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D-HOMOTHETIC WARPING

David E. Blair

The goal of this lecture will be to introduce the notion of D-homothetic warping,
give a few rudimentary properties and a couple of applications. As with the usual
warped product it is hoped that this idea will prove useful for generating further
results and examples of various structures. Details of the proofs will appear in [3].

For this purpose we must first review the geometry of contact metric and almost
contact metric manifolds. By a contact manifold we mean a C* manifold M?"+!
together with a 1-form 5 such that n A (dn)™ # 0. It is well known that given 7
there exists a unique vector field £ such that dn(¢, X) = 0 and n(§) = 1. The vector
field ¢ is known as the characteristic vector field or Reeb vector field of the contact
structure 7.

Denote by D the contact subbundle defined by {X € T, M : n(X) = 0}.

A Riemannian metric g is an associated metric for a contact form 7 if, first of
all, n(X) = g(X, &) and secondly, there exists a field of endomorphisms, ¢, such
that ¢ = - I +n®¢&, d(X,Y) = g(X, ¢Y). We refer to (¢,&,1,g) as a contact
metric structure and to M?"T! with such a structure as a contact metric manifold.

By an almost contact manifold we mean a C* manifold M?"+! together with
a field of endomorphisms ¢, a 1-form 7 and a vector field £ such that

¢ =-I+n®¢ nE)=1.

A Riemannian metric is said to be compatible if g(¢X,dY) = g(X,Y) —n(X)n(Y)
and we refer to an almost contact metric structure (¢,£,7,9). Again we denote
by D the subbundle defined by n = 0. The fundamental 2-form, ®, of an almost
contact metric structure is the 2-form defined by ®(X,Y) = g(X, ¢Y).

The product M?"+! x R carries a natural almost complex structure defined by

d

J(X,a%) - (¢X - af,n(X)E)

where @ is a function on the product manifold. The underlying almost contact
structure is said to be normal if J is integrable. The normality condition can be
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expressed as
[¢,0](X,Y) + 2dn(X,Y)§ = 0,

[¢, ¢] being the Nijenhuis tensor of ¢ (see e.g. [2] Chapter 6]).

Some special cases are worthy of attention. A contact metric structure is K-
contact if £ is a Killing vector field and a Sasakian manifold is a normal contact
metric manfiold, equivalently, if (Vx¢)Y = g(X,Y)&—n(Y)X. Sasakian manifolds
are K-contact and in dimension 3 the converse is also true (again see [2] Chapter 6]).

An almost contact metric structure is said to be almost cosymplectic if both n
and @ are closed. If in addition the structure is normal (see e.g. [2] Chapter 6]),
the structure is said to be cosymplectic.

An almost contact metric manifold is a Kenmotsu manifold ([6] or [2] p.98]) if

(Vx9)Y = g(¢X,Y)§ —n(Y)pX.

The notion of a D-homothetic deformation on a contact metric manifold was
introduced by Tanno [12]. For a contact metric structure (¢,&,n,g) and positive
constant a, the structure

_ - 1 _
n=an, £=-¢ ¢=9¢, g=agtala—1n®7
is again a contact metric structure.
The idea works equally well for almost contact metric structures; the deforma-
tion

_ 1 _
n=cn, 52257 d):d)a gZCLg—FbT]@’I], CL>O, a+b>0

is again an almost contact metric structure if ¢ = a 4+ b. In particular, if ¢ = a,

then the deformed structure satisfies (X) = g(X, &) if and only if b = a(a — 1).

The notion of warped product is very well known: Given two Riemannian
manifolds (M7, ¢1) and (Ma, g2), and a positive function f on M, the Riemannian
metric g = g1 + fg2 on M7 X Ms is known as a warped product metric.

Now consider the product of a Riemannian manifold (Mi,g;) and an almost
contact metric manifold (Ma, ¢2,&2,72,92). On My x My define a metric g by

g=n+fe+f(f-Dnen

for a positive function f on M;. We refer to this construction as D-homothetic
warping.
Using the Koszul formula for the Levi-Civita connection of a Riemannian met-
ric,
29(VxY,Z)=Xg(Y,Z)+Yg(X,Z) — Zg(X,Y)
one can compute the Levi-Civita connection of the D-homothetically warped metric.
Denote by V! and V? the Levi-Civita connections of g; and gs respectively and

