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Abstract. We introduce the notion of an L-Ponomarev system (f, M, X, P∗

n
),

and give characterizations of certain msss-images (resp., mssc-images) of lo-
cally separable metric spaces. As an application, we get a new characteriza-

tion of quotient msss-images (mssc-images) of locally separable metric spaces,
which is helpful in solving Velichko’s question (1987).

1. Introduction

Lin in [15] introduced the concept of msss-maps (resp., mssc-maps) to charac-
terize spaces with certain σ-locally countable (resp., σ-locally finite) networks by
msss-images (resp., mssc-images) of metric spaces. After that, some characteriza-
tions for certain msss-images (resp., mssc-images) of metric (or semi-metric) spaces
are obtained by many authors ([10, 13, 14], for example).

Velichko [26] proved that a space X is a pseudo-open s-image of a locally
separable metric space iff X is a locally separable space which is a pseudo-open s-
image of a metric space, and posed the following interesting question about quotient
and s-images of metric spaces.

Question 1.1. Find a Φ-property such that a space X is a quotient and s-
image of a metric and Φ-space iff X is a Φ-space which is a quotient and s-image
of a metric space.

Recently, Dung gave some characterizations for certain msss-images (resp.,
mssc-images) of locally separable metric spaces in the class of regular and T1-spaces
(see in [3, 4]). This leads us to consider the following question.
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Question 1.2. Find a Φ-property such that a space X is a quotient and msss-
image (mssc-image) of a metric and Φ-space iff X is a Φ-space which is a quotient
and msss-image (resp., mssc-image) of a metric space.

In this paper, we introduce the notion of a generalized Ponomarev system
(f, M, X, P∗

n), calling it an L-Ponomarev system, and then prove some statements
concerning the properties of such systems corresponding to σ-locally finite and
σ-locally countable Lindelöf networks. As an application, we get a new character-
ization of quotient msss-images (mssc-images) of locally separable metric spaces,
give an affirmative answer to Question 1.2, and we get an affirmative answer to
Question 2.17 from [3].

Throughout this paper, all spaces are assumed to be Hausdorff, all maps are
continuous and onto, N denotes the set of all natural numbers. Let K ⊂ X and P
be a collection of subsets of X , we denote (P)x = {P ∈ P : x ∈ P }, PK = {P ∈ P :
P ∩ K 6= ∅}. For a sequence {xn} converging to x and P ⊂ X , we say that {xn} is
eventually in P if {x} ∪ {xn : n > m} ⊂ P for some m ∈ N, and {xn} is frequently
in P if some subsequence of {xn} is eventually in P .

Definition 1.1. [2, 17] Let P =
⋃

{Px : x ∈ X} be a cover of a space X .
Assume that P satisfies the following (a) and (b) for every x ∈ X .

(a) Px is a network at x.
(b) If P1, P2 ∈ Px, then P ⊂ P1 ∩ P2 for some P ∈ Px.

(1) P is a weak base for X , if for G ⊂ X , G is open in X iff for every x ∈ G,
there exists P ∈ Px such that P ⊂ G.

(2) P is an sn-network (resp., so-network) for X , if every element of Px is
a sequential neighborhood of x (resp., sequentially open in X) for every
x ∈ X .

Definition 1.2. Let X be a space and P be a cover of X .

(1) P is a Lindelöf (resp., compact) cover, if each element of P is Lindelöf
(resp., compact).

(2) X is an ℵ0-space, if X is a regular space with a countable cs∗-network.
(3) X is an H-ℵ0-space, if X has a countable cs∗-network.

Definition 1.3. Let f : X → Y be a map.

(1) f is weak-open [27], if there exists a weak base B =
⋃

{By : y ∈ Y } for Y ,
and for every y ∈ Y , there exists x ∈ f−1(y) such that for each open
neighborhood U of x, B ⊂ f(U) for some B ∈ By.

(2) f is 1-sequence-covering [17], if for each y ∈ Y , there is x ∈ f−1(y)
such that each sequence converging to y is an image of some sequence
converging to x.

