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ON A CONVERGENT PROCESS OF BERNSTEIN
Laszl6 Szili and Péter Vértesi

ABSTRACT. Bernstein in 1930 defined a convergent interpolation process based
on the roots of the Chebyshev polynomials. We prove a similar statement for
certain Jacobi roots.

1. Introduction. Preliminary results

1.1. In 1930, Bernstein [1] (cf. [2], too) defined the following convergent in-
terpolatory process on the roots of
Tn(x) = cos(narccosz) =cosnd, —-1<z<1, 0<d<nm n=1,2,...
(Chebyshev polynomials); the roots are
2k —1
2n

Let [, ¢ be natural numbers; for simplicity we suppose that n = 2lq. We divide
the nodes into ¢ rows as follows.

(1.1) Tppn = COS Vg, = COS m, k=1,2,...,n; n=1,2,....

Tin Zon cee Z2l,n

L214+1,n T2142,n cee TAl,n

Lol(g—1)+1,n  L2(g—1)4+2,n -+ L2lgn

If f € C (the set of continuous functions on [—1,1]) and
Tn(z)

Ekn (T, CE)

= , k=1,2,...,n;, n=1,2,...
T5 (wkn) (2 — Tien)

are the Lagrange fundamental polynomials based on (IIl) we define the following
interpolatory polynomials Q,; if { = 1,2 and 3.

(1.2) Qni(f,2) = Qui(f) = {fills + L)} + {f3(l3 + L4)}
+{fs(lbs+ )} + -+ {fac1(bn—1 + ln) },
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(1.3)  Qua2(f.2) = Qna(f)
= {f1(l1 + 1) + fo(lo — Ly) + f3(l3 + La)}
+ {f5(ls + £s) + fo(ls — €s) + fr(€r + l5)}
+ {fo(ly + l12) + fro(bro — l12) + fr1(lir + l12) } + . ..
+{ frms(lnog + L) + fa—2(lbnz = £n) + fac1(ln1 + €n) },

149 Quslho) = Quslf)
= {f1(l1 + le) + fa(ly — €s) + f3(ls + lo) + fa(ls — lg) + f5(l5+ L)}
+ {fr(lr + 012) + fs(ls — l12) + fo(lo + L12)
+ fro(lro — l12) + fri(lrr 4+ la2) } + -+
sl + ) - Frmallns = ) F Fumslfs + )
hatas— ) + frsfan + 0},

The definitions for [ > 4 are analogous:

(1.5) Qu(f,x)=Qu(f)
= {fi(lx + lo) + fo(le — loy) + -+ + far—1(bo—1 + l) }+
+ { fag1(Cargr + Lar) + fara(lorga — Lar) + -+ + fu—1(Cy—1 4+ La) } + -+
+ {fn—(2l—1)(£n—(2l—1) + gn) +oeee fnfl(gnfl + ﬁn)}

You may consult with [I] or [2] (above fr = f(zkn) and €y = £, (T, x); moreover

q is large enough).
If N=n+r, n=2lg, 0<r <2l the definition of Qn; is as follows (cf. [1] or

[2])
N
Qni(f) == Qu(f) + Z Jilk.

k=n-+1

1.2. By the above definitions we have with eg(z) = 1

(1.6) Qni(eg, ) = Zﬂ;m(T,x) =1,
k=1
(L.7) Qui(f,xrn) = flarn) if k#2041, ..., 2lq,

i.e. @, interpolates at n — ¢ = 2lq — q nodes. This number is “very close" to n if
the (fixed) [ is large enough while ¢ (and n, too) tends to infinity, i.e., for large [ our
Q. is “very close" to the Lagrange interpolation L,. However, Q,,; converges for
every f € C, when n — oo (cf. Proposition 1.1 and Theorem 2.1), which generally
does not hold for L,,.

Later we use that (C8) and (1) hold true forarbitrary point system.
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1.3. In [1] Bernstein proved
PROPOSITION 1.1. Let [ be a fized positive integer and f € C. Then

i [|f(2) ~ Qu(f.2)]| = 0.

Above, [|g(z)|| = max|, <1 |g(x)], g € C. Actually, he proved for N = n +r,
too; the case when N = n + r demands only small technical changes in the proof.

1.4. The Bernstein process and its generalizations were exhaustively investi-
gated by Kis (sometimes with coauthors). For more details we suggest the papers
[6l, [7, [8] and references therein.

2. The Bernstein process for Jacobi abscissas

2.1. The aim of this note is to prove a statement similar to Proposition [l
for Jacobi roots. Let the Jacobi polynomials P,(Ia’ﬁ )(ac) be defined by

a B8 pla,B _ (71)n d" a+n B+n
(1=2)* (42’ POy = e - (L= ) (L 2) ™) (06> 1),
For the roots xﬁ’ﬁ) = cos 19,(;’5), 0< 19,(;’5) < m, of P,(Ia’ﬁ)(x) we have

—1<zl@h < xna_f)n <-e < xﬁ’ﬁ) < 1.
Let ()
f(a’ﬁ) _ P ()
e (7)= —a '
Py (xkn)(x - xkn)
For a fixed positive integer [, we define Qé?’ﬂ)(f, x) according to (C2)—(H);
now ¢ and fj stand for E;‘:L’B)(ac) and f(acgfl’ﬁ)), respectively. As we noticed we

have the properties analogous to (@) and (7)) for @ O"'6)(f, x), too.

nl

2.2. We prove (compare with Vértesi [3] dealing with Lagrange interpolation)

THEOREM 2.1. Let | be a fized positive integer, n = 2lq (¢ = 1,2,...) and
feC. Then

(2.1) Jim [|f(2) = Qi (f,)] = 0

)

for any processes QS’B supposing —1 < a, § < 0.5.