choose vector fields X;,Y;, Z;, i = 1,2, such that they are tangent to the manifold
with the corresponding index and that their component functions are functions on
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that manifold. In particular [X;,Y;] is tangent to M; and [X1,Y2] = 0. Then we

have X,/
V&HZVQK,V&HZVW&ZG%O%HMEKﬁ

which in turn can be used to find ¢(Vx,Y2,Z1) = —g(Vx,Z1,Y2). Finally
29(Vx,Y2, Z2) = 29(V%, Y2, Z2)
+ f(f = D{(92(VX, &, Y2) + 92(V3, &2, X2))n2(Z2)
+ 2dna(X2, Za) 12(Ya) + 2dn2 (Y2, Z2) n2(X2) }-
Let o denote the second fundamental form of Ms in M7 x Ms and while f is a

function on M, for emphasis we denote its gradient by grad; f. We then have the
following Theorem.

THEOREM 1. For an almost contact metric manifold (Ma, ¢2,&2,m2,92) and a
D-homothetically warped metric on My x My we have the following:

(1) M is a totally geodesic submanifold.
(2) M is a quasi-umbilical submanifold and its second fundamental form is
given by

(X2, Y2) = —5(92(X2,Ya2) + (2f — 1) n2(X2) 112(Y2)) grad, f.
(3) The mean curvature vector of My in My X Ms is

n+f
H= 1 grad; f.
(4) If f is nowhere constant, then a geodesic initially tangent to a copy of Ms
cannot remain tangent.
(5) If in addition, the integral curves of & are geodesics, then & is g-Killing
if and only if it is go-Killing.

We remark that on a contact metric manifold, as well as on almost cosymplectic
manifolds and Kenmotsu manifolds, one has that ng & = 0 and hence the integral
curves of & are geodesics. With respect to the metric g on M; x My,

Ve, &2 = —fgrad, [.

For our first application of the idea of D-homothetic warping we consider the
case where M; = R, M, is an almost contact metric manifold and the metric
g=dt>+ fga+ f(f —1)n2 ®ng. For brevity we denote the unit tangent field to M;
by 0; and for notational emphasis we will sometimes write 7; for dt. Vector fields
on R x My will be denoted by either (a0, X2) or X depending on convenience.

Define an almost complex structure J on the product manifold by

J (a0, X2) = (f772(X2) O, P2 Xo — %771 (aat)§2)

where a is in general a function, but for the definition it would suffice to take a to
be 0 or 1 and then keep track of when 7, = dt is to be used. That J? = —I and

g(J(a@t, Xg), J(b@t, ng)) = g((a(?t, XQ), (b@t, sz))
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are easily verified. The fundamental 2-form of this almost Hermitian structure is
Q((aatv XQ)) (bat, }/2>) = g((aatv XQ)) J(batv }/2))

or, upon expansion, simply Q = f(®y + 2dt A 13) where ®o(Xs,Y2) = g2( X2, $2Y2)
is the fundamental 2-form of the almost contact metric structure. We have imme-
diately that

dQ = f'dt N Dy + fdPo — 2fdt A dne.
For the special cases we have the following:

(1) contact metric: dQ = (f' — 2f)dt A dna.

(2) almost cosymplectic: d2 = f'dt A Ps.

(3) Kenmotsu: dQ2 = (f'dt + fn2) A Da.
We note that € is closed in the contact metric case if and only if f = Ae? and in
the almost cosymplectic case if and only if f is constant. In the Kenmotsu case (2
cannot be closed; it would force f to be zero.

THEOREM 2. (1) The almost contact metric structure on Ms is a contact met-
ric structure if and only if the almost Hermitian structure (g,J) satisfies dQ =
(f' = 2f)dt A dna in which case the structure is conformally almost Kdhler. If the
structure on My is Sasakian, then the structure (g, J) is Hermitian and conformally
Kahler.

(2) The almost contact metric structure on My is almost cosymplectic if and
only if the almost Hermitian structure (g, J) satisfies dQ2 = f'dt A @y in which case
the structure is conformally almost Kdhler.

For a second application of the idea of D-homothetic warping we consider a
semi-Riemannian setting with M; = R. Recall that in general relativity one has
the notion of a synchronous space-time as a 4-dimensional manifold equipped with
a metric of the form

ds? = —dt* + gaﬁda:ada:ﬁ, a,f=1,..,3

where ¢ is the time and the g3 depend on all four variables 29 =t z!, 22, 23, The
most well known of these are the classical Friedman—Lemaitre-Robertson—Walker
metrics which are warped product metrics of the form

ds® = —dt* + f(t)ge

where g is of constant curvature +1, 0 or —1.