(3) f is 2-sequence-covering [17], if for every y ∈ Y , xy ∈ f−1(y), and se-
quence {yn} converging to y in Y , there exists a sequence {xn} converging
to xy in X with each xn ∈ f−1(yn).

(4) f is an msss-map (resp., mssc-map) [15], if X is a subspace of the product
space

∏

i∈N
Xi of a family {Xi : i ∈ N} of metric spaces and for each y ∈ Y ,
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there is a sequence {Vi : i ∈ N} of open neighborhood’s of y such that
each pif

−1(Vi) is separable in Xi (resp., each cl(pif
−1(Vi)) is compact

in Xi).

Definition 1.4. For a cover P of a space X , let (P ) be a (certain) covering-
property of P . Let us say that P has property σ-(P ), if P can be expressed as
⋃

{Pn : n ∈ N}, where each Pn having the property (P ) and Pn ⊂ Pn+1 for all
n ∈ N.

For some undefined or related concepts, we refer the reader to [18].

2. Main results

From now on, let us restrict the properties (P ) and α(P ) to the following.

(1) (P ) are locally finite, locally countable.
(2) α(P ) is mssc if (P ) is locally finite, and α(P ) is msss if (P ) is locally

countable.

Notation 2.1. Let P =
⋃

{Pn : n ∈ N} be a Lindelöf network having property
σ-(P ) for a space X . For each n ∈ N, we put P∗

n = {X} ∪ Pn = {Pα : α ∈ Λn} and
endow Λn with the discrete topology. Assume that for each x ∈ X , there exists a
network {Pαn

: n ∈ N} at x with αn ∈ Λn. Then,

M =
{

α = (αn) ∈
∏

n∈N
Λn : {Pαn

} forms a network at some point xα ∈ X
}

is a metric space and the point xα is unique in X for every α ∈ M . Define
f : M → X by f(α) = xα. Let us call (f, M, X, P∗

n) an L-Ponomarev system.

Remark 2.1. (1) Let P =
⋃

{Pn : n ∈ N} be a Lindelöf network of X , where
each Pn having property (P ). Then, P is a Lindelöf network has property σ-(P ).

(2) If (f, M, X, P∗

n) an L-Ponomarev system, then f is an s-map.

Lemma 2.1. If P is a cs-network having property σ-(P ), then P is a cfp-
network.

Proof. Let P =
⋃

{Pn : n ∈ N} be a cs-network having property σ-(P ) for X ,
and K ⊂ V with K is compact and V is open in X . Since P is a cs-network having
property σ-(P ), K has a countable cs-network. Thus, K is metrizable. By [19,
Lemma 1.2], for each x ∈ K, there exists Px ∈ P such that x ∈ intK(Px ∩ K) ⊂
Px ⊂ V . By the regularity of K, for each x ∈ K, there exists an open neighborhood
Vx in K such that x ∈ Vx ⊂ clK(Vx) ⊂ intK(Px ∩ K). Since K is compact, there
exists a finite subset F of K such that K ⊂

⋃

x∈F Vx. Thus, {Px : x ∈ F} is a
cfp-cover of K and

⋃

x∈F Px ⊂ U . Therefore, P is a cfp-network. �

Lemma 2.2. If X has a Lindelöf cs∗-network with property σ-(P ), then X has
a Lindelöf cs-network with property σ-(P ).

Proof. Let P =
⋃

{Pi : i ∈ N} be a Lindelöf cs∗-network having property
σ-(P ) for X . Since each element of Pi is Lindelöf, each Pi is star-countable. It

follows from [22, Lemma 2.1] that for each i ∈ N, Pi =
⋃

{Q
(i)
α : α ∈ Λi}, where
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Q
(i)
α is a countable subfamily of Pi for all α ∈ Λi and

(
⋃

Q
(i)
α

)

∩
(

⋃

Q
(i)
β

)

= ∅ for

all α 6= β. For each i ∈ N and α ∈ Λi, we put

R(i)
α =

{

⋃

F : F is a finite subfamily of Q(i)
α

}

.

