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Abstract. Recently, we have researched certain twisted product CR-submani-
folds in a Kaehler manifold and some inequalities of the second fundamental
form of these submanifolds [11].

We consider here two kinds of twisted product CR-submanifolds (the first
and the second kind) in a locally conformal Kaehler manifold. In these sub-
manifolds, we give inequalities of the second fundamental form (see Theorems
5.1 and 5.2) and consider the equality case of these.

1. Twisted product manifolds

Let (M1, g1) and (M2, g2) be Riemannian manifolds and M be a (topological)
product manifold of M1 and M2. We define a Riemannian metric g of M as

g(U, V ) = ef2

g1(π1∗U, π1∗V ) + g2(π2∗U, π2∗V )

for any U, V ∈ T M , where f denotes a positive differentiable function on M , T M
is the tangent bundle of M , π1 (resp. π2) is a projection operator of M to M1 (resp.
M2) and π1∗ (resp. π2∗) is the differential of π1 (resp. π2). Then the manifold M is
called a twisted product manifold with an associated (or a warping) function f and
we write it M = M1 ×f M2 [8]. In particular, if the associated function f is in M2,

then the manifold M̃ is a warped product [12].
Let M = M1 ×f M2 be a twisted product manifold with the associated function

f and let dim M1 = n1, dim M2 = n2 and dim M = n = n1 + n2. Moreover, let
(x1, x2, . . . , xn1 ), (xn1+1, . . . , xn1+n2) be local coordinate systems of M1 and M2,
respectively. Then (x1, x2, . . . , xn) is a local coordinate system of M .
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Using the above local coordinate systems, we can write

(1.1) (gµλ) =

(

gji 0
0 gba

)

=

(

ef2

g1ji 0
0 g2ba

)

,

where the indices (j, i, . . . , h), (d, c, . . . , a) and (ν, µ, . . . , λ) run over the ranges
(1, 2, . . . , n1), (n1 + 1, n1 + 2, . . . , n1 + n2) and (1, 2, . . . , n1 + n2 = n), respectively.

From (1.1), we have

∂kgji = ef2

{2f2(∂k log f1)g1ji + ∂kg1ji},

∂agji = 2f2ef2

(∂a log f)g1ji,(1.2)

∂igba = 0, ∂cgba = ∂cg2ba,

where ∂k = ∂/∂xk and ∂a = ∂/∂xa.
Next, using (1.1) and (1.2), we calculate the Christoffel symbols {ν

λ
µ} with

respect to gµλ which are given by

(1.3) {ν
λ

µ} = 1
2 gλε(∂νgεµ + ∂µgνε − ∂εgνµ).

By virtue of (1.2) and (1.3), we obtain

(1.4)

{j
h

i} = {j
h

i}1 + f2{(∂j log f)δi
h + (∂i log f)δj

h − (∂1
h log f)g1ji},

{b
h

i} = f2(∂b log f)δi
h, {b

h
a} = 0,

{j
a

i} = −f2ef2

(∂2
a log f)g1ji,

{j
a

b} = 0, {c
a

b} = {c
a

b}2,

where ∂1
h = g1

lh∂l (resp. ∂a
2 = g2

ea∂e) and {j
h

i}1 (resp. {c
a

b}2) denotes the
Christoffel symbol of g1 (resp. g2).

By virtue of (1.4), we get

∇Y X = ∇1Y X + f2{(Y log f)X + (X log f)Y }

− f2g1(Y, X){(∂1
l log f)∂l + ef2

(∂2
e log f)∂e},

∇XZ = ∇ZX = f2(Z log f)X, ∇ZW = ∇2ZW

for any Y, X ∈ T M1 and Z, W ∈ T M2, where ∇1 (resp. ∇2) denotes the covariant
differentiation with respect to g1 (resp. g2).

