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THE SUM OF THE UNITARY DIVISOR FUNCTION
Tim Trudgian

ABSTRACT. We establish a new upper bound on the function ¢*(n), the sum
of all coprime divisors of n. The main result is that o*(n) < 1.3007n loglog n
for all n > 570571.

1. Introduction

1.1. The function o(n). Let o(n) denote the sum of the divisors of n; for
example, 0(12) =1+4+2+3+4+6 + 12 = 28. In 1913 Gronwall showed that

(1.1) limsupo(n)/(nloglogn) =e” =1.78107...,

where « is Euler’s constant. A proof is given in [5, Thm. 322]. Robin showed that
the manner in which () behaves is connected with the Riemann hypothesis. More
precisely, he showed, in [8], that for n > 5041 the inequality

(1.2) o(n) < e"nloglogn

is equivalent to the Riemann hypothesis. Ivié [6] showed that
o(n) < 2.59nloglogn, (n>7),

which was improved by Robin [op. cit.] to

o(12)
1. —_—
(13) o) < Fioglog 12
Akbary, Friggstad and Juricevic [1] improved this further, replacing the right-side

of (T3] with
(1.4)

nloglogn < 2.5634nloglogn, (n>=T1).

o (180)
—————nlogl < 1.8414 nlogl
1801oglog 180 nioglosn nioglosn

< 1.0339¢e"nloglogn, (n >121).

Given Robin’s criterion for the Riemann hypothesis in (2] it is reasonable to
suggest that (4 is close to the best bound that one may hope to exhibit.
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1.2. The function o*(n). We say that d is a unitary divisor of n if d | n and
(d,n/d) = 1. Let 0*(n) = 34, (4.,n/a)=1 @ be the sum of all unitary divisors of n;
for example, 0*(12) = 14 12 + 3 4+ 4 = 20. Robin [8] p.210] notes that the proof
of (I)) can be adapted to show that

o*(n)  6e
nloglogn w2
see also [6], p.21]. Ivié [6] showed that

(1.5) lim sup

28
o*(n) < 1—5n10g10gn, (n > 31).

This was improved by Robin who showed that
o*(n) < 1.63601nloglogn, (n > 31),

except for n = 42 when o*(n) = 1.7366...nloglogn. A direct comparison of these
results with those in §I.1] compels us to ask the following questions.

(1) Given (L) can a Robin-esque criterion for the Riemann hypothesis & la
(T2) be given for o*(n)?

(2) Analogous to (I4) can one obtain a relatively close approximation to (5]
of the form

.
o*(n) < (1 +e)6i2 nloglogn, (n = ng),
T

for reasonably small values of € and ng?

Concerning [T, Robin has conjectured [8], Prop. 1(i), p. 210] that there are infin-
itely many n for which

6e7
o*(n) > 7 nloglogn.
A related conjecture is given in Proposition 1(ii) in [8], viz. that

o(n)
1.6 — <"

(16) o*(n)loglogn

for all n sufficiently large. The interest in this conjecture stems from the limiting
relation (n)
o(n
li — = ¢".
Hisup o*(n)loglogn
Derbal [3] proved (6) for all n > 17.

This article answers Question [2 above, at least partially, by proving

THEOREM 1.1. Forn > 570571,
(1.7) o*(n) < 1.3007 nloglogn.

It takes less than 40 seconds on a 1.8 GHz laptop to compute o*(n) for all
1 < n < 570570. One may therefore justify the number 570571 appearing in
Theorem [[T] as being “reasonably small", as stipulated in Question 2, as least in
regards to computational resources.

It would be of interest to address the following problem. Fix an € > 0 and
determine the least value of ng such that o*(n) < (1 + e)% nloglogn for all
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n > ng. The method used to prove Theorem [[LT] is incapable of reducing the
right-hand side of (7)) to anything less than 1.29887n loglogn.

Theorem [[Tl is proved in §2 An application is given in §8l Two concluding
questions are raised in §dl

2. Proof of Theorem [I.1]

We proceed as in Robin [8) p.211]. Tt is sufficient to verify the inequality
on numbers N, = Hle pi, where k > 2, since, for N, < n < Ngi1, we have
o*(n)/n < 0*(Ny)/Nk, whence

o) _ o)
nloglogn — Njloglog Ny

(2.1)

Since o*(p*) = 1+ p® and o*(n) is a multiplicative function, the right-hand side

of 1)) is
(2.2) Higk (1 +p;1)
' log 6(p)
where 0(z) = >_ ., logp. To bound the numerator in ([2.2]) we use
1 4

1
> = <loglogz+ B+ (z >10372),
p

101og? +151 3a
p<x og-x og”x

where

B’y+2{10g(1%)+1—1)}0.26149...,

p=2

see Dusart [4]. To bound the denominator in (Z2]) we use
0.006788
O(z) > :c(l -

log x
which is also found in [4]. Therefore, since e* > x + 1 we have

II(1+) <o (X 5) < M osn.