Since each R
(i)
α is countable, we can write R

(i)
α = {R

(i)
α,j : j ∈ N}. Now, for each

i, j ∈ N, put F
(i)
j = {R

(i)
α,j : α ∈ Λi}, and denote G =

⋃

{F
(i)
j : i, j ∈ N}. Then, each

R
(i)
α,j is Lindelöf and each family F

(i)
j has property (P ). Now, we shall show that

G is a cs-network. In fact, let {xn} be a sequence converging to x ∈ U with U is
open in X . Since P is a point-countable cs∗-network, it follows from [25, Lemma 3]
that there exists a finite family A ⊂ (P)x such that {xn} is eventually in

⋃

A ⊂ U .
Furthermore, since A is finite and Pi ⊂ Pi+1 for all i ∈ N, there exists i ∈ N such

that A ⊂ Pi. So, there exists unique α ∈ Λi such that A ⊂ Q
(i)
α , and

⋃

A ∈ R
(i)
α .

Thus,
⋃

A = R
(i)
α,j for some j ∈ N. Hence,

⋃

A ∈ G, and G is a cs-network. It

follows from Remark 2.1(1) G is a Lindelöf cs-network having property σ-(P ). �

Lemma 2.3. Let f : M → X be a α(P )-map, and M be a locally separable
metric space. Then,

(1) X has a Lindelöf cs∗-network with property σ-(P ), if f is sequentially-
quotient.

(2) X has a Lindelöf sn-network with property σ-(P ), if f is 1-sequence-
covering.

(3) X has a Lindelöf so-network with property σ-(P ), if f is 2-sequence-
covering.

Proof. By [15, Lemma 1.2] and by the proof of (3) ⇒ (1) in [12, Theorem 4],
there exists a base B of M such that F = f(B) is a network for X , and F can be
expressed as

⋃

{Fn : n ∈ N}, where each Fn has property (P ). Since M is locally
separable, for each a ∈ M , there exists a separable open neighborhood Ua. Denote

C =
{

B ∈ B : B ⊂ Ua, a ∈ M
}

.

Then, C ⊂ B and C is a separable base for M . If put P = f(C), then P ⊂ F , and
it follows from Remark 2.1(1) that P is a Lindelöf network having property σ-(P ).
Thus, P can be expressed as

⋃

{Pn : n ∈ N}, where each Pn having the property
(P ) and Pn ⊂ Pn+1 for all n ∈ N. Furthermore, we have

(1) If f is sequentially-quotient, then since C is a base for M , P is a cs∗-network.
Therefore, X has a Lindelöf cs∗-network with property σ-(P ).

(2) If f is 1-sequence-covering, then for each x ∈ X , there exists ax ∈ f−1(x)
such that each sequence converging to x is an image of a sequence converging to ax.
Now, for each x ∈ X , we put Gx = {f(B) : ax ∈ B ∈ C}, G =

⋃

{Gx : x ∈ X}.
Then, G ⊂ P and G is an sn-network. For each n ∈ N, we put Gn = G ∩ Pn. Then,
⋃

{Gn : n ∈ N} is a Lindelöf sn-network having property σ-(P ) for X .
(3) If f is 2-sequence-covering, then for each x ∈ X , we put

Cx =
{

B ∈ C : B ∩ f−1(x) 6= ∅
}

,
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and let Gx be the family of all finite intersections of members of f(Cx), and G =
⋃

{Gx : x ∈ X}. Then, G ⊂ P and G is an so-network. For each n ∈ N, we put
Gn = G ∩ Pn. Then,

⋃

{Gn : n ∈ N} is a Lindelöf so-network having property σ-(P )
for X . �

Lemma 2.4. Let P =
⋃

{Pn : n ∈ N} be a Lindelöf network having property
σ-(P ) and (f, M, X, P∗

n) be an L-Ponomarev system. Then, the following state-
ments hold.

(1) f is a α(P )-map.
(2) M is locally separable.
(3) f is sequence-covering compact-covering, if P is a cs-network.
(4) f is 1-sequence-covering compact-covering, if P is an sn-network.
(5) f is 2-sequence-covering compact-covering, if P is an so-network.

