). Otherwise,
if all of the edges −→𝑢𝑟𝑖 (for all 𝑟𝑖 ∈ 𝑁(𝑢), 𝑖 > 1) are contained in 𝐸(𝑇 ′),
then we obtain that 𝑑𝑇 (𝑢) < 𝑑𝑇 ′(𝑢). In the above described situation we set
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𝑇 ′′ = 𝑇 ′ r {−→𝑥𝑟𝑖} ∪ {−→𝑢𝑟𝑖}.
If 𝑟𝑖 ∈ 𝑁(𝑣) r 𝑁(𝑢) for all 𝑖 = 2, 3, . . . , 𝑚, then there exists −→𝑦𝑟𝑖 ∈ 𝐸(𝑇 ′) r
𝐸(𝑇 ), such that 𝑦 ̸= 𝑣 (otherwise we obtain that 𝑑𝑇 (𝑢) = 𝑑𝑇 ′(𝑢) and 𝑑𝑇 (𝑣) <
𝑑𝑇 ′(𝑣)). Then we set 𝑇 ′′ = 𝑇 ′ r {−→𝑦𝑟𝑖} ∪ {−→𝑣𝑟𝑖}.

Now, we consider the situation when the vertices 𝑢 and 𝑣 belong to different trees
of 𝐹 (w.l.o.g. we assume that 𝑢 ∈ 𝑇1 and 𝑣 ∈ 𝑇2).

(3) If the root of 𝑇 ′ is 𝑟𝑖, 𝑟𝑖 ̸= 𝑟1 and 𝑟𝑖 ∈ 𝑁(𝑢), then there exists −→𝑥𝑟1 ∈
𝐸(𝑇 ′) r 𝐸(𝑇 ) such that 𝑥 ̸= 𝑢 and we set 𝑇 ′′ = 𝑇 ′ r {−→𝑥𝑟1} ∪ {−→𝑢𝑟𝑖}.

(4) If the root 𝑟𝑖 of 𝑇 ′ (again 𝑟𝑖 ̸= 𝑟1) is not contained in 𝑁(𝑢) and 𝑟𝑖 ̸= 𝑟2, then
there exists −→𝑥𝑟2 ∈ 𝐸(𝑇 ′) r 𝐸(𝑇 ). If 𝑥 ̸= 𝑢 we set 𝑇 ′′ = 𝑇 ′ r {−→𝑥𝑟2} ∪ {−→𝑣𝑟𝑖}.

If 𝑥 = 𝑢, then 𝑣 is below 𝑢 and there exists −→𝑦𝑟1 ∈ 𝐸(𝑇 ′) such that 𝑦 ̸= 𝑢
and 𝑦 ̸= 𝑣. In that case we set 𝑇 ′′ = 𝑇 ′ r {−→𝑦𝑟1} ∪ {−→𝑣𝑟𝑖}.

(5) If 𝑟2 is the root of 𝑇 ′ (recall that 𝑟2 ∈ 𝑁(𝑣) r 𝑁(𝑢) and therefore 𝑟2 ̸= 𝑣),
then there exists an edge −→𝑥𝑟1 ∈ 𝐸(𝑇 ′) r 𝐸(𝑇 ). If 𝑟1 ∈ 𝑁(𝑣) and 𝑥 ̸= 𝑣, we
set 𝑇 ′′ = 𝑇 ′ r {−→𝑥𝑟1} ∪ {−→𝑣𝑟1}.

If 𝑥 = 𝑣 (and therefore 𝑟1 ∈ 𝑁(𝑣)), then we find an edge −→𝑦𝑟𝑖 ∈ 𝐸(𝑇 ′) r
𝐸(𝑇 ) such that 𝑦 ̸= 𝑢, 𝑖 > 2 and 𝑟𝑖 ∈ 𝑁(𝑢) (or −→𝑧𝑟𝑗 ∈ 𝐸(𝑇 ′)r𝐸(𝑇 ) such that
𝑧 ̸= 𝑣, 𝑟𝑗 ∈ 𝑁(𝑣)r𝑁(𝑢), 𝑗 > 2) by using the same arguments as in the proof
of (2). Then we set 𝑇 ′′ = 𝑇 ′ r {−→𝑦𝑟𝑖} ∪ {−→𝑢𝑟𝑖} or 𝑇 ′′ = 𝑇 ′ r {−→𝑧𝑟𝑗} ∪ {−→𝑣𝑟𝑗}.

