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4-DIMENSIONAL
(PARA)-KAHLER-WEYL STRUCTURES

Peter Gilkey and Stana Nikcevié

ABSTRACT. We give an elementary proof of the fact that any 4-dimensional
para-Hermitian manifold admits a unique para-Kéhler—Weyl structure. We
then use analytic continuation to pass from the para-complex to the complex
setting and thereby show that any 4-dimensional pseudo-Hermitian manifold
also admits a unique Kdhler—Weyl structure.

1. Introduction

1.1. Weyl manifolds. Let (M, g) be a pseudo-Riemannian manifold of di-
mension m. A triple (M, g, V) is said to be a Weyl manifold and V is said to be
a Weyl connection if V is a torsion free connection with Vg = —2¢ ® g for some
smooth 1-form ¢. This is a conformal theory; if § = €2/ ¢ is a conformally equivalent
metric, then (M, §, V) is a Weyl manifold with associated 1-form ¢ = ¢ — df. If V9
is the Levi-Civita connection, we may then express V = V¢ in the form:

(1.1) Véy = Viy+ ¢(z)y + ¢(y)x — g(z, y)o*

where ¢# is the dual vector field. Thus ¢ determines V. Conversely, if ¢ is given and
if we use Equation (L)) to define V, then V is a Weyl connection with associated
1-form ¢. We refer to [5] for further details concerning Weyl geometry.

1.2. Para-Hermitian manifolds. Let m = 2m. A triple (M, g, J;) is said
to be an almost para-Hermitian manifold with an almost para-complex structure J
if g is a pseudo-Riemannian metric on M of neutral signature (m,m) and if J; is an
endomorphism of the tangent bundle TM so that J2 = Id and so that Jig=—g;
(M, g, J;) is said to be para-Hermitian with an integrable complex structure J, if
the para-Nijenhuis tensor

NJ+ (%y) = [‘Tu y] - J+[J+$7y] - J—‘r[x? J+y] + [JJ,_ZC, J+y]
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vanishes or, equivalently, if there are local coordinates (ul,...,u™, v', ... v™) cen-
tered on an arbitrary point of M so that J0,, = 0,, and J40,, = O,

1.3. Pseudo-Hermitian manifolds. Let m = 2m. A triple (M,g,J_) is
said to be an almost pseudo-Hermitian manifold with an almost complex structure
J_ if (M, g) is a pseudo-Riemannian manifold, if J_ is an endomorphism of the
tangent bundle so that J2 = —id and so that J*g = g; (M, g,J_) is said to be a
pseudo-Hermitian manifold with an integrable complex structure J_ if the Nijenhuis
tensor

Ny_ (xvy) = [Ia y] +J- [fo,y] +J- [IE, J,y] - [J*xv J,y]
vanishes or, equivalently, if there are local coordinates (ul,...,u™, v', ... v™) cen-
tered on an arbitrary point of M so that J_0,, = 0,, and J_0,, = —0,,.

1.4. Para-Ké&hler and Kahler manifolds. One says that a Weyl connection
V on a para-Hermitian manifold (M,g,J;) is a para-Kdihler—Weyl connection if
VJy = 0. Similarly, one says that a Weyl connection V on a pseudo-Hermitian
manifold (M, g,J_) is a Kdhler-Weyl connection if VJ_ = 0. Since VJi = 0
implies J1 to be integrable, we assume this condition henceforth. If V = V9 is the
Levi-Civita connection, then (M, g, J1) is said to be (para)-Kdhler.

Let % be the Hodge operator and let Q4 (x,y) := g(z, J1y) be the (para)-Kéhler
form. The co-derivative 6Qy is given, see [2] for example, by §Q1 = —xd * Q4.

The following is well known — see, for example, the discussion in [9] of the
Riemannian setting (which uses results of [10, [11]) and the generalization given in
[3] to the more general context.

THEOREM 1.1. Let m > 6. If (M, g,J+,V) is a (para)-Kaihler—Weyl structure,
then the associated Weyl structure is trivial, i.e., there is always locally a confor-
mally equivalent metric § = e*fg so that (M, g, J+) is (para)-Kdhler and so that
VvV = V9.

By Theorem [IL1] only the 4-dimensional setting is relevant. The following is
the main result of this short note; it plays a central role in the discussion of [1].

THEOREM 1.2. (1) If M = (M, g,J) is a para-Hermitian manifold of signa-
ture (2,2), then there is a unique para-Kahler—Weyl structure on M with
(b = %JJ’_&QJ’_

(2) If M = (M,g,J_) is a pseudo-Hermitian manifold of signature (2,2), then
there is a unique Kdahler—Weyl structure on M with ¢ = —%J_(SQ_.

