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AN UNEXPECTED PROPERTY

OF ODD ORDER DERIVATIVES

OF HARDY’S FUNCTION

Philippe Blanc

Communicated by Aleksandar Ivić

Abstract. Assuming the Riemann hypothesis, we show that the odd order
derivatives of Hardy’s function have, under some condition, an unexpected
behavior for large values of t.

1. Introduction and main result

Let ζ be the Riemann zeta function, and Z the Hardy function defined by

Z(t) = eiθ(t)ζ
(

1
2 + it

)

where

θ(t) = arg
(

π−i
t
2 Γ

(

1
4 + i t

2

))

and the argument is defined by continuous variation of t starting with the value 0
at t = 0. It can be shown [6] that

θ(t) =
t

2
log

t

2π
− t

2
− π

8
+ O

(1

t

)

.

The real zeros of Z coincide with the zeros of ζ located on the line of real part 1
2 .

If the Riemann hypothesis is true, then the number of zeros of Z in the interval
]0, t] is given by [6]

(1.1) N(t) =
1

π
θ(t) + 1 + S(t)

where S(t) = 1
π arg ζ(1

2 + it) if t is not a zero of Z and arg ζ(1
2 + it) is defined by

continuous variation along the straight lines joining 2, 2 + it and 1
2 + it starting
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with the initial value arg ζ(2) = 0. If t is a zero of Z we set S(t) = limǫ→0+
S(t+ ǫ).

Let us choose T , say T = 500, and let us plot the graphs of functions

f2k−1(t) := (−1)k+1 Z(2k−1)(t)

θ′(T )2k−1

for k = 1, . . . , 5 on the interval [T − 10, T + 10]. Observe that the term 1/θ′(T )2k−1

is just a scaling factor. These graphs show that the functions (−1)k+1Z(2k−1) have
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Figure 1. Graphs of f2k−1 for k = 1, . . . , 5

generally the same signs, at least for small values of k. This can be explained
heuristically by a formula due to Lavrik [8], which asserts that for t sufficiently
large and 1 6 k 6 1

4 log t, we have, uniformly in k,

Z(2k−1)(t) = 2(−1)k
∑

16n6
√

t/2π

1√
n

(θ′(t) − log n)2k−1 sin(θ(t) − t log n)

+ O
(

t− 1
4 (3

2 log t)2k
)

.

Let us denote by M = M(T ) the largest integer r, possibly infinite, such that

sign
(

(−1)k+1Z(2k−1)(T )
)

= sign(Z ′(T )) for k = 1, 2, . . . , r.

For some T the values of M are surprisingly large. Using Mathematica we compute
Z with high precision and get for example M(100) = 26, M(1000.4) = 138 and
M(9999.5) = 402.

Now let T be large enough such that Z(T ) > 0 and let γk, where k 6= 0, be
the zeros of Z ordered in increasing order, taking their multiplicities into account,
and numbered so that · · · 6 γ−2 6 γ−1 < T < γ1 6 γ2 6 · · · . Further, let

4(log log T )−1 6 a 6
√

T such that T + a and T − a are not zeros of Z and, finally,
let m, n > 1 such that γ−m−1 < T − a < γ−m and γn < T + a < γn+1. Note that
the existence of m, n > 1 is an immediate consequence of a result of Goldston and
Gonek [4]. We assume that (−1)mZ ′(T − a) > 0 and (−1)nZ ′(T + a) 6 0 and we
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denote by K = K(T, a) the largest integer r, possibly infinite, such that

(1.2) (−1)m+k+1Z(2k−1)(T − a) > 0 and (−1)n+k+1Z(2k−1)(T + a) 6 0

for k = 1, 2, . . . , r. For some T and a, the values of K are also surprisingly large:
K(109.3, 9.4) = 21, K(1070.1, 8.5) = 108 and K(10025.5, 9.8) = 408. The goal of
this paper is to give a conditional upper bound for K.

It should be observed that if we replace Z(t) by cos t and choose T = 0 and
a = lπ + π

4 where l ∈ N
∗, then m = n = l and conditions (1.2) hold for every k and

hence K = ∞.
We now define a quantity which appears in our main result. By Lavrik’s for-

mula [8], for t sufficiently large and 0 6 k 6 1
4 log t, we have, uniformly in k,

Z(2k)(t) = 2(−1)k
∑

16n6
√

t/2π

1√
n

(θ′(t) − log n)2k cos(θ(t) − t log n)

+ O
(

t− 1
4

(

3
2 log t

)2k+1)

and using θ′(t) = 1
2 log t

2π + O
(

1/t2
)

we get

(1.3) |Z(2k)(t)| = θ′(t)2k

(

2
∑

16n6
√

t/2π

1√
n

(

1 − log n

θ′(t)

)2k

cos(θ(t) − t log n)

)

+ O
(

32kθ′(t)2kt− 1
4 log t

)

.