If 𝑟1 /∈ 𝑁(𝑣), then there exists −→𝑥𝑟1 ∈ 𝐸(𝑇 ′) r 𝐸(𝑇 ), 𝑥 ̸= 𝑢, 𝑥 ̸= 𝑣 and
we set 𝑇 ′′ = 𝑇 ′ r {−→𝑥𝑟1} ∪ {−−→𝑟1𝑟2}. In that case we obtain that 𝑑𝑇 ′′(𝑢) =
𝑑𝑇 ′(𝑢), 𝑑𝑇 ′′(𝑣) = 𝑑𝑇 ′(𝑣) and ℎ𝑇 ′′(𝑢) < ℎ𝑇 ′(𝑢).

If the root of 𝑇 ′ is 𝑟1, then we have the following possibilities.
(6) There exists 𝑖 > 1 such that 𝑟𝑖 ∈ 𝑁(𝑢). Because we have that 𝑑𝑇 (𝑢) > 𝑑𝑇 ′(𝑢)

it follows that there exists −→𝑥𝑟𝑗 ∈ 𝐸(𝑇 ′) r 𝐸(𝑇 ) such that 𝑥 ̸= 𝑢, 𝑟𝑗 ∈ 𝑁(𝑢)
and 𝑗 > 1. In that case we set 𝑇 ′′ = 𝑇 ′ r {−→𝑥𝑟𝑗} ∪ {−→𝑢𝑟𝑗}.

(7) If all vertices 𝑟𝑖 for 𝑖 = 2, 3, . . . , 𝑚 are contained in 𝑁(𝑣)r𝑁(𝑢) and 𝑟1 ∈ 𝑁(𝑣)
(recall that 𝑟1 is the root of 𝑇 ′), then there exists −→𝑥𝑟2 ∈ 𝐸(𝑇 ′)r𝐸(𝑇 ), 𝑥 ̸= 𝑢
and we set 𝑇 ′′ = 𝑇 ′ r {−→𝑥𝑟2} ∪ {−→𝑣𝑟1}.

(8) Finally, we assume that 𝑟1 ∈ 𝑁(𝑢) r 𝑁(𝑣), 𝑟𝑖 ∈ 𝑁(𝑣) r 𝑁(𝑢) for all 𝑖 > 1,
and 𝑟1 is the root of 𝑇 ′. In that case we have that 𝑑𝑇 (𝑢) = 𝑑𝑇 ′(𝑢).

If 𝑚 > 2, from 𝑑𝑇 (𝑣) > 𝑑𝑇 ′(𝑣) we conclude that there exists 𝑟𝑖 ∈ 𝑁(𝑣)
for 𝑖 > 2 and an edge −→𝑦𝑟𝑖 ∈ 𝐸(𝑇 ′) r 𝐸(𝑇 ) such that 𝑦 ̸= 𝑣. Then we set
𝑇 ′′ = 𝑇 ′ r {−→𝑦𝑟𝑖} ∪ {−→𝑣𝑟𝑖}.

For 𝑚 = 2, we again consider the edge −→𝑥𝑟2 ∈ 𝐸(𝑇 ′)r𝐸(𝑇 ). If 𝑥 = 𝑟1, we
have that 𝑑𝑇 (𝑢) = 𝑑𝑇 ′(𝑢), 𝑑𝑇 (𝑣) = 𝑑𝑇 ′(𝑣) and

𝑇 = 𝑇 ′ r {−−→𝑟1𝑟2} ∪ {−→𝑧𝑟1} or 𝑇 = 𝑇 ′ r {−−→𝑟1𝑟2} ∪ {−→𝑦𝑟2}.

