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ON THE CLASSIFICATION OF

LORENTZIAN SASAKI SPACE FORMS

Letizia Brunetti and Anna Maria Pastore

Abstract. Sasaki manifolds admit a nowhere vanishing vector field and it is
always possible to consider a Lorentz metric on them. Then we are able to
obtain a classification result for compact Lorentz–Sasaki space forms.

1. Introduction

Sasaki manifolds, as all parts of contact geometry, were studied by several
authors for their large interest in mechanics and physics [1,6]. Anyway, these special
contact manifolds have been studied even in the Lorentz context for their properties
[4] and physical applications. Although the Lorentz manifolds are the main topic
in physics, there may be some obstructions to the existence of a Lorentz metric on
a manifold. A condition under which it is possible to construct a Lorentz metric
from a Riemannian one is the existence of a globally defined nowhere vanishing
vector field. Such a condition is clearly verified by a Sasaki manifold hence using
O’Neill’s construction we realize a Lorentz metric on Sasaki manifold and we study
its properties.

Furthermore, using Tanno’s classification [6] we obtain a model for a compact
Lorentz–Sasaki manifold with constant ϕ-sectional curvature.

All manifolds, tensor fields and maps are assumed to be smooth, and all mani-
folds are supposed to be connected. We shall use the Einstein convention, omitting
the sum symbol for repeated indexes. Moreover, we shall use the symbol X(M) to
denote the Lie algebra of vector fields on a manifold M .

2. Preliminaries

An almost contact manifold is an odd-dimensional smooth manifold M endowed
with a tensor field ϕ of endomorphisms of the tangent spaces, a vector field ξ and
a 1-form η satisfying ϕ2 = −I + η ⊗ ξ and η(ξ) = 1. In this case such a manifold
will be denoted by (M, ϕ, ξ, η) [1].
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A semi-Riemannian metric g on an almost contact manifold (M, ϕ, ξ, η) is said
to be compatible with the almost contact structure (ϕ, ξ, η) if, for any X, Y ∈ X(M),

(2.1) g(ϕX, ϕY ) = g(X, Y ) − εη(X)η(Y ),

where ε = ±1 according to the casual character of the Reeb vector field ξ. An almost
contact manifold (M, ϕ, ξ, η) with a compatible semi-Riemannian metric g is called
an indefinite almost contact metric manifold and denoted by (M, ϕ, ξ, η, g). We
recall that T M orthogonally decomposes as D ⊕ span(ξ), where D = Im ϕ = ker η.
From (2.1) it follows that the bilinear form Φ := g(·, ϕ·) is a 2-form, called the
Sasaki 2-form of the almost contact metric manifold. An indefinite almost contact
metric manifold (M, ϕ, ξ, η, g) is said to be an indefinite contact metric manifold if
dη(X, Y ) = Φ(X, Y ), for any X, Y ∈ X(M). If in addition the structure is normal,
i.e., N = [ϕ, ϕ] + 2dη ⊗ ξ = 0, where [ϕ, ϕ] denotes the Nijenhuis torsion of ϕ, then
(M, ϕ, ξ, η, g) is said to be an indefinite Sasaki manifold [4]. An easy computation
shows that in such a manifold the Reeb characteristic vector field is Killing.

In the context of contact metric manifolds we consider a D-homothetic defor-
mation, that is a change of the structure tensors (ϕ, ξ, η, g) as follows

ϕ′ := ϕ, ξ′ :=
1

α
ξ, η′ := αη, g′ := αg + α(α − 1)η ⊗ η

where α > 0. This notion was introduced by Tanno [5] in the contact metric case,
but it can be easily extended to the more general context of almost contact metric
structures. In particular, it can be proved that the class of Sasaki structures is
preserved by D-homothetic deformations.

3. Lorentz–Sasaki manifolds

By contrast with the Riemannian case, not every smooth manifold can admit
a Lorentz structure, in fact, this is possible if and only if there exists a nowhere
vanishing vector field [3, page 149]. Moreover, the following well-known result
states how to obtain such a metric.

Proposition 3.1. Let (M, g) be a Riemannian manifold, U a unit vector field

and U∗ its dual 1-form. Then g̃ = g − 2U∗ ⊗ U∗ is a Lorentz metric on M . Fur-

thermore, U becomes timelike so the resulting Lorentz manifold is time-orientable.

Now, we consider a Sasaki manifold (M2n+1, ϕ, ξ, η, g) and we obtain a Lorentz
metric putting

(3.1) g̃ = g − 2η ⊗ η.

Proposition 3.2. The manifold (M2n+1, ϕ, ξ, η, g̃) is a Lorentz–Sasaki mani-

fold.