As Ivić says in [5], it is difficult to get good uniform bounds for Z(2k)(t) from (1.3).
Nevertheless, when Z(T ) is large, relation (1.3) suggests that

(1.4)

∫ T +a

T −a

(

Z(2k)(t)
)2

dt = 2a
(

c2kθ′(T )2kZ(T )
)2

where c2k is small. For the aforementioned computations, we used the results of
Kotnik [7] and chose T in a neighborhood of 102, 103 and 104 and a approximately
equal to 10 such that Z(T ) and K(T, a) are large. We obtain c42 = 0.56 . . . and
c216 = 0.34 . . . which show that c2k can be small even for some k > 1

4 log T despite
the fact that, for fixed T , the sequence c2k is unbounded. Numerical experiments
indicate that Lavrik’s formula is probably true for larger values of k with a better
error term.

Theorem 1.1. For T large enough, let 4(log log T )−1 6 a 6
√

T , K be the

number defined in the introduction, ∆S = S(T + a) − S(T − a) and further let

K∗ = a
π log T + ∆S. If the Riemann hypothesis is true and if ∆S > 1, then

(1.5) K 6 max
( a

2π
AK,T

log T

∆S

(

1 + O
( log log log T

log log T

))

, K∗ log K∗
)

where

AK,T = log c2K + ∆S log 2 +
1√
2

log T

log log T
.
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For T large enough such that Z(T ) is large in the sense of [7], numerical ex-
periments show that the bound (1.5) is probably true without the term log c2K . If
this is the case and if we neglect the big O in (1.5) and choose T 6 1050 and a 6 1
such that ∆S = 1, we get K 6 327. Note that for the three values of K(T, a)
already given, we have ∆S < 0. This suggests that the behaviour of K is different
according to ∆S 6 0 or ∆S > 1. This is unexpected.

This work stems from an observation of Ivić [5] about the values of the deriva-
tives of Z in a neighborood of points where |Z| attains a large value. Some of the
material used in our proof has been published by the author in [1].

The notations used in this paper are standard: ⌊x⌋ stand for the usual floor
function and {x} := x − ⌊x⌋. Bernoulli and Chebyshev polynomials of degree n are
denoted by Bn(x) and Tn(x); they are defined by

∫ x+1

x

Bn(t) dt = xn and Tn(cos θ) = cos nθ.

The organization of this paper is as follows: In Section 2 we prove the key identity,
a property of the derivatives of Bernoulli polynomials and preparatory lemmas.
Section 3 is devoted to the proof of our main result.

2. Preliminary results

We first prove an identity which will be used later to establish a relation between
the value of a function f ∈ C2r[−a, a] at 0, the zeros of f and the values of its
derivatives of odd order on the boundaries of the interval.

Lemma 2.1. Let −a < x−m < · · · < x−1 < x0 < x1 < · · · < xn < a and for

l = 1, 2, . . . let Ψ2l−1 be the function defined on [−a, a] by

Ψ2l−1(x) =
(4a)2l−1

(2l)!

n
∑

k=−m

µk

(

B2l

(1

2
+

x + xk

4a

)

+ B2l

({x − xk

4a

})

)

where
∑n

k=−m µk = 0. Then for f ∈ C2r[−a, a] where r > 1, we have the identity

n
∑

k=−m

µkf(xk) =

r
∑

k=1

f (2k−1)(a)Ψ2k−1(a) −
r

∑

k=1

f (2k−1)(−a)Ψ2k−1(−a)(2.1)

−
∫ a

−a

f (2r)(x)Ψ2r−1(x) dx.

Proof. By definition the function Ψ2r−1 is C2r−2, piecewise polynomial and
the relation B′

l(x) = lBl−1(x) for l = 1, 2, . . . leads to

Ψ
(j)
2r−1(x) =

(4a)2r−j−1

(2r − j)!

n
∑

k=−m

µk

(

B2r−j

(1

2
+

x + xk

4a

)

+ B2r−j

({x − xk

4a

})

)

for j = 1, . . . , 2r − 1 and x 6= x−m, . . . , xn if j = 2r − 1. This implies that

(2.2) Ψ
(2r−2j)
2r−1 = Ψ2j−1 for j = 1, 2, . . . , r − 1

and that
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Ψ
(2r−2j+1)
2r−1 (±a)(2.3)

=
(4a)2j−2

(2j − 1)!

n
∑

k=−m

µk

(

B2j−1

(1

2
+

±a + xk

4a

)

+ B2j−1

({±a − xk

4a

})

)

=
(4a)2j−2

(2j − 1)!

n
∑

k=−m

µk

(

B2j−1

(1

2
+

±a + xk

4a

)

+ B2j−1

(1

2
− ±a + xk

4a

)

)

= 0 for j = 1, 2, . . . , r.