But, then we have that ℎ𝑇 (𝑢) > ℎ𝑇 ′(𝑢) or ℎ𝑇 (𝑢) = ℎ𝑇 ′(𝑢), ℎ𝑇 (𝑣) > ℎ𝑇 ′(𝑣)
which is a contradiction with the assumption. Therefore, in this case (𝑚 = 2)
we have that 𝑥 ̸= 𝑟1. If we set 𝑇 ′′ = 𝑇 ′ r {−→𝑥𝑟2} ∪ {−−→𝑟1𝑟2}, then we obtain that
𝑑𝑇 ′(𝑢) = 𝑑𝑇 ′′(𝑢), 𝑑𝑇 ′(𝑣) = 𝑑𝑇 ′′(𝑣), ℎ𝑇 ′′(𝑢) = ℎ𝑇 ′(𝑢) and ℎ𝑇 ′′(𝑣) < ℎ𝑇 ′(𝑣).

�
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3. A complete multipartite graph

Let 𝐾𝑛1,𝑛2,...,𝑛𝑘
denote a complete multipartite graph. Assume that its vertex

set is 𝑉 = 𝑉1 ∪ 𝑉2 ∪ · · · ∪ 𝑉𝑘, where |𝑉𝑖| = 𝑛𝑖. Furthermore, we assume that all sets
𝑉𝑖 are linearly ordered. We may choose one vertex in 𝑉1 and one in 𝑉2 and denote
them by 1 and −1.

Let −→
𝐾𝑛1,𝑛2,...,𝑛𝑘

denote a directed graph obtained from a complete multipartite
graph 𝐾𝑛1,𝑛2,...,𝑛𝑘

when one replaces all edges by pairs of directed edges going in op-
posite directions. Note that 1, −1 is a dominant pair of vertices in −→

𝐾𝑛1,𝑛2,...,𝑛𝑘
and

from Theorem 2.1 we know that Δ
(︀−→
𝐾𝑛1,𝑛2,...,𝑛𝑘

)︀
is shellable. We use a slight mod-

ification of the algorithm described in [5] to encode directed trees in −→
𝐾𝑛1,𝑛2,...,𝑛𝑘

.

Remark 3.1. For each directed tree 𝑇 of −→
𝐾𝑛1,𝑛2,...,𝑛𝑘

we associate the set of
sequences {𝐶0, 𝐶1, . . . , 𝐶𝑘} of the vertex set such that

(i) The length of the sequence 𝐶0 is 𝑘 − 1 and any 𝑥 ∈ 𝑉 can occur in 𝐶0.
(ii) For any 𝑖 > 0 the length of 𝐶𝑖 is 𝑛𝑖 − 1 and 𝐶𝑖 contains vertices from 𝑉 r𝑉𝑖.

Let 𝑟 denote the root of 𝑇 . For a vertex 𝑣 ∈ 𝑉 , 𝑣 ̸= 𝑟, let 𝑈𝑇 (𝑣) denote the
unique vertex 𝑢 such that −→𝑢𝑣 ∈ 𝐸(𝑇 ). We say that the depth of a vertex 𝑣 in 𝑇
(denoted by depth(𝑣)) is the length of the longest directed path from 𝑣 to a leaf
of 𝑇 . For all 𝑖 = 1, 2, . . . , 𝑘 let 𝑣′

𝑖 denote the vertex from 𝑉𝑖 with the maximal depth
in 𝑇 (if there are more than one vertex in 𝑉𝑖 with maximal depth for 𝑣′

𝑖, we choose
the greatest one among them in the linear order of 𝑉𝑖).
If the root of 𝑇 is a vertex that belongs to 𝑉𝑖0 , then we have that 𝑣′

𝑖0
= 𝑟.