Proof. Obviously, ξ is timelike with respect to the metric g̃, whereas, for any
X, Y ∈ ker η, g̃(X, Y ) = g(X, Y ), therefore g̃ has index ν = 1. Denoting by η̃ the
g̃-dual 1-form of ξ, one has η̃(X) = εg̃(X, ξ) = −(g(X, ξ) − 2η(X)η(ξ)) = η(X), for
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any X ∈ X(M) and so η̃ = η. Clearly ϕ2(X) = −X + η(X)ξ, for any X ∈ X(M).
Now we check the compatibility of g̃ with the structure: for any X, Y ∈ X(M)

g̃(ϕX, ϕY ) = g(ϕX, ϕY ) = g(X, Y ) − η(X)η(Y )

= g(X, Y ) − 2η(X)η(Y ) + η(X)η(Y ) = g̃(X, Y ) − εη(X)η(Y ),

being ε = g̃(ξ, ξ) = −1. Finally, the normality condition holds since it does not
depend on the metric. Furthermore, being Φ̃(X, Y ) = Φ(X, Y ) for any vector fields
X , Y , we have Φ̃ = dη̃ and we obtain a Lorentz–Sasaki structure on M . �

From now on, such a Lorentz–Sasaki manifold is said to be the associated

Lorentz–Sasaki manifold.
Let (M2n+1, ϕ, ξ, η, g̃) be a Lorentz–Sasaki manifold, considering the transfor-

mation

(3.2) ḡ = g̃ + 2η ⊗ η,

one obtains that (M2n+1, ϕ, ξ, η, ḡ) turns out to be a Sasaki manifold.
To compare the Levi-Civita connections ∇ and ∇̃ with respect to the Rieman-

nian metric g and the Lorentz one g̃, we prove the following proposition.

Proposition 3.3. Let (M2n+1, ϕ, ξ, η, g) be a Sasaki manifold and consider

(M2n+1, ϕ, ξ, η, g̃) the associated Lorentz–Sasaki manifold. Then, the Levi-Civita

connections ∇ and ∇̃ are related by ∇̃XY = ∇XY + 2η(Y )ϕX + 2η(X)ϕY .

Proof. By Koszul’s formula for ∇̃ we have

2g̃(∇̃XY, Z) = X(g̃(Y, Z)) + Y (g̃(Z, X)) − Z(g̃(X, Y ))

+ g̃(Z, [X, Y ]) + g̃(Y, [Z, X ]) + g̃(X, [Z, Y ]),

and, applying the definition of g̃, the above formula becomes

(3.3) 2(g(∇̃XY, Z) − 2η(∇̃XY )η(Z)) = 2g(∇XY, Z) + 2H ′(X, Y, Z),

where

H ′(X, Y, Z) = η(Z)(−X(η(Y )) − Y (η(X)) − η[X, Y ])

+ η(Y )(−X(η(Z)) + Z(η(X)) − η[Z, X ])

+ η(X)(−Y (η(Z)) + Z(η(Y )) − η[Z, Y ]).

It is easy to check that

H ′(X, Y, Z) = η(Z)(2dη(X, Y ) − 2X(η(Y ))) + 2η(Y )dη(Z, X) + 2η(X)dη(Z, Y ),

then, replacing H ′(X, Y, Z) in (3.3), using η(∇̃XY ) = X(η(Y )) − dη(X, Y ), we get

g(∇̃XY, Z) = g(∇XY, Z) + 2η(Y )dη(Z, X) + 2η(X)dη(Z, Y ),(3.4)

Then, (3.4) gives g(∇̃XY, Z) = g(∇XY, Z) + 2η(Y )g(Z, ϕX) + 2η(X)g(Z, ϕY ),
which completes the proof. �

As a consequence of the relation between the Levi-Civita connections, we find
the relation between the ϕ-sectional curvature of (M, ϕ, ξ, η, g̃) and (M, ϕ, ξ, η, g),
denoted by K̃(X, ϕX) and K(X, ϕX) respectively, for any X ∈ Im(ϕ).
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Proposition 3.4. Let (M2n+1, ϕ, ξ, η, g) be a Sasaki manifold and consider

the Lorentz–Sasaki manifold (M2n+1, ϕ, ξ, η, g̃). Then the ϕ-sectional curvatures

are related by K̃(X, ϕX) = K(X, ϕX) + 6.