Proof. (1) Similar to the proof of [12, Theorem 4] and [14, Theorem 2.1].
(2) Let a = (αi) ∈ M . Then, {Pαi

} is a network at some point xa ∈ X . Thus,
there exists i0 ∈ N such that Pαi0

is Lindelöf. Put

Ua = M ∩
{

(βi) ∈
∏

i∈N
Λi : βi = αi, i 6 i0

}

.

Then, Ua is an open neighborhood of a in M . Now, for each i 6 i0, put ∆i = {αi},
and for each i > i0, we put ∆i = {α ∈ Λi : Pα ∩ Pαi0

6= ∅}. Then, Ua ⊂
∏

i∈N
∆i. Furthermore, since each Pi having property (P ) and Pαi0

is Lindelöf, ∆i

is countable for every i > i0. Thus, Ua is separable, and M is locally separable.
(3) Let P be a cs-network. Then,
(3.1) f is sequence-covering. Let S = {xn : n ∈ N} be a sequence converging

to x in X . Since P is a point-countable cs-network, we can write
{

P ∈ P : S is eventually in P
}

= {Pi : i ∈ N}.

On the other hand, since Pi ⊂ Pi+1 for all i ∈ N, we can choose sequence {in} ⊂ N

such that in < in+1, and Pn ∈ Pin
for every n ∈ N. Now, for each j ∈ N, we take

Fαj
=

{

Pn, if j = in,

X, if j 6= in,

and a = (αi) ∈
∏

i∈N
Λi. Then f(a) = x and S is eventually in each Fαi

. Now, for

each n ∈ N, put Bn =
{

(γi) ∈ M : γi = αi for each i 6 n
}

. It is easy to check that
{Bn} is a decreasing neighborhood base at a in M and f(Bn) =

⋂

i6n Pαi
for all

n ∈ N. Because S is eventually in each f(Bn), it follows from [8, Lemma 6] that
for each n ∈ N, there exists an ∈ f−1(xn) such that the sequence {an} converging
to a in M . Therefore, f is sequence-covering.

(3.2) f is compact-covering. Let K be a compact subset of X . Since P is a
Lindelöf cs-network having property σ-(P ), it follows from Lemma 2.1 that P is a
cfp-network for X . Furthermore, since PK is countable, we can put

{

Q ⊂ PK : Q is a finite cfp-cover of K
}

= {Qi : i ∈ N}.
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Since Qn ⊂ P and Pn ⊂ Pn+1 for all n ∈ N, then we can choose a sequence
{in} ⊂ N such that in < in+1, and Qn ⊂ Pin

for every n ∈ N. Now, we choose a
sequence {Ai} as follows

Aj =

{

Qn, if j = in,

{X}, if j 6= in.

Since each Ai is a cfp-cover for K, there exists a finite subfamily Hi = {Pα}α∈Γi

of Ai and a cover {Fα}α∈Γi
of K consisting of closed subset of K satisfying that

each Fα ⊂ Pα. Put L =
{

a = (αi) ∈
∏

i∈N
Γi :

⋂

i∈N
Fαi

6= ∅
}

. Then, we have
(3.2.1) L ⊂ M , and f(L) ⊂ K. Suppose a = (αi) ∈ L, then

⋂

i∈N
Fαi

6= ∅. Pick
xa ∈

⋂

i∈N
Fαi

. Now we will show that {Pαi
} is a network at xa in X . Then, a ∈ M

and f(a) = xa ∈ K, so L ⊂ M and f(L) ⊂ K. Indeed, let V be a neighborhood
of xa in X . Since K is a regular subspace of X , there exists an open neighborhood
W of xa in K such that clK(W ) ⊂ V . Since clK(W ) is a compact subset of K,
there exists a finite collection Q′ of PK such that Q′ is a cfp-cover of clK(W ) and
⋃

Q′ ⊂ V . On the other hand, since K − W is a compact subset of K satisfying
K − W ⊂ X − {xa}, there exists a finite collection Q′′ of PK such that Q′′ is a
cfp-cover for K − W and

⋃

Q′′ ⊂ X − {xa}. Put Q = Q′ ∪ Q′′. Then, Q is a
cfp-cover for K, and so Q = Qk for some k ∈ N. But xa ∈ Fαk

⊂ Pαk
∈ Qk, thus

Pαk
∈ Q′ and Pαk

⊂ V . Hence, {Pαi
} is a network at xa in X .