The sequence 𝐶0 contains vertices {𝑈𝑇 (𝑣′
𝑖) : 𝑖 ̸= 𝑖0}, and the vertex 𝑈𝑇 (𝑣′

𝑗) is
before 𝑈𝑇 (𝑣′

𝑠) in 𝐶0 if and only if depth(𝑣′
𝑗) < depth(𝑣′

𝑠) or depth(𝑣′
𝑗) = depth(𝑣′

𝑠)
and 𝑗 < 𝑠. For any 𝑖 > 0 the entries of the sequence 𝐶𝑖 are 𝑛𝑖 − 1 vertices
{𝑈𝑇 (𝑣) : 𝑣 ∈ 𝑉𝑖, 𝑣 ̸= 𝑣′

𝑖} and we order the set of these vertices in the same way as
in 𝐶0. Vertices from 𝑉𝑗 that appear in 𝐶𝑖 and have the same depth, we order in 𝐶𝑖

by using the linear order defined on 𝑉𝑗 . We say that {𝐶0, 𝐶1, . . . , 𝐶𝑘} is the code
for the tree 𝑇 . The proof that the map 𝑇 ↦→ {𝐶0, 𝐶1, . . . , 𝐶𝑘} is a bijection, as well
as more details about this construction can be found in [5].

It is easily seen from the above remark that there are

𝑛𝑘−1(𝑛 − 𝑛1)𝑛1−1(𝑛 − 𝑛2)𝑛2−1 · · · (𝑛 − 𝑛𝑘)𝑛𝑘−1

directed trees in −→
𝐾𝑛1,𝑛2,...,𝑛𝑘

. These are the facets of Δ
(︀−→
𝐾𝑛1,𝑛2,...,𝑛𝑘

)︀
.

Theorem 3.1. The ℎ-vector of Δ
(︀−→
𝐾𝑚,𝑛

)︀
is given by

ℎ𝑘(Δ(𝐾𝑚,𝑛)) =
∑︁

𝑝+𝑞=𝑘

(︂
𝑚 − 1

𝑝

)︂
(𝑛 − 1)𝑝

(︂
𝑛 − 1

𝑞

)︂
(𝑚 − 1)𝑞

+ (𝑚 + 𝑛 − 1)
∑︁

𝑝+𝑞=𝑘−1

(︂
𝑚 − 1

𝑝

)︂
(𝑛 − 1)𝑝

(︂
𝑛 − 1

𝑞

)︂
(𝑚 − 1)𝑞.
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Proof. Note that Δ
(︀−→
𝐾𝑚,𝑛

)︀
is (𝑚+𝑛−2)-dimensional complex. We consider

the shelling order of Δ
(︀−→
𝐾𝑚,𝑛

)︀
described in Theorem 2.1. Recall that

ℛ(𝑇 ) =
{︀−→𝑥𝑦 ∈ 𝐸(𝑇 ) : 𝐸(𝑇 ) r {−→𝑥𝑦} ⊂ 𝐸(𝑆) for some tree 𝑆 that precedes 𝑇

}︀
.

In other words, an edge −→𝑥𝑦 ∈ 𝐸(𝑇 ) is in ℛ(𝑇 ) if it can be replaced with another
edge −→𝑧𝑤 /∈ 𝐸(𝑇 ) such that (𝑇 r {−→𝑥𝑦})∪{−→𝑧𝑤} is a new directed tree which precedes
𝑇 in considered shelling order.

It is easy to check that the following statements hold:

(i) The restriction ℛ(𝑇 ) does not contain the edge −→1𝑥. A replacement of −→1𝑥 will
decrease the out-degree of 1.

(ii) A replacement of the edge −−→−1𝑥 in 𝑇 will decrease the out-degree of −1. A
new tree 𝑇 ′ =

(︀
𝑇 r

{︀−−→−1𝑥
}︀)︀

∪ {−→𝑦𝑧} precedes 𝑇 in the considered shelling
order only if we increase the out-degree of 1. We can do this if and only if
the vertex 𝑦 = 1 is below −1 in 𝑇 and 𝑧 ∈ 𝑉2 is the root of 𝑇 . Other edges−−−→
−1𝑥′ can not be replaced.