Further for x 6= x−m, . . . , xn we have

Ψ
(2r−1)
2r−1 (x) =

n
∑

k=−m

µk

(

B1

(1

2
+

x + xk

4a

)

+ B1

({x − xk

4a

})

)

(2.4)

=

n
∑

k=−m

µk

(

x + xk

4a
+

{x − xk

4a

}

− 1

2

)

and as
∑n

k=−m µk = 0 the function Ψ
(2r−1)
2r−1 is piecewise constant. Explicitly, for

x ∈ ]xj , xj+1[ , we get

Ψ
(2r−1)
2r−1 (x) =

j
∑

k=−m

µk

( x

2a
− 1

2

)

+

n
∑

k=j+1

µk

( x

2a
+ 1 − 1

2

)

=

n
∑

k=j+1

µk = −
j

∑

k=−m

µk

which leads to
∫ xj+1

xj

f ′(x)Ψ
(2r−1)
2r−1 (x) dx = −

( j
∑

k=−m

µk

)

(f(xj+1)−f(xj)) for j = −m, . . . , n−1.

Summing these equalities and using that Ψ
(2r−1)
2r−1 = 0 on the intervals [−a, x−m[

and ]xn, a], which follows from (2.4), we have
n

∑

k=−m

µkf(xk) =

∫ a

−a

f ′(x) Ψ
(2r−1)
2r−1 (x) dx

and we complete the proof by integrating 2r − 1 times the right-hand side by parts
taking into account relations (2.2) and (2.3). �

For further use we recall some elementary facts concerning the divided differ-
ences.

Lemma 2.2. Let I = ]− T, T [ , f ∈ Cm+n(I) and let g be the function defined

for pairwise distinct numbers t−m, . . . , tn ∈ I by

g(t−m, . . . , tn) =
n

∑

k=−m

f(tk)
∏

−m6j6n
j 6=k

(tk − tj)
.

Then
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a) The function g has a continuous extension g∗ defined for t−m, . . . , tn ∈ I
and there exists η = η(t−m, . . . , tn) ∈ I such that

g∗(t−m, . . . , tn) =
f (m+n)(η)

(m + n)!
.

b) Let y0, y1, . . . , yl be the distinct values of t−m, . . . , tn considered as fixed and

let rk be the number of index j such that tj = yk. Then there exist αk,i

depending on y0, y1, . . . , yl such that

g∗(t−m, . . . , tn) =

l
∑

k=0

rk−1
∑

i=0

αk,if
(i)(yk).

Proof. Assertion a) is a consequence of the representation formula

(2.5) g(t−m, . . . , tn) =
∫ 1

0
dτ1

∫ τ1

0
dτ2 · · ·

∫ τm+n−1

0
f (m+n)

(

t−m +
m+n
∑

k=1

τk(t−m+k − t−m+k−1)

)

dτm+n.

A proof of b) is given in [9]. �

In the next lemma we indicate the choice of coefficients µk for which the identity
of Lemma 2.1 is of practical use for large values of a. The main reason of this choice
will appear in the proof of (2.11) in Lemma 2.9.

Lemma 2.3. Let Ψ2l−1 be defined for pairwise distinct x−m, . . . , xn ∈ ]−a, a[ by

Ψ2l−1(x−m, . . . , xn, x) =
(4a)2l−1

(2l)!

n
∑

k=−m

µk

(

B2l

(1

2
+

x + xk

4a

)

+ B2l

({x − xk

4a

})

)

where

µk =
αk

α0
and

1

αk
=

∏

−m6j6n
j 6=k

(

sin
(

π
xk

2a

)

− sin
(

π
xj

2a

))

for k = −m, . . . , n.

Then

a) For l > 1 the functions Ψ2l−1(·, . . . , ·, ±a) have continuous extensions

Ψ∗
2l−1(·, . . . , ·, ±a) defined for x−m, . . . , xn ∈ ]− a, a[ .

b) If 2l > m + n + 2 the function Ψ2l−1 has a continuous extension Ψ∗
2l−1

defined for x−m, . . . , xn ∈ ]− a, a[ and x ∈ [−a, a].
c) If 2r > m + n + 2 and f ∈ C2r[−a, a] is defined on [−a, a] and vanishes

at xk with k 6= 0 where −a < x−m 6 . . . 6 x−1 < x0 < x1 6 . . . 6 xn < a
and the xk are numbered taking into account their multiplicity, then we

have the identity
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f(x0) =
r

∑

k=1

f (2k−1)(a)Ψ∗
2k−1(a) −

r
∑

k=1

f (2k−1)(−a)Ψ∗
2k−1(−a)(2.6)

−
∫ a

−a

f (2r)(x)Ψ∗
2r−1(x) dx

where for short Ψ∗
2k−1(±a) and Ψ∗

2r−1(x) stand for Ψ∗
2k−1(·, . . . , ·, ±a) and

Ψ∗
2r−1(·, . . . , ·, x).