(3.2.2) K ⊂ f(L). Assume that x ∈ K. For each i ∈ N, pick αi ∈ Γi such that
x ∈ Fαi

. Put a = (αi), it follows that a ∈ L. By the proof of (3.2.1), f(a) = x. So,
K ⊂ f(L).

(3.2.3) L is compact. Because each Γi is finite,
∏

i∈N
Γi is compact. Note

that L ⊂
∏

i∈N
Γi, we only need to prove that L is closed in

∏

i∈N
Γi. In fact,

let a = (αi) ∈
∏

i∈N
Γi − L. Then,

⋂

i∈N
Fαi

= ∅. From the compactness of
K, there exists i0 ∈ N such that

⋂

i6i0
Fαi

= ∅. Put W = {(βi) ∈
∏

i∈N
Γi :

βi = αi for each i 6 i0}. Then, W is an open subset of
∏

i∈N
Γi satisfying a ∈ W

and W ∩ L = ∅. This implies that L is a closed subset of
∏

i∈N
Γi. Therefore, L is

a compact subset of M .
(4) Let P be an sn-network. Then, X is sn-first countable. Since every sn-

network is cs-network, it follows from (3) that f is a sequence-covering, compact-
covering map. By Remark 2.1(2) and [1, Proposition 2.2(1)], f is 1-sequence-
covering.

(5) Let P be an so-network. Since each so-network is a cs-network, by (3), it
suffices to prove that f is 2-sequence-covering.

Let x ∈ X and a = (αi) ∈ f−1(x). It is obvious that each Pαi
is a sequential

neighborhood of x in X . For each n ∈ N, put Bn =
{

(γi) ∈ M : γi = αi for each

i 6 n
}

. Then, {Bn} is a decreasing neighborhood base of a in M , and f(Bn) =
⋂

i6n Pαi
for all n ∈ N. Now, let {xn} be a sequence converging to x in X . Since

each f(Bn) is a sequential neighborhood at x in X , it follows from [10, Lemma 3.2]
that for each n ∈ N, there exists an ∈ f−1(xn) such that the sequence {an}
converging to a in M . Therefore, f is 2-sequence-covering. �
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Theorem 2.1. The following are equivalent for a space X.

(1) X has a Lindelöf cs∗-network with property σ-(P );
(2) X has a Lindelöf cfp-network with property σ-(P );
(3) X has a Lindelöf cs-network with property σ-(P );
(4) X is a sequence-covering, compact-covering α(P )-image of a locally sep-

arable metric space;
(5) X is a sequentially-quotient α(P )-image of a locally separable metric space;
(6) X is a sequentially-quotient α(P )-image of a metric space, and has an

so-cover consisting of H-ℵ0-subspaces.

Proof. (1) ⇔ (2) ⇔ (3). By Lemma 2.1 and Lemma 2.2.
(3) ⇒ (4). By Lemma 2.4.
(4) ⇒ (5). It is obvious.
(5) ⇒ (6). Assume that (5) holds. It suffices to prove that X has an so-cover

consisting of H-ℵ0-subspaces. In fact, by Lemma 2.3(1) and Lemma 2.2, X has
a Lindelöf cs-network P having property σ-(P ). Then, each element of P is an
H-ℵ0-subspace. By the proof of (2) ⇒ (3) in [20, Theorem 3.4], X has an so-cover
consisting of H-ℵ0-subspaces.