(iii) Let 𝑟 be the root of 𝑇 . For a vertex 𝑥 ∈ 𝑉1, 𝑥 ̸= 1, and an edge −→𝑥𝑦 we have:
(a) if 1 is not below 𝑦 the tree (𝑇 r {−→𝑥𝑦}) ∪

{︀−→1𝑦
}︀

precedes 𝑇 .
(b) If 1 is below 𝑦 and if 𝑟 belongs 𝑉2, we have that (𝑇 r {−→𝑥𝑦}) ∪

{︀−→1𝑦
}︀

is
before 𝑇 .

(c) If 𝑟 ∈ 𝑉1 (recall that 1 is below 𝑦) we set 𝑆 = (𝑇 r {−→𝑥𝑦}) ∪ {−→𝑦𝑟}. Then
we have 𝑑𝑇 (1) = 𝑑𝑆(1), 𝑑𝑇 (−1) = 𝑑𝑆(−1), ℎ𝑇 (1) > ℎ𝑆(1) and therefore
the tree 𝑆 precedes 𝑇 .

So, any of the considered edges −→𝑥𝑦 is contained in ℛ(𝑇 ).

A similar analysis shows that an edge −→𝑥𝑦, where 𝑥 ∈ 𝑉2, 𝑥 ̸= −1, is contained
in ℛ(𝑇 ) except when 𝑥 is the root of 𝑇 , −1 is below 𝑦 and 1 is not below 𝑦.

From the above remarks we have that for a directed tree 𝑇

(3.1) type(𝑇 ) = 𝑚 + 𝑛 − 1 − 𝑑𝑇 (1) − 𝑑𝑇 (−1)

except for the following trees:

(A1) Trees in which the root 𝑟 belongs to 𝑉2 and the vertex 1 is below of −1. The
type of a such tree 𝑇 is type(𝑇 ) = 𝑚 + 𝑛 − 𝑑𝑇 (1) − 𝑑𝑇 (−1).

(A2) Trees in which the root 𝑟 ∈ 𝑉2, 𝑟 ̸= −1, there exists an edge −→𝑟𝑥 ∈ 𝐸(𝑇 )
such that −1 is below 𝑥 and 1 is not below 𝑥. The type of this tree is
type(𝑇 ) = 𝑚 + 𝑛 − 𝑑𝑇 (1) − 𝑑𝑇 (−1) − 2.

Now, we count the number of trees in Δ
(︀−→
𝐾𝑚,𝑛

)︀
with given 𝑑𝑇 (1) + 𝑑𝑇 (−1).

Let {{𝑟}, 𝐶1, 𝐶2} be the set of sequences of vertices associated to a tree 𝑇 (𝑟 is the
root of 𝑇 ) in Remark 3.1. We set

𝑝 = |{𝑥 ∈ 𝐶1 : 𝑥 ̸= −1}|, 𝑞 = |{𝑦 ∈ 𝐶2 : 𝑦 ̸= 1}|.
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From Remark 3.1 we obtain that there are

(𝑚 + 𝑛 − 2)
∑︁

𝑝+𝑞=𝑘−1

(︂
𝑚 − 1

𝑝

)︂
(𝑛 − 1)𝑝

(︂
𝑛 − 1

𝑞

)︂
(𝑚 − 1)𝑞

+ 2
∑︁

𝑝+𝑞=𝑘

(︂
𝑚 − 1

𝑝

)︂
(𝑛 − 1)𝑝

(︂
𝑛 − 1

𝑞

)︂
(𝑚 − 1)𝑞

directed trees in −→
𝐾𝑚,𝑛 such that 𝑑𝑇 (1) + 𝑑𝑇 (−1) = 𝑚 + 𝑛 − 1 − 𝑘. Note that the

summands in the second row correspond with the trees in which the root is 1 or −1.
From the relation (3.1) we have that all of these trees are of the type 𝑘, except the
trees described in (A1) and (A2).