2. Locally conformal Kaehler manifolds

A Hermitian manifold M̃ with structure (J, g̃) is called a locally conformal
Kaehler (l.c.K.) manifold if each point x ∈ M̃ has an open neighbourhood U with
differentiable function ρ : U → R such that g̃∗ = e−2ρg̃|U is a Kaehlerian metric on
U , that is, ∇∗J = 0, where J is the almost complex structure, g̃ is the Hermitian
metric, ∇∗ is the covariant differentiation with respect to g̃∗ and R is a real number
space [13]. Then we know [9]
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Proposition 2.1. A Hermitian manifold M̃ with structure (J, g̃) is l.c.K. if
and only if there exists a global 1-form α which is called Lee form satisfying

dα = 0 (α : closed),(2.1)

(∇̃V J)U = −g̃(α♯, U)JV + g̃(V, U)β♯ + g̃(JV, U)α♯ − g̃(β♯, U)V(2.2)

for any V, U ∈ M̃ , where ∇̃ denotes the covariant differentiation with respect to g̃,
α♯ is the dual vector field of α, the 1 form β is defined by β(X) = −α(JX), β♯ is
the dual vector field of β and T M̃ means the tangent bundle of M̃ .

3. CR-submanifolds in an l.c.K.-manifold

In general, between a Riemannian manifold (M̃, g̃) and its Riemannian sub-
manifold, we know the Gauss and Weingarten formulas

∇̃XY = ∇XY + σ(X, Y ), ∇̃Xξ = −AξX + ∇⊥
Xξ

for any X, Y ∈ T M and ξ ∈ T ⊥M , where σ is the second fundamental form and
Aξ is the shape operator with respect to ξ [7]. The second fundamental form σ and
the shape operator A are related by g̃(AξY, X) = g̃(σ(Y, X), ξ) for any Y, X ∈ T M
and ξ ∈ T ⊥M .

A submanifold M in an l.c.K.-manifold M̃ is called a CR-submanifold if there
exists a differentiable distribution D : x → Dx ⊂ TxM on M satisfying the following
conditions

(i) D is holomorphic, i.e., JDx = Dx for each x ∈ M and
(ii) the complementary orthogonal distribution D⊥ : x → D⊥

x ⊂ TxM is totally
real, i.e., JD⊥

x ⊂ T ⊥
x M for each x ∈ M , where TxM (resp. T ⊥

x M) denotes the
tangent (resp. normal) vector space at x of M [1, 2, 6, etc.].

If dim D⊥
x = 0 (resp. dim Dx = 0) for each x ∈ M , then the CR-submanifold

is holomorphic (resp. totally real). A CR-submanifold M is said to be anti-holo-
morphic if JD⊥

x = T ⊥
x M for any x ∈ M .

In [10], we proved the following

Proposition 3.1. In a CR-submanifold M in an l.c.K.-manifold M̃ , we have
(i) the distribution D⊥ is integrable,
(ii) the distribution D is integrable if and only if

(3.1) g̃(σ(X, JY ) − σ(Y, JX) + 2g̃(JX, Y )α♯, JZ) = 0

for any X, Y ∈ D and Z ∈ D⊥.

A CR-submanifold is said to be proper if it is neither holomorphic nor totally
real.

In a CR-submanifold M in an l.c.K.-manifold M̃ , we know the following for-
mulas [10]

g̃(∇U Z, X) = g̃(JAJZU, X) + g̃(α♯, Z)g̃(U, X)

+ g̃(U, Z)g̃(α♯, X) − g̃(β♯, Z)g̃(JU, X),

AJZW = AJW Z + g̃(β♯, Z)W − g̃(β♯, W )Z
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for any U ∈ T M , X ∈ D and Z, W ∈ D⊥.
A CR-submanifold is said to be mixed geodesic if the second fundamental form

σ satisfies σ(D, D⊥) = {0} and to be D (resp. D⊥)-geodesic if the second funda-
mental form σ satisfies σ(D, D) = {0} (resp. σ(D⊥, D⊥) = {0}).

In a CR-submanifold M of an almost Hermitian manifold M̃ , we denote by
ν the complementary orthogonal subbundle of JD⊥ in the normal bundle T ⊥M .
Then we have the following direct sum decomposition T ⊥M = JD⊥ ⊕ν, JD⊥ ⊥ ν.

Remark 3.1. By the definition of ν, a CR-submanifold is anti-holomorphic if
νx = {0} for any x ∈ M .

Definition 3.1. Let M̃ be a Riemannian manifold with a metric tensor g̃. A
submanifold M is said to be a twisted product submanifold of M̃ if it satisfies

(i) M is a Riemannian submanifold of M̃ ,
(ii) M is a twisted product manifold of two submanifolds M1 and M2 of M̃ ,
(iii) for a certain Riemannian metric g1 (resp. g2) of M1 (resp. M2),

g(U, V ) = ef2

g1(π1∗U, π1∗V ) + g2(π2∗U, π2∗V )

is an induced metric of g̃ for any U, V ∈ T M̃ and a positive differentiable function
f on M , where π1 (resp. π2) is the projection operator of M̃ to M1 (resp. M2), and
π1∗ (resp. π2∗) is the differential of π1 (resp. π2).