Proof. By the above proposition we know that

(3.5) ∇̃XY = ∇XY + 2η(Y )ϕX + 2η(X)ϕY,

which implies that, for any X, Y ∈ ker η, ∇̃XY = ∇XY . For X ∈ ker η such that
1 = ‖X‖g = ‖X‖g̃, we prove that

(3.6) R̃XϕXϕX = RXϕXϕX + 6X,

and this yields

K̃(X, ϕX) = R̃(X, ϕX, X, ϕX) = g̃(X, R̃XϕXϕX)

= g(X, R̃XϕXϕX) = g(X, RXϕXϕX) + 6 = K(X, ϕX) + 6.

To show (3.6), using (3.5) we compute

∇̃X∇̃ϕXϕX = ∇̃X∇ϕXϕX = ∇X∇ϕXϕX + 2η(∇ϕXϕX)ϕX(3.7)

= ∇X∇ϕXϕX,

since η(∇ϕXϕX) = g(∇ϕXϕX, ξ) = −g(ϕX, ∇ϕXξ) = g(ϕX, ϕ2X) = 0.
Analogously

∇̃ϕX∇̃XϕX = ∇̃ϕX∇XϕX = ∇ϕX∇XϕX + 2η(∇XϕX)ϕ2X(3.8)

= ∇ϕX∇XϕX + 2ϕ2X = ∇ϕX∇XϕX − 2X,

since η(∇XϕX) = g(∇XϕX, ξ) = −g(ϕX, ∇Xξ) = g(ϕX, ϕX) = 1.
Furthermore,

∇̃[X,ϕX]ϕX = ∇[X,ϕX]ϕX + 2η([X, ϕX ])ϕ2X(3.9)

= ∇[X,ϕX]ϕX + 4dη(X, ϕX)X = ∇[X,ϕX]ϕX − 4X.

From (3.7–3.9) we get R̃XϕXϕX = RXϕXϕX + 2X + 4X = RXϕXϕX + 6X . �

Looking at the above relation between the ϕ-sectional curvatures, it is clear
that the behaviors of a Sasaki manifold and its associated Lorentz–Sasaki manifold
are strictly related as the following theorem shows

Theorem 3.1. Let (M2n+1, ϕ, ξ, η, g) be a Sasaki manifold, (M2n+1, ϕ, ξ, η, g̃)
the associated Lorentz–Sasaki manifold. Then the Sasaki manifold has constant

ϕ-sectional curvature c ∈ R if and only if the Lorentz–Sasaki manifold has constant

ϕ-sectional curvature c̃ = c + 6 and we have

c > −3 ⇔ c̃ > 3, c = −3 ⇔ c̃ = 3, c < −3 ⇔ c̃ < 3.

In [6] Tanno defined three model spaces of Sasaki manifolds with constant ϕ-
sectional curvature. On the left-hand side of the above equivalence we find exactly
the three values for the ϕ-sectional curvature characterizing the three model spaces
of Sasaki manifolds.
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We want to find a model for a compact Lorentz–Sasaki manifold, using Tanno’s
classification cited previously and Theorem 3.1. We begin defining a Lorentz–
Sasaki structure on spheres. As Tanno did in [6], regarding the sphere S

2n+1 as
an hypersurface of the complex manifold (R2n+2, J, <, >), one obtains a standard
Sasaki structure (ϕ∗, ξ∗, η∗, g∗) such that ξ∗ = −JN, JX = ϕ∗X + η∗(X)N ,
for any X ∈ X(S2n+1), where J is the standard complex structure on R

2n+2 and
N is a unit normal vector field to S

2n+1. Deforming the above structure by a
D-homothetic transformation with α > 0 we get the following structure

ϕ = ϕ∗, ξ = α−1ξ∗, η = αη∗ g = αg∗ + (α2 − α)η∗ ⊗ η∗

and (S2n+1, ϕ, ξ, η, g) is a Sasaki manifold of constant ϕ-sectional curvature c > −3,
denoted by S

2n+1[c]. Now, applying the metric transformation (3.1) we realize a
Lorentz–Sasaki structure (ϕ, ξ, η, g̃) on the sphere. We denote the Lorentz–Sasaki
manifold (S2n+1, ϕ, ξ, η, g̃) by S

2n+1
1 [c̃] and, from Theorem 3.1, c̃ > 3.

Since the metric on S
2n+1
1 [c̃] has index 1 and ξ is a nowhere vanishing time-

like Killing vector field, S2n+1
1 [c̃] is complete according to a result of Guediri and

Lafontaine which we cite here for the convenience of the reader.

Theorem 3.2. [2] Let (M, g) be an n-dimentional compact pseudo-Riemannian

manifold with signature (n − p, p) such that 2p 6 n. We suppose that there exist p

linear independent timelike Killing vector fields on M . Then (M, g) is geodesically

complete.