(6) ⇒ (1). Let O be an so-cover consisting of H-ℵ0-subspaces of X and
f : M → X be a sequentially-quotient α(P )-map, where M is a metric space. Sim-
ilar to the proof of Lemma 2.3, there exists a base B of M such that P = f(B)
having property σ-(P ). Since f is sequentially-quotient, P is a cs∗-network for X .
We can assume that P is closed under finite intersections. Let G = {P ∈ P : P ⊂ O,
O ∈ O}. Then, each element of G is an H-ℵ0-subspace. Hence, each element of G is
Lindelöf. Now, we proved that G is a cs∗-network. In fact, let L be a sequence con-
verging to x ∈ U with U open in X . Since O is an so-cover for X , there exists O ∈ O
such that x ∈ O. On the other hand, since P is a point-countable cs∗-network, it
follows from [25, Lemma 3] that there exists a finite subfamily H ⊂ (P)x such
that L is eventually in

⋃

H ⊂ U . So, the family
{

H ⊂ (P)x : H is finite and L is

eventually in
⋃

H ⊂ U
}

is non-empty. Furthermore, since (P)x is countable, we

can write
{

H ⊂ (P)x : H is finite and L is eventually in
⋃

H ⊂ U
}

= {Hn : n ∈ N}.
For each n ∈ N, let Hn =

⋂

i6n(
⋃

Hi). It is obvious that L is eventually in each
Hn. Now, we shall show that Hn ⊂ O for some n ∈ N. If not, for each n ∈ N, there
exists xn ∈ Hn − O. Then, {xi} converges to x. Indeed, let x ∈ W with W is open
in X . Then, U ∩ W is an open neighborhood of x. By [25, Lemma 3], there exists
a finite subfamily Q ⊂ (P)x such that L is eventually in

⋃

Q and
⋃

Q ⊂ U ∩ W .
Since Q is a finite subfamily of (P)x and L is eventually in

⋃

Q ⊂ U , Q = Hn for
some n ∈ N. Furthermore, since xi ∈ Hi for all i ∈ N and

Hi =
⋂

j6i

(

⋃

Hj

)

⊂
⋂

j6n

(

⋃

Hj

)

⊂
⋃

Hn ⊂ W,

for all i > n, we get xi ∈ W for all i > n. Therefore, {xi} converges to x. Since
O is a sequential neighborhood of x, this implies that there exists n ∈ N such that
xi ∈ O for all i > n. This is a contradiction to xi /∈ O for all i ∈ N. Thus, Hn ⊂ O
for some n ∈ N.
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On the other hand, since Hn =
⋂

i6n

(
⋃

Hi

)

=
⋃

{
⋂

i6n Fi : Fi ∈ Hi

}

, and L
is eventually in Hn, it implies that for each i 6 n, there exists Fi ∈ Hi such that L
is frequently in F =

⋂

i6n Fi. Since P is closed under finite intersections, F ∈ P .
Then, L is frequently in F , F ⊂ U and F ∈ G. Thus, G is a cs∗-network for X . By
Remark 2.1(1), G is a Lindelöf cs∗-network having property σ-(P ). �

Remark 2.2. By Theorem 2.1, in case that the property (P ) is locally count-
able, we get an affirmative answer to Question 2.17 of [3].

By Theorem 2.1, the following corollary holds.

Corollary 2.1. The following are equivalent for a space X.

(1) X is a k-space with a Lindelöf cs∗-network having property σ-(P );
(2) X is a k-space with a Lindelöf cfp-network having property σ-(P );
(3) X is a k-space with a Lindelöf cs-network having property σ-(P );
(4) X is a sequence-covering, compact-covering, quotient α(P )-image of a

locally separable metric space;
(5) X is a quotient α(P )-image of a locally separable metric space;
(6) X is a local H-ℵ0-space and a quotient α(P )-image of a metric space.

Remark 2.3. By Corollary 2.1, we get an affirmative answer to the Ques-
tion 1.2.

Remark 2.4. Let P be a network having property σ-(P ) for a regular space X .
Then,

(1) If P is a cs∗-network (cfp-network; cs-network), then P is Lindelöf iff each
element of P is a cosmic subspace, iff each element of P is a ℵ0-subspace.