The remaining trees of −−−→
𝐾𝑚,𝑛 of the type 𝑘 are all

(B1) trees described in (A2) in which 𝑑𝑇 (1) + 𝑑𝑇 (−1) = 𝑚 + 𝑛 − 2 − 𝑘; or
(B2) trees described in (A1) in which 𝑑𝑇 (1) + 𝑑𝑇 (−1) = 𝑚 + 𝑛 − 𝑘.

Let 𝑇 be a directed tree as considered in (𝐵1). If −→𝑟𝑦 is the first edge on the path
from 𝑟 to 1, then 𝑇 ′ = (𝑇 r {−→𝑟𝑦}) ∪ {−−→1𝑦} is a tree as described in (𝐴1). Note
that the map 𝑇 ↦→ 𝑇 ′ is an injection, and all trees described in (𝐴1) are contained
in the image of this map except the trees whose root is −1. From Remark 3.1 it
follows that there are ∑︁

𝑝+𝑞=𝑘

(︂
𝑚 − 1

𝑝

)︂
(𝑛 − 1)𝑝

(︂
𝑛 − 1

𝑞

)︂
(𝑚 − 1)𝑞

trees with −1 as the root and 𝑑𝑇 (1) + 𝑑𝑇 (−1) = 𝑚 + 𝑛 − 1 − 𝑘, which should be
subtracted while calculating ℎ𝑘(Δ(−→𝐾𝑚,𝑛)).

Further, if 𝑇 is a tree described in (𝐴2), and −→𝑟𝑥 is the first edge of the path
from 𝑟 to 1, then 𝑇 ′ = (𝑇 r {−→𝑟𝑥}) ∪ {−−→1𝑥} is a tree as in (𝐵2). This map is an
injection, and a tree from (𝐵2) is not in the image of this map if and only if its
root is −1.

There are ∑︁
𝑝+𝑞=𝑘−1

(︂
𝑚 − 1

𝑝

)︂
(𝑛 − 1)𝑝

(︂
𝑛 − 1

𝑞

)︂
(𝑚 − 1)𝑞

trees with −1 as the root and 𝑑(1)+𝑑(−1) = 𝑚+𝑛−𝑘 that should be added when
determining ℎ𝑘

(︀
Δ

(︀−→
𝐾𝑚,𝑛

)︀)︀
. �

From the above theorem we obtain that the generating facets for Δ
(︀−→
𝐾𝑚,𝑛

)︀
are:

(i) All directed trees of −→
𝐾𝑚,𝑛 in which the vertices 1 and −1 are leaves and the

root of such a tree is a vertex contained in 𝑉1.
(ii) All directed trees of −→

𝐾𝑚,𝑛 in which the root is from 𝑉2, the vertex 1 is a leaf
below −1, and the out-degree of the vertex −1 in such a tree is one.

Corollary 3.1. The complex Δ
(︀−→
𝐾𝑚,𝑛

)︀
is homotopy equivalent to a wedge of

(𝑚 + 𝑛 − 1)(𝑚 − 1)𝑛−1(𝑛 − 1)𝑚−1 spheres of dimension 𝑚 + 𝑛 − 2.
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Theorem 3.2. The complex Δ
(︀−→
𝐾𝑛1,𝑛2,...,𝑛𝑘

)︀
is homotopy equivalent to a wedge

of (𝑛−1)𝑘−1(𝑛−𝑛1−1)𝑛1−1(𝑛−𝑛2−1)𝑛2−1 · · · (𝑛−𝑛𝑘−1)𝑛𝑘−1 spheres of dimension
𝑛 − 2.