By Theorem 3.1 and the following two theorems, we obtain that S
2n+1
1 [c̃] is

the model of compact, simply connected Lorentz–Sasaki manifold with constant
ϕ-sectional curvature greater than 3.

Theorem 3.3. Let (M2n+1, ϕ, ξ, η, g̃) be a compact, simply connected Lorentz–

Sasaki manifolds with constant ϕ-sectional curvature c̃ > 3. Then M is isomorphic

to S
2n+1
1 [c̃].

Proof. Considering the Lorentz metric g̃ and regard of (3.2), g = g̃ + 2η ⊗ η

is a Riemannian metric and (M2n+1, ϕ, ξ, η, g) turns out to be a compact, simply
connected Sasaki manifold with constant ϕ-sectional curvature c = c̃ − 6 > −3.
Therefore, on the basis of Tanno’s classification (M2n+1, ϕ, ξ, η, g) is isomorphic to
S

2n+1[c] and going back to (3.1) we get the statement. �

Tanno in [6] also proved that complete, simply connected Sasaki manifolds,
having the same constant ϕ-sectional curvature c, are isomorphic that is there
exists a diffeomorphism f which preserves the Sasaki structures. At least in the
compact case we prove an analogous result.

Theorem 3.4. Let (M2n+1, ϕ, ξ, η, g) and (M ′2n+1, ϕ′, ξ′, η′, g′) be compact and

simply connected Lorentz–Sasaki manifolds with the same constant ϕ-sectional cur-

vature c̃ > 3. Then they are isomorphic.

Proof. We consider the following changes of the metrics: ḡ = g + 2η ⊗ η and
ḡ′ = g′ + 2η′ ⊗ η′. Then the manifolds (M2n+1, ϕ, ξ, η, ḡ) and (M ′2n+1, ϕ′, ξ′, η′, ḡ′)
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are complete and simply connected Sasaki manifolds with the same constant ϕ-
sectional curvature c̄ = c̃ − 6. Let f be the isomorphism provided by Tanno’s
theorem. To end the proof we only need to check if f preserves the Lorentz metrics
g and g′. For any X, Y ∈ X(M2n+1) we get
g′(f∗X, f∗Y ) = ḡ′(f∗X, f∗Y )−2η′(f∗X)η′(f∗Y ) = ḡ(X, Y )−2η(X)η(Y ) = g(X, Y ).

�

Moreover, in [5] the author proved that every complete Sasaki manifold with
constant ϕ-sectional curvature c > −3 is obtained by a D-homothetic deformation
from a complete Sasaki manifold of constant curvature 1. Using this result, we
obtain a similar statement.

Proposition 3.5. Let (M, ϕ, ξ, η, g) be a compact Lorentz–Sasaki manifold.

Suppose that the ϕ-sectional curvature of M is a constant c such that c > 3. Then

the structure (ϕ, ξ, η, g) is obtained by a D-homothetic deformation of a Lorentz–

Sasaki structure of constant ϕ-sectional curvature 7 on M .

Proof. Being (M, ϕ, ξ, η, g) a Lorentz–Sasaki manifold, following (3.2) we con-
sider the Riemannian metric ḡ on M , therefore (M, ϕ, ξ, η, ḡ) is a Sasaki manifold
such that c̄ > −3.

Now, applying Tanno’s result, it is possible to find a real number α such that
ϕ′ = ϕ, ξ′ = 1

α
ξ, η′ = αη, ḡ′ = αḡ + (α2 − α)η ⊗ η define a Sasaki structure

on M and the ϕ′-sectional curvature c̄′ of (M, ϕ′, ξ′, η′, ḡ′) is 1. Changing the metric
ḡ′ according to (3.1) we have g̃′ = ḡ′ − 2η′ ⊗ η′ and a Lorentz–Sasaki manifold
(M, ϕ′, ξ′, η′, g̃′). An easy computation shows that the ϕ′-sectional curvature of
(M, ϕ′, ξ′, η′, g̃′) is c̃′ = 7. It is easy to see that the two structures (ϕ, ξ, η, g) and
(ϕ′, ξ′, η′, g̃′) are D-homothetic, in fact we have: ϕ′ = ϕ, ξ′ = 1

α
ξ, η′ = αη and

g̃′ = ḡ′ −2η′ ⊗η′ = αḡ +(α2 −α)η ⊗η −2α2η ⊗η = α(g +2η ⊗η)+(−α2 −α)η ⊗η =
αg − (α2 − α)η ⊗ η . This completes the proof. �
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