(3 (3

), (z > 10544111),

i<k i<k
where
Ar(z) = exp (B+ L1 ) (x > 10372).
10log®x  15log”x
Also
log 0(pr) > Aa(pr)log pr,
where

log(1 — 0.006788/ log x)
log

As(z) =1+ ,  (x >10544111).
It is clear that

(2.3) Ag(z) <1< eP =1.29887... < Ay (z).
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We choose a suitably large lower bound on & in order to make A;(x) and Ax(z)
sufficiently close to e and 1 respectively. Indeed, we shall bound (Z2) for p; >
15485863, which is equivalent to k > 1 000000. Therefore

[Tick (1+p7) < A1 (pr)

2.4 < < 1.3007,
24) log 0(px.) Az (pr)
whence
* * N
(2.5) o) TN g g7,

nloglogn ~ Ny loglog Ny
for all k > 10% One may check that (23] also holds for 8 < k& < 105, On a
single core PC with 32 GB of RAM, this calculation took less than a minute using
Magma. All that remains are the numbers 3 < n < p1---pg = 9699 690. A quick
computational check shows that

o*(570570)
5705701oglog 570570

and that, for all n > 570570, the inequality (7)) holds, which proves Theorem [T}
Were this lower bound on n too large for one’s tastes, one could also show

o*(n) < 1.3007 nloglogn,

> 1.3125,

for all n > 53 131 with only two exceptions, namely

o*(510510) = (1.3245...)510510loglog 510510, and
o*(570570) = (1.3125...)5705701oglog 570 570.
Our bounds for 0*(n) depend on an upper bound for A;(px)/A2(px) in Z4). We

see at once from (23) that our method is incapable of reducing the bound 1.3007
in Theorem [[LT] to anything below 1.29887.

3. Application to exponential divisors
Given an n = p{* --- p% the integer d = p}{l ---pbs is an exzponential divisor of
n if b; | a; for every 1 < j < s. Define the functions d®)(n) and ¢(¢)(n) to be the
number of exponential divisors of n and the sum of the exponential divisors of n,
respectively. Since these functions are multiplicative we have

T T b]
d(n)=]Jdla;). o“n)=]] ( > )
J=1 J=1 “bjla;
where d(n) is the number of divisors of n. Minculete [7, Thm. 2.1 and Cor. 2.5] has
given the following bounds for o(¢)(n) and d(n) d®) (n)

28
o (n) < i nloglogn, (n > 6),

28
d®(n)d(n) < i nloglogn, (n >5).

An application of the proof of Theorem [[LT] improves these bounds.
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COROLLARY 3.1. Forn > 37,

(3.1) o®(n) < 1.3007 nloglogn.
Forn > 8§,
(3.2) d®(n) d(n) < 1.3007 nloglogn.

ProoF. The displayed formula halfway down page 1529 in [7] gives
1
e
o' <n ,
L0

so that
a®)(n) < IL. (1+ %)

nloglogn ~  loglogn

As before, we need only consider B3) on Ny < n < Npy;. Using (Z4) and the

calculations in §2] we have

a(®)(n)

nloglogn

Checking the range 37 < n < 9699691 establishes (81). Minculete [7, Eq. (12)]

showed that d(n)d® (n) < ¢(®)(n) for all n > 1. Using this, (&), and a simple

computer check for 8 < n < 36, establishes (32). O

(3.3)

< 1.3007, (n >9699691).

4. Conclusion
Both of the functions ¢*(n) and ¢(¢)(n) are multiplicative. We have

o*(p) = 1+p > p) =p,
and, for a > 2,
o (p*) =1+p" <p+p* <o),

since ¢ = a - 1, where a and 1 are distinct. Therefore, on square-free numbers
o*(n) > o(®)(n). We conclude this section by raising two questions.

(1) What is the proportion of n for which o*(n) > o(¢)(n)?

(2) Are there infinitely many values of n for which o*(n) = ¢(¢)(n)?
The proportion in Question 1 must be at least that of the square-free numbers,
viz. 6/71'2 ~ 0.607. A computation shows the proportion of 1 < n < 10° to be
approximately 0.778307. It follows from the Erdds—Wintner theorem (see, e.g., [9]
I11.4]) that the density of n for which o*(n) > o(¢)(n) is well defined. In [2] the
density of the set of integers n for which o(n)/n > 2 was estimated. It seems
possible that similar methods may be brought to bear on Question 1.

As for Question 2, only five values of n were found in the range 1 < n < 10°

for which o*(n) = 0(®)(n), namely

n = 20, 45, 320, 6615, 382 200.
Andrew Lelechenko has also found
n = 680890 228 200,
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which is the next smallest n after 382200. He has also communicated to me that
o*(n) = o(®(n) also for

n = 2456 687 209 744 634 987 008 753 664 = 219 x 4363 953 127 297.

Acknowledgements. I am grateful to Danesh Jogia who verified (23] for
8 < k < 105, Scott Morrison who provided a much-needed tutorial on programming,
Greg Martin for a discussion on limiting distributions, and Andrew Lelechenko for
providing the last examples in §4.
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