Proof. Introducing the function h defined by

h(t, x) =
(4a)2l−1

(2l)!

(

B2l

(1

2
+

x

4a
+

1

2π
Arcsin t

)

+ B2l

({ x

4a
− 1

2π
Arcsin t

})

)

we have

Ψ2l−1(x−m, . . . , xn, ±a) =
1

α0

n
∑

k=−m

αkh
(

sin
(

π
xk

2a

)

, ±a
)

for pairwise distinct x−m, . . . , xn ∈ ]−a, a[ and assertion a) holds since the functions
h(·, ±a) belong to C∞]− 1, 1[ .

By definition the function h belongs to C2l−2( ]−1, 1[ × [ −a, a]) and the asser-
tion b) is a consequence of the representation formula (2.5) since we have 2l − 2 >

m + n. For pairwise distinct x−m, . . . , xn ∈ ]−a, a[ the left-hand side of identity
(2.1) reads

1

α0

n
∑

k=−m

αkf
(2a

π
Arcsin

(

sin
(

π
xk

2a

)))

and thanks to Lemma 2.2 this expression, and hence the identity (2.1), extend
to x−m, . . . , xn ∈ ] − a, a[ . One completes the proof of c) by observing, thanks
to Lemma 2.2, that the left-hand side reduces to f(x0) when the xk are zeros of
multiplicity rk of f . �

The results stated in Lemma 2.4 play a central role in the proof of properties
of functions Ψ∗

2l−1(·, . . . , ·, ±a).

Lemma 2.4. For all m, k ∈ N
∗ we have the inequality

(−1)m+1 dk

dxk
B2m

(1

2
+

1

π
Arcsin

√
x

)

> 0 for x ∈ [0, 1[ .

The proof of Lemma 2.4 requires two technical results given in Lemmas 2.5
and 2.6.

Lemma 2.5. For all k ∈ N we have the Taylor expansion

(Arcsin x)2k =

∞
∑

l=0

(2k)!

(2l)!
22l−2kbk, l x2l for x ∈ [−1, 1]

where bk, l are integers defined recursively by
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b 0, 0 = 1 and bk, 0 = b 0, l = 0 for k, l > 1

bk+1, l+1 = bk, l + l2bk+1, l for k, l > 0.

Proof. We note first that the functions f2k(x) := (Arcsin x)2k satisfy

(1 − x2)f ′′
2k+2(x) − x f ′

2k+2(x) − (2k + 2)(2k + 1)f2k(x) = 0 for x ∈ ]−1, 1[ .

From the definition of f2k and the above equality it follows that numbers ck, l

defined by f2k(x) =
∑∞

l=0 ck, l x2l for x ∈ [−1, 1] are uniquely determined by the
recurrence relations

c0, 0 = 1 and ck, 0 = c0, l = 0 for k, l > 1

(2l + 2)(2l + 1)ck+1, l+1 − 4l2ck+1, l − (2k + 2)(2k + 1)ck, l = 0 for k, l > 0.

A simple check shows that ck, l =
(2k)!

(2l)!
22l−2kbk, l. �

Lemma 2.6. Let bk, l be the numbers defined in Lemma 2.5. Then

(2.7) lim
l→∞

bk, l

((l − 1)!)2 =
π2k−2

(2k − 1)!
for all k > 1.

Proof. From the definition of numbers bk, l we infer that b1, l = ((l − 1)!)2 for
l > 1. Thus relation (2.7) is trivially true for k = 1. We then assume k > 2. As

bj, 1 = 0 for j > 2 the numbers dj, l defined for j, l > 1 by dj, l =
bj,l

((l−1)!)2 satisfy the

recurrence relations

dj, 1 = 0 and d1, l = 1 for j > 2 and l > 1,

dj+1, l+1 =
1

l2 dj, l + dj+1, l for j, l > 1.

Using the fact that dj−1, l = 0 for l = 1, . . . , j − 2 we get first for j > 2 the equality

dj, nj
=

nj −1
∑

nj−1=j−1

1

n2
j−1

dj−1, nj−1

which we iterate to obtain

dk, l =

l−1
∑

nk−1=k−1

1

n2
k−1

nk−1−1
∑

nk−2=k−2

1

n2
k−2

· · ·
n3−1
∑

n2=2

1

n2
2

n2−1
∑

n1=1

1

n2
1

.