The Wilkinson Microwave Anisotropy Probe (WMAP) revealed some anomalies
in the cosmic microwave background (CMB). In particular, the analysis of Oliveira-
Costa et al. [11] suggests that there is a preferred direction in space in the direction
(b,1) ~ (60°,—110°) in galactic coordinates, see also [7]. The universe may be
expanding faster in such a direction than in orthogonal directions. The question
of the opposite direction was taken up in [8] and the work suggests a symmetry
with respect to planar reflections. (For a more popular discussion see [9] and/or
[10].) All of this suggests investigating a manifold R x My where Ms has a preferred
direction.
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Consider a 3-dimensional almost contact metric manifold (Ma, ¢2, &2, 12, g2)-
On the product R x My we have the synchronous metric

ds® = —dt* + fgo + f(f = )2 @ . (1)
where f is a positive function of time. Of course, V,0; = 0 and from our earlier
work we have

f—/(Xz + 12(X2)62).

Vx,0r = 57
Then a direct computation yields the following curvature term.
Uy (f"?
Ry, 0,00 = — (— )(x X X
X5 0,0t f+4f2 (X2 +na( 2)52)+2f2 2
and hence for the Ricci tensor, p, we have
2f// (f/)2
p(atvat) = f + 212 ’

For the metric (f) we proceed with the following considerations. Let e be a local
unit vector field in the subbundle D on Ms. Then we have the local orthonormal
basis {e, ¢e, £} on My. Now for the metric (1), form the local orthonormal basis

e oe &

Ey =04, ElZW, Ey = b3 =~

Vi f
For the time direction 0y, or more generally a unit time-like vector field V', the
strain © and vorticity € are defined by

O(X,Y) =1 (9(VxV.Y) + g(VyV, X)),
QX,Y) = 3(g(VxV.Y) — g(VyV, X))

where X and Y are g-orthogonal to V. For d; there is no vorticity. One defines the
expansion 6 as the divergence of V' which for us becomes
3

0=divd, =Y g(Vp,dp E Z (Ve,0, E
i=0 a=1
where ¢g = —1 and ¢, = +1. The trace free part of ©, 0,5 = Oqp — %Héag, is

called shear. For further reference see [4] p. 409 or [5] pp. 74-79.
For our metric () we have readily that

I _
2 O(E3, E3) = 7

and hence that the expansion § = 2770/ For the shear we have

O(E1, E1) = O(Ey, E) =

/ /

011 = 022 = —57 033 = ﬁ
In a universe with a preferred direction one might expect to have some shear and
from the above calculations we have the reassuring result that the Raychaudhuri
equation,

de
pri —p(0, 0r) — %92 — 0apo®?,
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is satisfied. For a discussion of the Raychaudhuri equation, see e.g. [4] p.411] or
[5, pp. 151-152].

Now one might also expect that the shear is something that is oblique to the
subbundle D. To proceed, first note that F; = Lf is an arbitrary direction in D

and introduce a basis for the time direction and a 'plane field P by
Fy=0, F=F, F,=AE+BE;, A>+B*=1.

Define an expansion and a Ricci tensor relative to P by

2 2
07 = eg(Veon F), p"(01,00) =Y eig(Rro,01, F).
i=0 i=0
Clearly the first term on the right in each case vanishes but conceptually the term
should be present. The corresponding shear is

07 (Fa, F3) = O(Fy, Fg) — 307 60s, o, B =1,2.

Computing explicitly we have

/ B2 / !
6% = f?(l—I—?), O11 = 2 B2z = 2][—f(1+B2)

and hence for the shear we have
BZf/ B2f/
M= B

Thus for the contact plane field D (B = 0) there is no shear and the expansion is

6P = fT, At the other extreme when B = 1, the expansion is 67 = 32_1}, and for

c/\2
the shear we have (0]})% + (0]5)? = (g f)2 . In these two cases the Raychaudhuri
equation

B PO~ 307 — (R — (o)
a p (0O, Ot 3 011 022
is satisfied. In general the plane field P may evolve with time and the Raychaudhuri
equation then imposes a relation between B and f, viz.
/! 3 . . B*
B' = - (B — B?) or integrating ————

For the D-homothetically warped metric (f) there are a number possibilities
for the almost contact metric structure on Ms. For example the 3-dimensional unit
sphere is a very well known Sasakian manifold.