Our statement follows from the next more informative pointwise estimations
(compare with the result in Vértesi [4] on Lagrange interpolation).

THEOREM 2.2. Letl be fized natural number. Then for arbitrary fixed o, § > —1
and f € C
2

(22) QU (f.2) — ()] 20(1)2w<f; Lnfﬂm i > 1

_ n? ) v
=1

uniformly in n and x € [—1,1], where v = min(2;1.5 — a; 1.5 — B). (w(f;t) is the
modulus of continuity of f(z).)
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2.3. It is easy to get (ZI)) using Theorem [Z2 Indeed, let

o Llogn if —1<a,B <05
" n®05if max(a, §) =: 6 > —0.5.

We have by (Z2))
1Qu 7 (f,2) = (@) = O)w(f:en)
if f € C, whence we obtain (Z.1]).
2.4. Another consequence of Theorem [2.2]is the following

COROLLARY 2.1. If -1 < a, 8 < —=0.5 and w(f;t) ~ 12 (0 < o < 0.5) then for

fecC
QG ()~ s = o[ (2vi—a2) 4 ]

uniformly for n and |z| <1

This formula of Timan type can be obtained by simple calculation.
Other estimations showing the connections between the parameters v € (0, 2]
and g € (0,1] are as follows

Q2 (f,2) — f(x)]

) . n=2¢ if 0<o<i(y—1)
(E\/lf:ﬁ) +qn logn if o=3(y—1)
n-rHL if 2(v—1)<o<y-—1

— 1 4 1
=0(1) (—\/1—:162) logn + — if o=7-1,

n nY

VI—22)? 1

Wi-a) + if v—1<o<1

nY—1 nY—1

uniformly for n and |z| < 1. These formulae can be obtained by simple calculation.

2.5. It is interesting to compare (22)) to

n .
1 2
[HD (f12) — @) = 0W) Y w(fimVI=a?i+ =)™ (@el-1,1)
i=1
where Hy(la”ﬁ )( f; ) is the Hermite—Fejér interpolatory polynomial of degree < 2n—1
defined by HP (f;200) = £(z97), B (£297) =0 (k = 1,2,...,n),
f € C and n = max(—0.5,a, ) (see [5, 2.1]).

3. Proof of Theorem

We apply the main idea from [4]. Let x = cosd, x € [-1,1], ¥ € [0,7] and
,5)| _ (,a,ﬁ)|.

define the index j = j(n) by m1n1<k<n|x — ), |x — T,
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3.1. First let I = 1. By (L3 and (C0) we can write

By QG () - S =Y {(£@52) = 1@) (@) + P @) }

k=1
cq

=D DISET SEE SIS S
k=1 k>cq

Now we use Lemma 4.1 of [3], which says the following: Let —1 < a, f and £, > 0
be fixed. If k > M, 19;?1’6) < 7 — ¢, then for any z € [—1 + 7, 1] we have
1 k

(a,8) (er,3) — (er,3)
62 1657@ +30@] =00l @[3+ G m—E T

uniformly in z and k.

We note that instead of g,(;ﬁ)(m) of [3] one can write E,(;’ﬁ)(:c). Moreover (3.2))
obviously holds true if 1 < k¥ < M (maybe with another O(1)).
From (B.I)) with obvious short notations we have

cq

(33) > =0 |f(wa-1) — f(2)]

k=1 B
X (MQ’H(I)| [21@1— 1 2r1 +j)2(lr2ki1 — +1)D

if a, 5 > —1 and &, > 0 are fixed.
By B3] we get as in [3]: If v = min(2;1.5 — a5 1.5 — 8), then

s i sind . 2\ 1
(34) Zlf(wzmf(w)liem(m)wk(wno<1>ZW<f; it >—
k=1

; n n2
=1

uniformly in @ € [—1,1]; see [3, 4.10], where Y_|f — fx| [¢xk~!| (which by 32), is
analogous to Y |f — fx| [k + i+1]) is estimated.
Let us remark that getting ([3.4) we have to define J = [ﬂg‘if )n, ﬂﬁf )n) and
forr=1,2,...
— [,9(xB) (a,8) _ [,9(c.8) (o, 8)
L= 9,20 000500 ) Ko = (007500, 0,550 ,)
instead of the definition (4.2) of [4].

From the above formulas we obtain our theorem for [ = 1.

3.2. Now let [ = 2. By (3] and (L) we get

(35) Qua(f)—f={(fi =Nl +La)+ (fo— )l —La) + (fs — [)(ls+ L) },
+{(fs = /)Us + Ls) + (fo — f)(le — La) + (fr — [)(lr + L)}, +--- .
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In {...}17
|01 4 La] = |(€1 + L2) — (b2 +£3) + (€3 4 £4)| < [€1 + Lo + [lo + 3] + €3 + £4]

N

> . 1 k
C};‘ (@) [+ |k+j|(|kfj|+1)}

N

C{Vs(x)\ E ] (|ssfj| n 1)} }Fk:r

Here we used (B:2) and that |{(z) - ,;im‘ ~ 1 for any k whenever 0 < m < C.
Similar considerations are valid for the second term in {---}; by fo — €y =
(b2 + €3) — (b3 + La).
Taking into account that |f, — f| < cw(222j 4 :Ti) whenever ¢ = |k — j| +m
(see [, (4.4)]; 0 < m < C), we get that

sin ¥ i2 1 s
< A l. {— - - }) .
{-- hl Cw( n Z+n2)(| 5($)| S+|S+j|(|87]|+1) a1
Using this last estimation and similar ones for {--- }a, {--- }s, ..., we can get (B.4).

If I > 2, the argument is similar. We may omit the further details.
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