This leads to

lim
l→∞

dk, l =
∑

nk−1>nk−2>···>n2>n1>0

k−1
∏

j=1

1

n2
j

and we recognize in the right-hand side the number ζ({2}(k−1)) whose value, given
in [2], is equal to the right-hand side of (2.7). �
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Proof of Lemma 2.4. It suffices to prove that the numbers em, l defined by

(2.8) (−1)m+1B2m

(1

2
+

1

π
Arcsin x

)

=
∞

∑

l=0

em, l x2l

satisfy em, l > 0 for all m, l ∈ N
∗. Using Taylor’s formula and the evenness of

function B2m(1
2 + t

π ), we have

B2m

(1

2
+

t

π

)

=

m
∑

k=0

1

(2k)!
B

(2k)
2m

(1

2

)( t

π

)2k

=

m
∑

k=0

(

2m

2k

)

B2m−2k

(1

2

)( t

π

)2k

and the Taylor expansion of (Arcsin x)2k given in Lemma 2.5 leads to

B2m

(1

2
+

1

π
Arcsin x

)

=

m
∑

k=0

((

2m

2k

)

B2m−2k

(1

2

)

π−2k
∞

∑

l=0

(2k)!

(2l)!
22l−2kbk, lx

2l

)

=
(2m)!

(2π)2m

m
∑

k=0

(

(2π)2m−2k

(2m − 2k)!
B2m−2k

(1

2

)

∞
∑

l=0

22l

(2l)!
bk, lx

2l

)

.

We then change the order of summation to get

(2.9) (−1)m+1B2m

(1

2
+

1

π
Arcsin x

)

=
(2m)!

(2π)2m

∞
∑

l=0

22l

(2l)!
fm, lx

2l

where

fm, l = (−1)m+1
m

∑

k=0

(2π)2m−2k

(2m − 2k)!
B2m−2k

(1

2

)

bk, l.

We prove by recurrence over m that fm, l > 0 for m, l > 1. To this end we set

gm,l =
fm,l

((l−1)!)2 for m, l > 1 and since b0, l = 0 for l > 1 we have

gm+1, l+1 =
(−1)m+2

(l!)2

m+1
∑

k=1

(2π)2m+2−2k

(2m + 2 − 2k)!
B2m+2−2k

(1

2

)

bk, l+1

=
(−1)m+2

(l!)2

m+1
∑

k=1

(2π)2m+2−2k

(2m + 2 − 2k)!
B2m+2−2k

(1

2

) (

bk−1, l + l2 bk, l

)

=
(−1)m+2

(l!)2

m+1
∑

k=1

(2π)2m+2−2k

(2m + 2 − 2k)!
B2m+2−2k

(1

2

)

bk−1, l + gm+1, l

= − (−1)m+1

(l!)2

m
∑

k=0

(2π)2m−2k

(2m − 2k)!
B2m−2k

(1

2

)

bk, l + gm+1, l

= − 1

l2 gm, l + gm+1, l

and this implies that

gm+1, l+1 +
1

l2 gm, l = gm+1, l for l > 1.
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We have g1, l = f1, l = 1 for all l > 1. Let us suppose that gm, l > 0 for all l > 1.
Then gm+1, l+1 < gm+1, l and it follows that gm+1, l > liml→∞ gm+1, l. Thanks to
Lemma 2.6 we have

lim
l→∞

gm+1, l = (−1)m+2
m+1
∑

k=1

(2π)2m+2−2k

(2m + 2 − 2k)!
B2m+2−2k

(1

2

) π2k−2

(2k − 1)!
(2.10)

= (−1)m+2π2m
m+1
∑

k=1

22m+2−2k

(2m + 2 − 2k)!(2k − 1)!
B2m+2−2k

(1

2

)

and using Bj(1
2 ) = 0 for all odd j and the formula

Bn(x + y) =

n
∑

j=0

(

n

j

)

Bj(x)yn−j

we check that the sum which appears in (2.10) is equal to

2m+1
∑

j=0

2j

j!(2m + 1 − j)!
Bj

(1

2

)

=
22m+1

(2m + 1)!

2m+1
∑

j=0

(

2m + 1

j

)

Bj

(1

2

)(1

2

)2m+1−j

=
22m+1

(2m + 1)!
B2m+1(1) = 0.

Hence gm, l > 0 for m, l > 1 and this implies, thanks to (2.9), that the numbers
em, l defined by (2.8) are positive for m, l > 1. �

We are now in position to prove main properties of functions Ψ∗
2l−1(·, . . . , ·, ±a).

Lemma 2.7. Let Ψ∗
2l−1(·, . . . , ·, ±a) be the functions defined in Lemma 2.3.

Then

a) (−1)n+l+1Ψ∗
2l−1(x−m, . . . , xn, a) > 0 for x−m, . . . , xn ∈ ]− a, a[ .

b) (−1)m+l+1Ψ∗
2l−1(x−m, . . . , xn, −a) > 0 for x−m, . . . , xn ∈ ]− a, a[ .