(3) If M = (M,g,J_) is a Hermitian manifold of signature (0,4), then there
is a unique Kdhler—Weyl structure on M with ¢ = —%J,(SQ,.

Assertion (3) of Theorem [[L2, which deals with the Hermitian setting, is well
known — see, for example, the discussion in [§]. Subsequently, Theorem was
established in full generality (see [3, [4]) by extending the Higa curvature decom-
position [6], [7] from the real to the Kdhler—-Weyl and to the para-Kéhler Weyl
contexts.

Here is a brief outline to this paper. In Section 2] we show that if a (para)-
Kéhler-Weyl structure exists, then it is unique. In Section Bl we give a direct
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proof of Assertion (1) of Theorem in the para-Hermitian setting. In Section M
we use analytic continuation to derive Assertions (2) and (3), which deal with the
complex setting, from Assertion (1). This reverses the usual procedure of viewing
para-complex geometry setting as an adjunct to complex geometry and is a novel
feature of this paper.

2. Uniqueness of the (para)-Kihler—Weyl structure

This section is devoted to the proof of the following uniqueness result.

LeEMMA 2.1. (1) If V' and V92 are two para-Kéihler—Weyl connections on a
4-dimensional para-Hermitian manifold (M, g, J;), then ¢1 = ¢o.

(2) If V1 and V?2 are two Kéihler—-Weyl connections on a 4-dimensional
pseudo-Hermitian manifold (M, g,J_), then ¢1 = ¢o.

PROOF. Let ¢ = ¢ — ¢ and let Ox(Y) = ¢(X)Y +¢(Y)X — g(X,Y)¢#. By
Equation (1), V?g — V% = Ox € End(TM). Consequently, {V? —V%2}.J, =0
implies [O©x, J1] = 0 for all X.

We first deal with the para-Hermitian case. This is a purely algebraic compu-
tation. Let {e1, e, e3,e4} be a local frame for TM so that

J+61 = €1, J+62 = €2, J+€3 = —€3, J+€4 = —€y4,

@1) gle1,e3) = g(ez,eq) = 1.

We expand ¢ = are! 4+ aze? + aze® + ase? and compute:

961 €4 = ajeyq + aqeyq, J+®ele4 = —aieq + aqeq, 961 Jies = —ajeq — ageq,
96263 = age3 + asea, J+962€3 = —age3 + ases, 962 Jie3 = —ages — aseq,
Oc,e1 = age1 +areq, J4Oc,e1 = age; —ajeq, O Jier = ager + ajeq,
Ocg e2 = azes + azes, J1Oc,e0 = azes —ages, OgJpes = ases + agzes.

Equating O, J;e; with J, O, e; then implies a1 = a2 = a3 = a4 =050 ¢ =0 and
¢1 = ¢2. This establishes Assertion (1).

Next assume we are in the pseudo-Hermitian setting. Complexify and extend
g to be complex bilinear. Choose a local frame {Z;, Zs, Z1, Zg} for TM ®r C so

J_Zy =V-1Z1, J_-Zy=+—-1Z,,

J 7y =—=1Z, J_Zy=—\—12s,

9(Z1,21) = 1, 9(Z2,Z5) = &2
where we take e2 = +1 in signature (0,4) and e = —1 in signature (2,2). We
set Jy = —v/—1J_, e := 71, e := Zy, e3 := Z1, and ey := €275 and apply the

argument given to prove Assertion (1) (where the coefficients a; are now complex)
to derive Assertion (2). O
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3. Para-Hermitian geometry

3.1. The algebraic context. Let (V,(:,-), J;+) be a para-Hermitian vector
space of dimension 4. Here (-, -) is an inner product on V of signature (2,2) and Jy
is an endomorphism of V satisfying J? = Id and J} (-,-) = —(-,-). We may then
choose a basis {e1, ez, e3,e4} for V = R* so that the relations of Equation ([2.]) are
satisfied. The Kéhler form and orientation p are then given by

O =—etned—e?Aet and p= %QJF/\QJF =enedne? Aet
Let = be the Hodge operator, characterized by

w1 A *wy = (wi,wa)et Aed Ae? Aet for all w;.