(iv) the submanifolds M1 and M2 are orthogonal, that is, g̃(X, Z) = 0 for any
X ∈ T M1 and Z ∈ T M2.

4. Twisted product CR-submanifolds

in a locally conformal Kaehler manifold

In this section, we consider a special twisted product submanifold in an l.c.K.-
manifold.

Definition 4.1. A submanifold M in an l.c.K.-manifold M̃ is said to be the
first (resp. second) kind twisted product CR-submanifold in M̃ if it satisfies

(i) M is a product manifold of a holomorphic submanifold M⊤ and a totally
real submanifold M⊥,

(ii) for a certain Riemannian metric tensor g1 (resp. g2) on M⊤ (resp. M⊥) and
a positive differentiable function f on M ,

g(V, U) = ef2

g1(π∗V, π∗U) + g2(η∗V, η∗U)(4.1)
(

resp. g(V, U) = g1(π∗V, π∗U) + ef2

g2(η∗V, η∗U)
)

(4.2)

is a induced metric of g̃, that is, g̃(V, U) = g(i∗V, i∗U), for any V, U ∈ T M , where
π (resp. η) is a projection operator of M to M⊤ (resp. M⊥) and i is an identity
map of M to M̃ .

Then we write the first (resp. second) kind twisted product CR-submanifold
M = M⊤ ×f M⊥ (resp. M = M⊥ ×f M⊤).

Remark 4.1. We write D (resp. D⊥) instead of T M⊤ (resp. T M⊥).
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Remark 4.2. In our submanifold, since the holomorphic distribution D is
integrable, we have to assume that the second fundamental form σ satisfies (3.1).

Remark 4.3. About warped product and doubly warped product CR-submani-
folds in an l.c.K.-manifold, we can find in [3, 4, 5].

In a CR-submanifold M of an l.c.K.-manifold M̃ , let be dim D = 2p, dim D⊥ =
q, dim M = n, dim ν = 2s and dim M̃ = m. Then we know 2p + q = n and
2(p + q + s) = m.

Now we recall an adapted frame on M̃ . We take a following local orthonormal
frame on M̃ ,

(i) {e1, e2, . . . , ep, e∗
1, e∗

2, . . . , e∗
p} is an orthonormal frame of D,

(ii) {e2p+1, e2p+2, . . . , e2p+q} is an orthonormal frame of D⊥,
(iii) {en+q+1, en+q+2, . . . , en+q+s, e∗

n+q+1, e∗
n+q+2, . . . , e∗

n+q+s} is an ortho-
normal frame of ν. Then we know

(a) {e1, . . . , ep, e∗
1, . . . , e∗

p, e2p+1, . . . , e2p+q} is an orthonormal frame of T M ,
(b) {e∗

2p+1, . . . , e∗
2p+q, en+q+1, . . . , en+q+s, e∗

n+q+1, . . . , e∗
n+q+s} is an ortho-

normal frame of T ⊥M , where e∗
i = Jei for i ∈ {1, 2, . . . , p}, e∗

2p+a = Je2p+a for
any a ∈ {1, 2, . . . , q} and e∗

n+q+α = Jen+q+α for any α ∈ {1, 2, . . . , s}. We call

such an orthonormal frame {e1, . . . , e∗
n+q+s}, an adapted frame of M̃ .

First of all, we consider the first kind twisted product CR-submanifold M in an
l.c.K.-manifold M̃ . Then, by the definition, the induced metric g on M is defined
by (4.1).

Then we have

(4.3)

∇Y X = ∇1Y X + f2{(Y log f)X + (X log f)Y

− f2g1(Y, X){(∂1
l log f)∂l + ef2

(∂2
e log f)∂e},

∇XZ = ∇ZX = f2(Z log f)X, ∇ZW = ∇2ZW

for any Y, X ∈ D and Z, W ∈ D⊥, where ∇1 (resp. ∇2) denotes the covariant
differentiation with respect to g1 (resp. g2).