Proof. For pairwise distinct x−m, . . . , xn ∈ ]− a, a[ we have

Ψ∗
2l−1(x−m, . . . , xn, ±a) = 2

(4a)2l−1

(2l)!

n
∑

k=−m

µk B2l

(1

2
+

±a + xk

4a

)

since the function B2m(1
2 + t) is even and then

(−1)n+l+1 Ψ∗
2l−1(x−m, . . . , xn, ±a)

= 2
(4a)2l−1

(2l)!

((−1)n

α0

)

n
∑

k=−m

αk(−1)l+1B2l

(1

2
+

±a + xk

4a

)

.
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The first two terms of the right-hand side are positive and the third term reads
∑n

k=−m αkh±(sin(π xk

2a )) where

h±(t) = (−1)l+1B2l

(3

4
± 1

2π
Arcsin t

)

for t ∈ [−1, 1].

The identities

3

4
± 1

2π
Arcsin t =

1

2
+

1

π
Arcsin

√

1 ± t

2
for t ∈ [−1, 1]

together with Lemma 2.4 show that h
(m+n)
+ and (−1)m+nh

(m+n)
− are positive on

]−1, 1[ and the conclusion holds by Lemma 2.2. �

The last point is to bound the integral which appears in the right-hand side
of the identity (2.6). This is the content of Lemma 2.9, whose proof needs the
following result.

Lemma 2.8. Let br,s the numbers defined for integers r > 4 and s > 0 by

br,s =
( r

r + s

)2r log r−1
(

2r + s − 1

s

)

.

Then
∑∞

s=0 b2
r,s = 1 + o(1) as r → ∞.

Proof. We have br,s = Or(s−2r log r+2r) = Or(s−1) and hence
∑∞

s=0 b2
4,s is

convergent. We now prove that br,s 6 b4,s for r > 4. We have log br,s = g(r, s)
where the function g is defined for (x, y) ∈ [4, ∞[ × [0, ∞[ by

g(x, y) = (2x log x − 1) log
( x

x + y

)

+ log Γ(2x + y) − log Γ(y + 1) − log Γ(2x).

Straightforward computations lead to

∂g

∂x
(x, y) = (2 log x+2) log

( x

x + y

)

+(2x log x−1)
y

x(x + y)
+2Ψ(2x+y)−2Ψ(2x)

and
∂2g

∂y∂x
(x, y) = −1 + 2x + 2y + 2y log x

(x + y)2 + 2Ψ′(2x + y)

where Ψ is the derivative of log Γ. We have ∂g
∂x(x, 0) = 0 and moreover since

Ψ′(z) =
∑∞

k=0
1

(z+k)2 , we get Ψ′(z) 6 1
z + 1

z2 for z > 0 and therefore

∂2g

∂y∂x
(x, y) 6 −1 + 2x + 2y + 2y log x

(x + y)2 +
2

2x + y
+

2

(2x + y)2

= −
(

4x3 + 2(1 + 3y)x2 + (2x − 1)y2

(x + y)2(2x + y)2 +
2y log x

(x + y)2

)

6 0.

Hence ∂g
∂x (x, y) 6

∂g
∂x (x, 0) = 0 and this implies that g(x, y) 6 g(4, y) and hence

br,s 6 b4,s for r > 4.
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Let ǫ > 0 and s0 be such that
∑∞

s=s0
b2

4,s 6 ǫ
2 . Since br,s → 0 as r → ∞ for

s > 1, there exists r0 such that
∑s0−1

s=1 b2
r,s 6 ǫ

2 for r > r0. Hence

1 6

∞
∑

s=0

b2
r,s 6 b2

r,0 +

s0−1
∑

s=1

b2
r,s +

∞
∑

s=s0

b2
4,s 6 1 + ǫ for r > r0.

The proof is complete. �

Lemma 2.9. For positive integers m, n and l which satisfy m + n > 4 and

l > (m + n) log(m + n) and for x−m, . . . , xn ∈ ]−a, a[, let Ψ∗
2l−1 be the function

defined in Lemma 2.3. Then

‖Ψ∗
2l−1‖2 =

2m+n−1

|α0|√a

(

2a

(m + n)π

)2l

(1 + o(1)) as m + n → ∞

where

‖Ψ∗
2l−1‖2

2 =

∫ a

−a

(

Ψ∗
2l−1(x−m, . . . , xn, x)

)2
dx.

Proof. The use of the Fourier series expansion

B2l(x) = (−1)l+12((2l)!)