(2) If P is an sn-network, then P is Lindelöf iff each element of P is a cosmic
subspace, iff each element of P is an sn-second countable subspace.

(3) If P is an so-network, then P is Lindelöf iff each element of P is a cosmic
subspace, iff each element of P is an so-second countable subspace.

By Theorem 2.1 and Remark 2.4, we obtain the following results for Nguyen
Van Dung in case X is a regular space.

Corollary 2.2. [3, Theorem 2.8], The following are equivalent for a regular
space X.

(1) X has a σ-locally countable cs-network consisting of ℵ0-subspaces;
(2) X has a σ-locally countable cs-network consisting of cosmic subspaces;
(3) X is a sequence-covering msss-image of a locally separable metric space.

Corollary 2.3. [4, Theorem 2.1], The following are equivalent for a regular
space X.

(1) X has a σ-locally finite cs-network consisting of ℵ0-subspaces;
(2) X has a σ-locally finite cs-network consisting of cosmic subspaces;
(3) X is a sequence-covering mssc-image of a locally separable metric space.

The following results hold by means of the above results.
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Theorem 2.2. The following are equivalent for a space X.

(1) X has a Lindelöf sn-network with property σ-(P );
(2) X is a 1-sequence-covering, compact-covering α(P )-image of a locally sep-

arable metric space;
(3) X is a 1-sequence-covering α(P )-image of a locally separable metric space;
(4) X is a 1-sequence-covering α(P )-image of a metric, and has an so-cover

consisting of H-ℵ0-subspaces.

Corollary 2.4. The following are equivalent for a space X.

(1) X has a Lindelöf weak base with property σ-(P );
(2) X is a weak-open, compact-covering α(P )-image of a locally separable

metric space;
(3) X is a weak-open α(P )-image of a locally separable metric space;
(4) X is a local H-ℵ0-space and a weak-open α(P )-image of a metric.

By Theorem 2.2 and Remark 2.4, we obtain the following results for Nguyen
Van Dung in case X is a regular space.

Corollary 2.5. [3, Theorem 2.11] The following are equivalent for a regular
space X.

(1) X has a σ-locally countable sn-network consisting of sn-second countable
subspaces;

(2) X has a σ-locally countable sn-network consisting of cosmic subspaces;
(3) X is a 1-sequence-covering msss-image of a locally separable metric space.

Corollary 2.6. [4, Theorem 2.2] The following are equivalent for a regular
space X.

(1) X has a σ-locally finite sn-network consisting of sn-second countable sub-
spaces;

(2) X has a σ-locally finite sn-network consisting of cosmic subspaces;
(3) X is a 1-sequence-covering mssc-image of a locally separable metric space.

Remark 2.5. By Theorem 2.2, it is possible to add the prefix “compact-
covering” before “1-sequence-covering” in Corollary 2.5(3) and Corollary 2.6(3).

Theorem 2.3. The following are equivalent for a space X.

(1) X has a Lindelöf so-network with property σ-(P );
(2) X is a 2-sequence-covering, compact-covering α(P )-image of a locally sep-

arable metric space;
(3) X is a 2-sequence-covering α(P )-image of a locally separable metric space;
(4) X is a 2-sequence-covering α(P )-image of a metric, and has an so-cover

consisting of H-ℵ0-subspaces.

Corollary 2.7. The following are equivalent for a space X.

(1) X has a Lindelöf base with property σ-(P );
(2) X is an open, compact-covering α(P )-image of a locally separable metric

space;
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(3) X is an open α(P )-image of a locally separable metric space;
(4) X is a local H-ℵ0-space and an open α(P )-image of a metric.

By Theorem 2.3 and Remark 2.4, we obtain the following results for Nguyen
Van Dung in case X is a regular space.

Corollary 2.8. [3, Theorem 2.14] The following are equivalent for a regular
space X.

(1) X has a σ-locally countable so-network consisting of so-second countable
subspaces;

(2) X has a σ-locally countable so-network consisting of cosmic subspaces;
(3) X is a 2-sequence-covering msss-image of a locally separable metric space.