Proposition 4.1. For a proper first kind twisted product CR-submanifold M =
M⊤ ×f M⊥ in an l.c.K.-manifold M̃ , we have

g̃(σ(X, JY ), JZ) = g̃(α♯, Z)g̃(X, Y )−g̃(α♯, JZ)g̃(X, JY )−f2(Z log f)g̃(X, Y ),(1)

g̃(σ(X, Y ), JZ) = g̃(α♯, JZ)g̃(X, Y ) and g̃(α♯, Z) = f2(Z log f),(2)

g̃(σ(JX, Z), JW ) = −g̃(α♯, X)g̃(Z, W )(3)

for any Y, X ∈ D.

Proof. For any Y, X ∈ D and Z ∈ D⊥, we have from (2.2) and (4.3)

g̃(σ(X, JY ), JZ) = g̃(∇̃X(JY ), JZ) = −g̃(∇̃X(JZ), JY )

= −g̃((∇̃XJ)Z, JY ) − g̃(J∇̃XZ, JY )

= g̃(α♯, Z)g̃(X, Y ) − g̃(α♯, JZ)g̃(X, JY ) − g̃(∇XZ, Y ).

Using (4.3) and the above equation, we have (1).
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In (1), if we put JX instead of X , then we have

g̃(σ(X, Y ), JZ) − g̃((α♯, JZ)g̃(X, Y ) = {f2(Z log f) − g̃(α♯, Z)}g̃(X, JY ).

In the above equation, the left-hand side is symmetric and the right-hand side is
skew symmetric with respect to X and Y . So, we have (2).

From (2), (1) is written as

(1′) g̃(σ(X, JY ), JZ) = −g̃(α♯, JZ)g̃(X, JY ).

Finally, for (3), we have from (2.2) and (4.3)

g̃(σ(JX, Z), JW ) = g̃(∇̃Z(JX), JW ) = g̃((∇̃ZJ)X, JW ) + g̃(J∇̃ZX, JW )

= g̃(−g̃(α♯, X)JZ + g̃(Z, X)β♯ + g̃(JX, Z)α♯

− g̃(β♯, X)Z, JW ) + g̃(∇̃ZX, W ) = −g̃(α♯, X)g̃(Z, W )

which means (3). �

By virtue of (2) in the above proposition, we know

Proposition 4.2. There does not exist a proper first kind of twisted product
CR-submanifold in an l.c.K.-manifold whose Lee vector field α♯ is normal to D⊥.

Proof. By the assumption, we easily know the function f is in M⊤ which
means our proposition. �

Next, we consider the second kind of twisted product CR-submanifold M =
M⊥ ×f M⊤ in an l.c.K.-manifold M̃ . Then, (4.2) means

(gµλ) =

(

gba 0
0 gji

)

=

(

ef2

g2ba 0
0 g1ji

)

(gµλ) =

(

gba 0
0 gji

)

=

(

e−f2

g2
ba 0

0 g1
ji

)

.

In the similar way with a first kind case, we obtain

(4.4)

{c
a

b} = {c
a

b}2 + f2{

(∂c log f)δb
a + (∂b log f)δi

a − (∂2
a log f)g2cb

}

,

{i
a

b} = f2(∂i log f)δb
a, {i

a
h} = 0,

{b
h

a} = −f2ef2

(∂1
h log f)g2ba, {b

h
i} = 0, {j

h
i} = {j

h
i}1,

Equations (4.4) mean

(4.5)

∇ZW = ∇2ZW + f2{(Z log f)W + (W log f)Z

− f2g2(Z, W ){(∂2
e log f)∂e + ef2

(∂1
l log f)∂l},

∇ZX = ∇XZ = f2(X log f)Z, ∇Y X = ∇1Y X

for any Y, X ∈ D, Z, W ∈ D⊥, where ∇1 (resp. ∇2) denotes the covariant differen-
tiation with respect to g1 (resp. g2).

By virtue of (2.2) and (4.5), we obtain
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Proposition 4.3. For the second kind twisted product CR-submanifold M =
M⊥ ×f M⊤ in an l.c.K.-manifold M̃ , we have

g̃(σ(Y, JX), JZ) = g̃(α♯, Z)g̃(X, Y ) + g̃(α♯, JZ)g̃(X, JY ),(1)

g̃(σ(X, Y ), JZ) = −g̃(α♯, JZ)g̃(X, Y ) and g̃(α♯, Z) = 0,(2)

g̃(σ(JX, Z), JW ) = {−g̃(α♯, X) + f2X log f}g̃(Z, W )(3)

for any Y, X ∈ D and Z, W ∈ D⊥.