Many years ago in [1], the author proved that in dimensions > 5 there are no flat
contact metric manifolds. However in dimension 3 the torus carries a flat contact
metric manifold as does R?(x,y, z) with the following structure. The contact form
and characteristic vector field are

= (const.) f.

1 0
n= §(dz — ydz) (the standard Darboux form) and £ = 28—,
z
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and the associated metric
L (1t 2 4+22 2z —y
—y 0 1

is flat.

On the other hand we can consider a couple of almost contact metric structures
which are not contact metric.

Again for the flat case, one could chose the very simple cosymplectic structure
on R? = C x R given by the Euclidean metric and

0z

The standard example of a Kenmotsu manifold is hyperbolic space. In partic-
ular in dimension 3 we have the following structure on the R3 model of hyperbolic
space:

0
n=dz, &= 5 9= e?*(dx? + dy?) + dz%, ® = —2e**dx A dy.
2

For the Sasakian structure on the sphere S3(1), the flat cosymplectic structure
on R? and the Kenmotsu structure on 3-dimensional hyperbolic space, the metric (1)
can be considered as an alternative to the Friedman-Lemaitre-Robertson—Walker
metrics which incorporates a preferred direction.

The existence of a preferred axis in space is somewhat controversial and isn’t
overly apparent; thus one might expect that for the above metrics the function (or
constant) f should be close to 1; this would then possibly entail weighting go by a
different function (cf. our earlier brief discussion of D-homothetic deformation in
the almost contact metric case). There is considerable literature raising questions
of the robustness of the data from WMAP and its statisical analysis. On the other
hand one has a recent remark by Moyer [10] in favor of keeping an open mind on
the topic. The Planck satellite has recently completed a new mapping of the CMB
and analysis of the data is expected later this year or next; so we must wait and
see.

Finally recall the notion of a doubly warped product metric, namely

g=Fgi+ fg2

where f is a positive function on M; and F is a positive function on M. If now
both M; and M, are almost contact metric manifolds we can define a doubly D-
homothetically warped metric by

g=Fg+FF-1)mem+ foa+ f(f =12 @na.

While this is an area of possible future research we mention briefly that one
easily has the following:

(1) Both My and M are quasi-umbilical submanifolds and e.g. the second
fundamental form of Mj is
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1 1- F
(X1, ) = = (0260, Y+ 2~ D (X (1) (grad, £+ L8 ),
(2) My is minimal if and only if F' is constant in which case it is totally
geodesic.

[1]
2]

[3]

(8]
[9]
(10]
(11]

12]

(3) If V§ & =0,

U= 1R

g
Vglflz——(gradQF—i— 7

f

References

D.E. Blair, On the non-existence of flat contact metric structures, Téhoku Math. J. 28
(1976), 373-379.

, Riemannian Geometry of Contact and Symplectic Manifolds, Second Edition,
Birkhauser, Boston, 2010.

, D-homothetic warping and applications to geometric structures and cosmology, to

appear.

Y. Choquet-Bruhat, General Relativity and the Einstein Equations, Oxford University Press,
Oxford, 2009.

T. Frankel, Gravitational Curvature, W.H. Freeman, San Francisco, 1979.

K. Kenmotsu, A class of almost contact Riemannian manifolds, Téhoku Math. J. 24 (1972),
93-103.

K. Land and J. Magueijo, Examination of evidence for a preferred axis in the cosmic radiation
anisotropy, Phys. Rev. Lett. 95 (2005), 071301.

, Is the universe odd?, Phys. Rev. D 72 (2005), 101302.

Z. Merali, ‘Axis of evil’ a cause for cosmic concern, New Scientist, April 14—-April 20 2007.
M. Moyer, Universal alignment, Scientific American, December 2011, p. 30.

A. Oliveria-Costa, M. Tegmark, M. Zaldarriaga and A. Hamilton, Significance of the largest
scale CMB fluctuations in WMAP, Phys. Rev D 69 (2004), 063516.

S. Tanno, The topology of contact Riemannian manifolds, Illinois J. Math. 12 (1968), 700—
T17.

Department of Mathematics
Michigan State University
East Lansing, MI 48824, USA
blair@math.msu.edu



	References