∞
∑

j=1

1

(2jπ)2l
cos(2jπx) for x ∈ [0, 1]

and the identity cos α + cos β = 2 cos(α+β
2 ) cos(α−β

2 ) lead, for pairwise distinct
x−m, . . . , xn ∈ ]−a, a[, to the expression

Ψ∗
2l−1(x−m, . . . , xn, x)

= (−1)l+12
(2a)2l−1

α0π2l

∞
∑

j=1

1

j2l

( n
∑

k=−m

αk cos
(

jπ
(1

2
+

xk

2a

))

)

cos
(

jπ
(1

2
+

x

2a

))

.

Using the identity cos(jπ(1
2 + y)) = (−1)jTj(sin(πy)) and introducing the numbers

aj,k = (−1)jTj(sin(π xk

2a )) we have
∑n

k=−m αk aj,k = 0 for j = 1, . . . , m + n − 1, this
is crucial, and, therefore

(2.11) Ψ∗
2l−1(x−m, . . . , xn, x)

= (−1)l+12
(2a)2l−1

α0π2l

∞
∑

j=m+n

1

j2l

( n
∑

k=−m

αkaj,k

)

cos
(

jπ
(1

2
+

x

2a

))

.

Using Lemma 2.2, squaring (2.11) and integrating on the interval [−a, a], we get

(2.12) ‖Ψ∗
2l−1‖2

2 =

(

2
(2a)2l−1

α0π2l

)2 ∞
∑

j=m+n

1

j4l

(

T
(m+n)
j (τj)

(m + n)!

)2

a

for some τj ∈ ]−1, 1[. It is well known [10] that

max
−16x61

∣

∣

∣
T

(m+n)
j (x)

∣

∣

∣
= T

(m+n)
j (1) = 2m+n−1 (m + n − 1)! j

(

m + n + j − 1

j − m − n

)
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for j = m + n, m + n + 1, . . . and then

‖Ψ∗
2l−1‖2

2 6

(

2m+n−1

α0
√

a

( 2a

(m + n)π

)2l
)2 ∞

∑

j=m+n

(m + n

j

)4l−2
(

m + n + j − 1

j − m − n

)2

.

We set j = m + n + s and since l > (m + n) log(m + n) we have

‖Ψ∗
2l−1‖2

2 6

(

2m+n−1

α0
√

a

( 2a

(m+n)π

)2l
)2 ∞

∑

s=0

(

( m + n

m + n + s

)2l−1
(

2(m+n)+s−1

s

))2

6

(

2m+n−1

α0
√

a

( 2a

(m + n)π

)2l
)2 ∞

∑

s=0

b2
m+n,s

=

(

2m+n−1

α0
√

a

( 2a

(m + n)π

)2l
)2

(1 + o(1))

as m + n → ∞, thanks to Lemma 2.8. To complete the proof we compute a lower
bound for ‖Ψ∗

2l−1‖2
2 using the first term in the series which appears in the right-hand

side of (2.12). �

3. Proof of Theorem

In this section we assume that the Riemann hypothesis is true. Our result is a
consequence of identity (2.6) which for Z(T ) gives

Z(T ) =
K

∑

k=1

Z(2k−1)(T + a)Ψ∗
2k−1(a) −

K
∑

k=1

Z(2k−1)(T − a)Ψ∗
2k−1(−a)(3.1)

−
∫ a

−a

Z(2K)(T + x)Ψ∗
2K−1(x) dx

where 2K > m + n + 2 and for short Ψ∗
2k−1(±a) and Ψ∗

2m−1(x) stand respectively
for Ψ∗

2k−1(x−m, . . . , xn, ±a) and Ψ∗
2m−1(x−m, . . . , xn, x) and xk = γk − T . The

main step in the proof is to bound the integral which appears in the right-hand
side of (3.1). In our proof we use the bound

(3.2)

∣

∣

∣

∣

∫ T +h

T

S(u) du

∣

∣

∣

∣

6
π

16

log T

(log log T )2 + O

(

log T log log log T

(log log T )3

)

for 0 < h 6
√

T , due to Carneiro et al. [3].

Lemma 3.1. Let T be sufficiently large, 4(log log T )−1 6 a 6
√

T , m and n
be the integers defined in the introduction and let α0 be the coefficient defined in

Lemma 2.3 where x0 = 0 and xk = γk − T . Then

(3.3) − log |α0| 6 −2a

π
θ′(T ) log 2 +

1√
2

log T

log log T

(

1 + O

(

log log log T

log log T

))

.
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Further, if S(T + a) − S(T − a) > 1, then

(3.4) m + n =
2a

π
θ′(T ) + ∆S

(

1 + O
( a3

T 2

))

where ∆S = S(T + a) − S(T − a).