Consequently:
*el/\egz—e2/\e4, *62/\64:—61/\63,
(3.1) xel ne? ned = —e?, xelnenet= el
xel neP net = e, xenePnet= el

)

3.2. Example. We begin the proof of Theorem by considering a very
specific example. Let (z!, 22,23, 2%} be the usual coordinates on R*, let 9; := 9,
and let J; be the standard para-complex structure:

JrOr =01, Jy02 =09, Ji03=—03, Jy04= —04.
Let f(0) = 0. We take the metric to have non-zero components determined by
g(81,05) = 1 and ¢(02,04) = €*. Let f; := {0;£}(0). The (possibly) non-zero
Christoffel symbols of VY at the origin are given by:
9(V3,02,04) = g(V3,01,01) = g(V5 04,02) = g(V3,01,02) = fu,
9(V3,02,04) = g(V},03,01) = g(V),01,00) = g(V3,03,02) = [3,
9(V3,01,02) = 2fs, g(V},02,04) =22,
9(V5,01,01) = g(V5,00,01) = —f1,  g(V},04,03) = g(V}, 02,03) = — f.
Consequently the (possibly) non-zero covariant derivatives at the origin are:
V5,00 = V5 O = f102, V5 04=V35 01 = f10s,
V5,00 = V5 03 = f302, V3 04 =V3 03 = f304,
V3,01 =2f101, V3 02 =2f200,
V3,01 =V} 0o = —f105 — f301.
Since V3 and V§_ are diagonal, they commute with J so V§ (J1) = V§ (J4) = 0.
We compute

(V9,001 = (1= J)VE,0 = (1— J2) f1ds =0,

(V9. J)0s = (1= J1)VE,0 = (1— J4)2f205 =0,

(V3,J4+)05 = (=1 = J4)V3,05 = (=1 = J1) 302 = —2f30,
(V3,J4+)01 = (=1 = J4)V3,00 = (=1 = J1) (= f103 — f301) = 2301,
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(V3,J4)01 = (1 = J1)V) 01 = (1 — J4) f10s = 2104,

(V3,J+)02 = (1 = J4 )V, 02 = (1 = J1)(— 105 — f301) = —2f105,
(V3,J+)05 = (=1 = J4)V3,05 = (=1 — J1)f304 = 0,
(V9,J1)01 = (=1 = J1 )V, 01 = (=1 — J;.)2f104 = 0.

We apply Equation (3I). We have xQ0, = —Q,. Setting e! = dz?!, e? = efda?,

e3 = da®, and e* = e/dz* and recalling £(0) = 0 yields

*Qy = —Q = da! Ada® + ¥ da® A dat,
d*Qy =2fidxt A da® A dat — 2f3da® A da® A da?,
554 (0) = — xd Q4 (0) = =2 f1da’ + 2 f3da?,
$(0) = 276,94 = — frdz' — fyda®, and ¢ = — f105 — f30..
Let ©;; := ¢(0;)9; + ¢(0;)0; — g(0;,0;)97 = (V? — V9)p,0; at 0. Then:
O11 = =2f101, O12 = —f102, O13 = (=f105 — f301) + (f103 + f301) =0
O14 = —f101, O =0, O3 = —f302, O24 = (f105 + f301),
O33 = —2f305, O34 = —f301, Oy =0.
Since ©(9;) and ©(93) are diagonal, [©(d1), J+] = [0(03), J+] = 0. We compute:

[0(02), J4]01 = (1 = J4)O12 = 0,

[0(02), J4]02 = (1 = J1)O22 =0,

[©(02), J1]05 = (=1 = J4)O23 = 230,

[©(02), J4]0s = (=1 = J4)O24 = =230,

[0(04), J+]01 = (1 — J4)O14 = —2f104,

[0(04), J+]02 = (1 — J4)O24 = 21103,

(©(04), J4]03 = (=1 = J4)O34 = 0,

[0(04), J+]0s = (=1 — J)Oyq = 0.
We now observe that [V9,J;] + [©,J;] = 0. Consequently V®J, = 0 for this
metric and Assertion (1) of Theorem [[.2 holds in this special case.

Proof of Theorem [.2(1). Let V = R* let S? be the vector space of
symmetric 2-cotensors w so that Jiw = —w, and let £ € C°°(5?) satisfy £(0) = 0.
We use ¢ to define a perturbation of the flat metric by setting:

g =da' oda® +da? odz* +e.

This is non-degenerate near the origin. Since only the 1-jets of ¢ are relevant in
examining V?(.J;)(0), this is a linear problem and we may take € € 5% ® V* so:

g=g0+ ) a'elei).
i
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Then & — (V?J;)(0) defines a linear map

E:S_(V)@V* = End(V)® V" or equivalently

E:5_(V) - Hom(V*, End(V) @ V*).
The analysis of Section shows that £(dx? o do*) = 0. Permuting the indices
1 <> 2 and 3 <> 4 then yields £(dz' o dz®) = 0. The question is invariant under the

action of the para-unitary group; we must preserve J; and we must preserve the
inner product at the origin. Define a unitary transformation 7' by setting:

T(e') =e' +ae?, T(*)=¢€% T(3)=¢3 T(e)=e'—ae’
Then
T(e'oe®)=eloe® +ae?oed.