The proof of Proposition 4.3 is similar to Proposition 4.1. So, we omit it.
By virtue of (2) in Proposition 4.3, we know

Proposition 4.4. For the second kind twisted product CR-submanifold M =
M⊥ ×f M⊤ in an l.c.K.-manifold M̃ , the Lee vector field α♯ is orthogonal to the
totally real distribution D⊥, automatically.

5. The length of the second fundamental form

In this section, we consider the length ‖σ‖ of the second fundamental form σ
of twisted product CR-submanifolds M = M⊤ ×f M⊥ and M = M⊥ ×f M⊤ in an

l.c.K.-manifold M̃ .
Using the adapted frame, the length ‖σ‖ of the second fundamental form σ is

defined as

(5.1) ‖σ‖2 =
m

∑

r=n+1

n
∑

µ,λ=1

{g̃(σ(eλ, eµ), er)}2.

The equation (5.1) is separated as

‖σ‖2 =

n+q
∑

r=n+1

n
∑

µ,λ=1

{g̃(σ(eλ, eµ), er)}2 +

m
∑

r=n+q+1

n
∑

µ,λ=1

{g̃(σ(eλ, eµ), er)}2

=

q
∑

a=1

n
∑

µ,λ=1

{g̃(σ(eλ, eµ), Je2p+a)}2 +

m
∑

r=n+q+1

n
∑

µ,λ=1

{g̃(σ(eλ, eµ), er)}2

=

q
∑

a=1

2p
∑

j,i=1

{g̃(σ(ej , ei), e∗
2p+a)}2 + 2

2p
∑

i=1

q
∑

b,a=1

{g̃(σ(ei, e2p+b), e∗
2p+a)}2

+

q
∑

c,b,a=1

{g̃(σ(e2p+b, e2p+b), e∗
2p+a)}2 +

m
∑

r=n+q+1

n
∑

µ,λ=1

{g̃(σ(eλ, eµ), er)}2,

that is,

‖σ‖2 =

q
∑

a=1

2p
∑

j,i=1

{g̃(σ(ej , ei), e∗
2p+a)}2 + 2

2p
∑

i=1

q
∑

b,a=1

{g̃(σ(ei, e2p+b), e∗
2p+a)}2

+
m

∑

r=n+q+1

n
∑

µ,λ=1

{g̃(σ(eλ, eµ), er)}2 +

q
∑

c,b,a=1

{g̃(σ(e2p+c, e2p+b), e∗
2p+a)}2.(5.2)
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Now, assume that our submanifold is the first kind of twisted product CR-sub-
manifold M⊤ ×f M⊥ in an l.c.K.-manifold M̃ . Then we have from Proposition 4.1,

g̃(σ(e∗
i, e2p+a), e∗

2p+b) = −g̃(α♯, ei)δba,

g̃(σ(ei, e2p+a), e∗
2p+b) = g̃(α♯, e∗

i )δba,

g̃(σ(ei, e∗
j), e2p+a) = {g̃(α♯, e2p+a) − f2(e2p+a log f)}δji.

for any j, i ∈ {1, 2, . . . , p} and a, b ∈ {1, 2, . . . , q}.
Using the above equation, we obtain

p
∑

i=1

q
∑

b,a=1

g̃(σ(e∗
i , e2p+a), e∗

2p+b) = −q

p
∑

i=1

g̃(α♯, ei),

p
∑

i=1

q
∑

b,a=1

g̃(σ(ei, e2p+a), e∗
2p+b) = q

p
∑

i=1

g̃(α♯, e∗
j ),(5.3)

2p
∑

j,i=1

g̃(σ(ei, e∗
j ), e∗

2p+a) = 2p{g̃(α♯, e2p+a) − f2(e2p+a log f)}.

Substituting (5.3) into (5.2), we have

(5.4) ‖σ‖2 = 2{p‖α♯

D⊥‖2 + q‖α♯
D‖2} + 2p

q
∑

a=1

{g̃(α♯, e2p+a) − f2(e2p+a log f)}2

+

q
∑

c,b,a=1

{g̃(σ(e2p+c, e2p+b), e∗
2p+a)}2 +

m
∑

r=n+q+1

n
∑

µ,λ=1

{g̃(σ(eλ, eµ), er)}2.

where ‖α♯

D⊥‖ (resp. ‖α♯
D‖) denotes the length of α♯ in D⊥ (resp. D)-part. Hence,

we have

(5.5) ‖σ‖2 > 2{p‖α♯

D⊥‖2 + q‖α♯
D‖2} + 2p

q
∑

a=1

{g̃(α♯, e2p+a) − f2(e2p+a log f)}2.