Proof. We use a shelling of Δ
(︀−→
𝐾𝑛1,𝑛2,...,𝑛𝑘

)︀
described in Theorem 2.1 to

recognize generating faces. These are
(A) directed trees in which the vertex 1 is a leaf, and there does not exist an

edge −−→−1𝑣, for a vertex 𝑣 ∈ 𝑉1

except the tress of the above form in which
(𝐴1) the root is a vertex 𝑣2 ∈ 𝑉2, there is an edge −−→𝑣2𝑣1 for a vertex 𝑣1 ∈ 𝑉1,

the vertex −1 is below 𝑣1, and 1 is not below 𝑣1; and
(𝐴2) the root is a vertex 𝑣1 ∈ 𝑉1 and the leaf 1 is below −1.

Generating facets of Δ
(︀−→
𝐾𝑛1,𝑛2,...,𝑛𝑘

)︀
are also:

(B) directed trees in which the root is a vertex 𝑟 ∈ 𝑉 r 𝑉1, there is only one
edge of the form −1𝑣1 for a vertex 𝑣1 ∈ 𝑉1 and 1 is a leaf below 𝑣1.

Now, we define a map between a subset of the trees of the type (𝐵) and directed
trees of type (𝐴1) or (𝐴2). If 𝑇 is a tree of the type (𝐵) with the root 𝑟 ∈ 𝑉 r 𝑉1
and −1 → 𝑣1 → 𝑥 → 𝑦 → · · · → 1 is the unique path from −1 to 1, then

𝑇 ′ = 𝑇 r
{︀−−−→−1𝑣1, −→𝑣1𝑥

}︀
∪ {−→𝑥𝑣1, −→𝑣1𝑟} is a tree of type 𝐴1 if 𝑥 ∈ 𝑉2,

𝑇 ′′ = 𝑇 r
{︀−−−→−1𝑣1, −→𝑣1𝑥

}︀
∪

{︀−−→−1𝑥, −→𝑣1𝑟
}︀

is a tree of type 𝐴2 if 𝑥 ∈ 𝑉 r (𝑉1 ∪ 𝑉2).

The above map is a bijection that exhausts all trees of type (𝐵) except the trees
in which −−→−11 is an edge. Therefore, in order to estimate the number of the gener-
ating simplices of Δ(−→𝐾𝑛1,𝑛2,...,𝑛𝑘

) we have to count directed trees in −→
𝐾𝑛1,𝑛2,...,𝑛𝑘

in which
(*) 1 is a leaf, there are no other edges of the form −−→−1𝑣, for a vertex 𝑣 ∈ 𝑉1;

or
(**) 1 is a leaf, −−→−11 is an edge, there are no other edges of the form −−→−1𝑣, for

a vertex 𝑣 ∈ 𝑉1, and the root is a vertex 𝑟 ∈ 𝑉 r 𝑉1.
From Remark 3.1 we obtain that the code of a tree described in (*) or (**) does
not contain label −1 in the sequences 𝐶0 at the place reserved for the deepest
vertex of 𝑉1. Also, a tree described in (*) does not contain −1 in the sequence 𝐶1.
For a tree described in (**) the vertex −1 appears in 𝐶1 only in the first place,
and the last entry of 𝐶0 (the root of such a tree) is not from 𝑉1. Therefore, in
the code of such a tree there exists 𝑣 ∈ 𝑉 r 𝑉1 that appears in 𝐶0 as 𝑈(𝑣′

1). We
replace this vertex 𝑣 with −1 and obtain the bijection between generating simplices
of Δ

(︀−→
𝐾𝑛1,𝑛2,...,𝑛𝑘

)︀
and directed trees of −→

𝐾𝑛1,𝑛2,...,𝑛𝑘
in which −1 does not occur

in 𝐶1 and 1 does not occur at all. For a tree described in (*) the code remains
unchanged. The number of these trees is

(𝑛 − 1)𝑘−1(𝑛 − 𝑛1 − 1)𝑛1−1(𝑛 − 𝑛2 − 1)𝑛2−1 · · · (𝑛 − 𝑛𝑘 − 1)𝑛𝑘−1. �
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