Consequently, £(e? o e?) = 0. Permuting the indices 1 ++ 2 and 3 <+ 4 then yields

E(et oet) =0. Since S_ = Span{el oe3 el oe e?0e? e? 0et}, we see that £ =0
in general; this completes the proof of Assertion (1) of Theorem O

4. Hermitian and pseudo-Hermitian manifolds

In this section, we will use analytic continuation to derive Theorem in the
complex setting from Theorem in the para-complex setting. Let V = R* with
the usual basis {ey, ez, e3,e4} and coordinates {z!,z2, 23, 24}, where we expand
v = xle; + x?ey + x3e3 + rey. Let S? denote the space of symmetric 2-tensors.
We complexify and consider

S:={S’®rC}a {(V'®rS*) ®rC}.
Let J4 € M3(C) be a complex 2 x 2 matrix with J3 = Id and Tr(J;) = 0. Let
(4.1) S(J+) = {(go, 91) € S : det(go — J1g0) # 0}.
For (go,91) € S(J4), define:
9(@)(X,Y) = 5{90(X,Y) = go(J+ X, J+Y)}

4
+ Zwi : %{gl(eiaXa Y) = gi(ei, J+ X, J+Y)}'

i=1
By Equation (&1]), this is non-degenerate at 0 and defines a complex metric on some
neighborhood of 0 so Jyg = —g. Let V9 be the complex Levi-Civita connection:

V9,0; = 59"{0ig1 + 05911 — O, 915} Ok

Then VY is a torsion free connection on TcM := Ty Qg C. The para-Kéhler form
is defined by setting Q4 (z,y) = g(x, J1y) and we have

6Q+ = *dQ_;,_ and (b = %J+6QQ

We then use ¢ to define a complex Weyl connection V? on TcM and define a
holomorphic map from S(J4) to Y := V* ® My(C) by setting

E(90, 913 J4) = V?(J4)|a=o0.
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LEMMA 4.1. Let Jy € My(C) with J? = id and Tr(Jy) = 0. Suppose that
(90, 91) € S(J4).
(1) If Jy is real and if (go, 1) is real, then E(go, g1;J+) = 0.
(2) If Jy is real and if (go,q1) is complex, then E(go, g1;J+) = 0.
(3) If J4 is complex and if (go,91) is complex, then E(go,91;J+) = 0.

PRrOOF. Assertion (1) follows from Theorem (1). We argue as follows to
prove Assertion (2). S(J4) is an open dense subset of S and inherits a natural
holomorphic structure thereby. Assume that J is real. The map £ is a holomorphic
map from S(J;) to U. By Assertion (1), £(go, g1;J+) vanishes if (go, g1) is real.
Thus, by the identity theorem, &£(go, g1;J+) vanishes for all (go, 1) € Sy,. This
establishes Assertion (2) by removing the assumption that (go, ¢1) is real.

We complete the proof by removing the assumption that Jy is real. The gen-
eral linear group GL4(C) acts on the structures involved by change of basis (i.e.,
conjugation). Let (go,91) € S(J4+) where Jy is real and Tr(J;) = 0. We consider
the real and complex orbits

Or(90, 915 J+) := GL4(R) - (g0, 915 J+),
Oc(90, 915 J+) = GL4(C) - (g0, 915 J+)-

Let F(A) := E(A- (9o, 91; J+)) define a holomorphic map from GL4(C) to U. By
Assertion (2), F vanishes on GL4(R). Thus by the identity theorem, F vanishes on
GL4(C) or, equivalently, £ vanishes on the orbit space Oc(go,g1;J+). Given any
J+ € My(C) with J? = Id and Tr(J4) = 0, we can choose A € GL4(C) so that
A - J4 is real. The general case now follows from Assertion (2). O

Proof of Theorem [1.2[(2,3). Let (M, g, J_) be a 4-dimensional pseudo-Her-
mitian manifold of dimension 4. Fix a point P of M. Since J_ is integrable, we
may choose local coordinates (x!, 22,23, 2%) so the matrix of J_ relative to the
coordinate frame {0;} is constant. Define a Weyl connection with associated 1-
form given by ¢ = —%J_(SQ_. Only the 0 and the 1-jets of the metric play a
role in the computation of (V?J_)(P). So we may assume g = g(go, g1). We set

J. =+/—1.J_. We have that
Ji=V-1J_V-1J_.=-J2 =id, Tr(J;)=v-1Tr(J-) =0,
JH9)(X,Y) =g(V=1J_X,V=1J_Y) = —g(J_X,J_Y) = —g(X,Y)

so Ji(g9) = —g and (go,91) € Sy, . Finally, since J_ = —v/—1.J, we have
Q_=—V/-1Q4,
¢s = _%J—‘SQQ— = _%( Y _1J+)6g( -V _1Q+) = %J+5gQ+ = ¢J+'
We apply Lemma [T to complete the proof. O
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