Thus we have

Theorem 5.1. In the first kind of twisted product CR-submanifold M = M⊤×f

M⊥ in an l.c.K.-manifold M̃ , we have (5.4). The equality of (5.5) is satisfied if and
only if the second fundamental form σ satisfies σ(D⊥, D⊥) ⊂ ν and σ(T M, T M) ⊂
JD⊥.

Corollary 5.1. In the first kind of twisted product CR-submanifold M =
M⊤ ×f M⊥ in an l.c.K.-manifold M̃ , inequality (5.5) satisfies the equality, then the
submanifold M is D⊥-geodesic.

Next, we consider the second kind of twisted product CR-submanifold M =
M⊥ ×f M⊤. Then we have from Proposition 4.3

g̃(σ(ej , ei), e∗
2p+a) = g̃(α♯, e2p+a)δji + g̃(α♯, e∗

2p+a)g̃(ej , e∗
i),

g̃(σ(ej , ei), e∗
2p+a) = −g̃(α♯, e∗

2p+a)δji,(5.6)
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g̃(σ(e∗
i, e2p+b), e∗

2p+a) = {−g̃((α♯, ei) + f2(ei log f)}δba

for any j, i ∈ {1, 2, . . . , 2p} and b, a ∈ {1, 2, . . . , q}.
Using Proposition 4.4 and equation (5.6), we obtain

q
∑

a=1

2p
∑

j,i=1

{g̃(σ(ej , ei), e∗
2p+a)}2 = 2p

q
∑

a=1

{g̃((α♯, e∗
2p+a)}2

2

p
∑

i=1

q
∑

b,a=1

[g̃(σ(ei, e2p+b), e∗
2p+a)}2

= 2q

p
∑

i=1

[{g̃(α♯, e∗
i) − f2(e∗

i log f)}2 + {g̃(α♯, ei) − f2(ei log f)}2].

Hence the length ‖σ‖ satisfies

‖σ‖2 = 2p

q
∑

a=1

{g̃(α♯, e∗
2p+a)}2

+ q

p
∑

i=1

[{g̃(α♯, e∗
i) − f2(e∗

i log f)}2 + {g̃(α♯, ei) − f2(ei log f)}2]

+

q
∑

c,b,a=1

{g̃(σ(e2p+c, e2p+b), e∗
2p+a)}2 +

m
∑

r=n+q+1

n
∑

µ,λ=1

{g̃(σ(eµ, eλ), er)}2

= 2p‖α♯
JD⊥‖2 + 2q[‖α♯

D‖2 − f2
2p

∑

i=1

g̃(α♯, ei)(ei log f)

+ f4
p

∑

i=1

{(ei log f)(e∗
i log f)}2] +

q
∑

c,b,a=1

{g̃(σ(e2p+c, e2p+b), e∗
2p+a)}2

+

m
∑

r=n+q+1

n
∑

µ,λ=1

{g̃(σ(eµ, eλ), er)}2,

where α♯
JD⊥ denotes the JD⊥-component of α♯. Thus we have

‖σ‖2 > 2p

q
∑

a=1

{g̃(α♯, e∗
2p+a}2(5.7)

+ 2q

p
∑

i=1

[{g̃(α♯, e∗
i) − f2e∗

i log f}2 + {g̃(α♯, ei) − f2ei log f}2]

= 2p‖α♯
jD⊥‖2 + 2q[‖α♯

D‖2 − f2
2p

∑

i=1

g̃(α♯, ei)(ei log f)

+ f4
p

∑

i=1

{(ei log f)(e∗
i log f)}2.

By virtue of (5.7), we obtain
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Theorem 5.2. In a second kind twisted product CR-submanifold M = M⊥ ×f

M⊤ in an l.c.K.-manifold M̃ , the length ‖σ‖ satisfies inequality (5.7) and equality
of (5.7) is satisfied if and only if σ(D⊥, D⊥) ⊂ ν. and σ(T M, T M) ⊂ JD⊥ and
then the submanifold M is D⊥-geodesic.
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