Proof. By definition
∣

∣

∣

1

α0

∣

∣

∣
=

∏

−m6j6n
j 6=0

∣

∣

∣
sin

(

π
xj

2a

)
∣

∣

∣

and using (1.1) and Stieltjes integral we have

− log |α0| =

∫ T +a

T −a

log
∣

∣

∣
sin

(

π
t − T

2a

)∣

∣

∣
d
( 1

π
θ(t) + 1 + S(t)

)

and an integration by parts leads to

− log |α0| =
1

π

∫ T +a

T −a

θ′(t) log
∣

∣

∣
sin

(

π
t − T

2a

)∣

∣

∣
dt

− π

2a

∫ T +a

T −a

cot
(

π
t − T

2a

)

(S(t) − S(T )) dt.

Now for t ∈ [T − a, T + a] we have

θ′(t) = θ′(T ) + θ′′(T )(t − T ) +
1

2
θ′′′(τ)(t − T )2 for some τ ∈ [T − a, T + a]

and using θ′′′(t) = O(1/t2) together with
∫ T +a

T −a

log
∣

∣

∣
sin

(

π
t − T

2a

)∣

∣

∣
dt =

4a

π

∫ π/2

0
log sin τ dτ = −2a log 2

we get

− log |α0| = −2a

π
θ′(T ) log 2(3.5)

− π

2a

∫ T +a

T −a

cot
(

π
t − T

2a

)

(S(t) − S(T )) dt + O
( a3

T 2

)

.

Further, for η ∈ ]0, a] we have

∫ T +a

T −a

cot
(

π
t − T

2a

)

(S(t) − S(T )) dt

=

∫ T −η

T −a

cot
(

π
t − T

2a

)

S(t) dt +

∫ T

T −η

cot
(

π
t − T

2a

)

(S(t) − S(T )) dt

+

∫ T +η

T

cot
(

π
t − T

2a

)

(S(t) − S(T )) dt +

∫ T +a

T +η

cot
(

π
t − T

2a

)

S(t) dt
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and we bound from below the third term using

S(t) − S(T ) > − 1

π
(θ(t) − θ(T )) > − 1

π
θ′(T + a)(t − T ) > − 1

2π
log T (t − T )

which, together with the inequality cot x < 1
x for x ∈ ]0, π

2 ], implies
∫ T +η

T

cot
(

π
t − T

2a

)

(S(t) − S(T )) dt > −ηa

π2 log T.

Applied to the fourth term, the second mean-value theorem gives

∫ T +a

T +η

cot
(

π
t − T

2a

)

S(t) dt = cot
(

π
η

2a

)

∫ τ

T +η

S(t) dt

> − 2a

πη

(

π

16

log T

(log log T )2 + O

(

log T log log log T

(log log T )3

))

where τ ∈ [T + η, T + a] and (3.2) has been used. Proceeding in the same way to
bound from below the first and second term we finally get

− π

2a

∫ T +a

T −a

cot
(

π
t − T

2a

)

(S(t) − S(T )) dt

6
η

π
log T +

1

η

(

π

8

log T

(log log T )2 + O

(

log T log log log T

(log log T )3

))

.

We choose η = π
(

2
√

2 log log T
)−1

and we complete the proof of (3.3) using (3.5).
Since m + n = N(T + a) − N(T − a), the Taylor formula leads to

m + n =
1

π

(

θ(T + a) − θ(T − a)
)

+ ∆S =
2a

π
θ′(T ) + ∆S

(

1 + O
( a3

T 2

))

.

which proves (3.4). �

Proof of Theorem 1.1. Either K 6 K∗ log K∗ and there is nothing to
prove or K > K∗ log K∗ and this implies that K > (m + n) log(m + n). As-
suming T large enough we have also m + n > 4. By definition of K and thanks
to Lemma 2.7, the first sum in the right-hand side of identity (3.1) is nonpositive
and the second one is nonnegative. Using Cauchy–Schwarz inequality, (1.4) and
Lemma 2.9, we get

Z(T ) 6 ‖Z(2K)||2 ‖Ψ∗
2K−1‖2 6 C2KZ(T )

where

C2K = c2K2m+n− 1
2 |α0|−1

(

2aθ′(T )

(m + n)π

)2K

(1 + o(1))

6 c2K2m+n|α0|−1
(

1 + π
∆S

2aθ′(T )

(

1 + O
( a3

T 2

))

)−2K
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for T sufficiently large. Since C2K > 1 we have log C2K > 0 and this implies that

log c2K + (m + n) log 2 − log |α0| − 2K log

(

1 + π
∆S

2aθ′(T )

(

1 + O
( a3

T 2

))

)

> 0.

Finally, as ∆S = O
(

log T (log log T )−1
)

and thanks to Lemma 3.1, we get

2Kπ
∆S

2aθ′(T )

(

1 + O
( 1

log log T

))

6

(

log c2K + ∆S log 2 +
1√
2

log T

log log T

)(

1 + O
( log log log T

log log T

))

and the proof is complete. �
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