Corollary 2.9. [4, Theorem 2.3], The following are equivalent for a regular
space X.

(1) X has a σ-locally finite so-network consisting of so-second countable sub-
spaces;

(2) X has a σ-locally finite so-network consisting of cosmic subspaces;
(3) X is a 2-sequence-covering mssc-image of a locally separable metric space.

Remark 2.6. By Theorem 2.3, it is possible to add the prefix “compact-
covering” before “2-sequence-covering” in Corollary 2.8(3) and Corollary 2.9(3).

3. Examples

Example 3.1. A quotient s-image of a locally separable metric space need
not be locally separable (see [11, Example 9.8] or [16, Example 2.9.27]). Then,
Question 1.1 is not true in the case Φ-property is an ℵ0-space (or locally separable).

Example 3.2. There exists a space X with a σ-locally finite compact k-network
(hence, X has a σ-locally finite Lindelöf cs-network by Theorem 2.1), but X is
not locally Lindelöf (hence, X has no locally countable network) (see [24, Exam-
ple 4.1(2)]). Then,

(1) A space X has a Lindelöf cs-network with property σ-(P ) need not have
a locally countable cs-network.

(2) In Theorem 2.1(6), X need not be local ℵ0-space.

Example 3.3. Sω is a Fréchet and ℵ0-space, but it is not first countable.
Then, it has a σ-locally finite Lindelöf cs-network. Since Sω is not first countable,
it doesn’t have a σ-locally countable sn-network (or weak base).

(1) A space with a σ-locally finite (hence, σ-locally countable) Lindelöf cs-
network need not have a σ-locally finite (or σ-locally countable) Lindelöf
sn-network.

(2) A k-space with a σ-locally finite (hence, σ-locally countable) Lindelöf cs-
network need not have a σ-locally finite (or σ-locally countable) Lindelöf
weak base.
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Example 3.4. There exists a g-second countable space X , but it is not Fréchet
(see, [23, Example 2.1]). Then, X has a σ-locally finite Lindelöf weak base. Since X
is sequential and it is not Fréchet, X does not have a σ-locally countable so-network
(or weak base). Therefore,

(1) A space with a σ-locally finite (hence, σ-locally countable) Lindelöf sn-
network need not have a σ-locally finite (or σ-locally countable) so-network.

(2) A space with a σ-locally finite (hence, σ-locally countable) Lindelöf weak
base need not have a σ-locally finite (or σ-locally countable) base.

Example 3.5. There exists a space X having a locally countable sn-network,
which is not an ℵ-space (see [5, Example 2.19]). Then, X has a σ-locally countable
Lindelöf sn-network. Therefore,

(1) A space with a locally countable sn-network need not have a σ-locally
finite Lindelöf cs-network.

(2) A space with a σ-locally countable Lindelöf sn-network need not have a
σ-locally finite Lindelöf sn-network (or cs-network).

(3) A space with a σ-locally countable Lindelöf cs-network need not have a
σ-locally finite Lindelöf cs-network.

Example 3.6. Using [7, Example 3.1], it is easy to see that X is Hausdorff,
non-regular and X has a countable base, but it is not a sequentially-quotient π-
image of a metric space. Then, X is not an ℵ0-space. By Theorem 2.3, X is a
2-sequence-covering (and open) mssc-image of a locally separable metric space.

(1) There exists an H-ℵ0-space, but it is not an ℵ0-space.
(2) A space with a σ-locally finite Lindelöf cs-network (or an sn-network,

or an so-network) need not be a sequentially-quotient π, mssc-image (or
msss-image) of a metric space.
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evskĭı J. Math. 30(1) (2009), 67–75.
4. N. V. Dung, On sequence-covering mssc-images of locally separable metric spaces, Publ. Inst.

Math., Nouv. Sér. 87(101) (2010), 143–153.
5. X. Ge, Spaces with a locally countable sn-network, Lobachevskĭı J. Math. 26 (2007), 33–49
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