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THE SUM OF THE UNITARY DIVISOR FUNCTION

Tim Trudgian

Abstract. We establish a new upper bound on the function σ∗(n), the sum
of all coprime divisors of n. The main result is that σ∗(n) 6 1.3007n log logn
for all n > 570 571.

1. Introduction

1.1. The function σ(n). Let σ(n) denote the sum of the divisors of n; for
example, σ(12) = 1 + 2 + 3 + 4 + 6 + 12 = 28. In 1913 Grönwall showed that

(1.1) lim sup σ(n)/(n log log n) = eγ = 1.78107 . . . ,

where γ is Euler’s constant. A proof is given in [5, Thm. 322]. Robin showed that
the manner in which (1.1) behaves is connected with the Riemann hypothesis. More
precisely, he showed, in [8], that for n > 5041 the inequality

(1.2) σ(n) < eγn log log n

is equivalent to the Riemann hypothesis. Ivić [6] showed that

σ(n) < 2.59 n log log n, (n > 7),

which was improved by Robin [op. cit.] to

(1.3) σ(n) <
σ(12)

12 log log 12
n log log n 6 2.5634 n log log n, (n > 7).

Akbary, Friggstad and Juricevic [1] improved this further, replacing the right-side
of (1.3) with

σ(180)

180 log log 180
n log log n 6 1.8414 n log log n(1.4)

6 1.0339 eγn log log n, (n > 121).

Given Robin’s criterion for the Riemann hypothesis in (1.2) it is reasonable to
suggest that (1.4) is close to the best bound that one may hope to exhibit.
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1.2. The function σ∗(n). We say that d is a unitary divisor of n if d | n and
(d, n/d) = 1. Let σ∗(n) =

∑

d|n, (d,n/d)=1 d be the sum of all unitary divisors of n;

for example, σ∗(12) = 1 + 12 + 3 + 4 = 20. Robin [8, p. 210] notes that the proof
of (1.1) can be adapted to show that

(1.5) lim sup
σ∗(n)

n log log n
=

6eγ

π2 = 1.08 . . . ,

see also [6, p. 21]. Ivić [6] showed that

σ∗(n) <
28

15
n log log n, (n > 31).

This was improved by Robin who showed that

σ∗(n) < 1.63601n log log n, (n > 31),

except for n = 42 when σ∗(n) = 1.7366 . . . n log log n. A direct comparison of these
results with those in §1.1 compels us to ask the following questions.

(1) Given (1.5) can a Robin-esque criterion for the Riemann hypothesis à la
(1.2) be given for σ∗(n)?

(2) Analogous to (1.4) can one obtain a relatively close approximation to (1.5)
of the form

σ∗(n) < (1 + ǫ)
6eγ

π2 n log log n, (n > n0),

for reasonably small values of ǫ and n0?

Concerning 1, Robin has conjectured [8, Prop. 1(i), p. 210] that there are infin-
itely many n for which

σ∗(n) >
6eγ

π2 n log log n.

A related conjecture is given in Proposition 1(ii) in [8], viz. that

(1.6)
σ(n)

σ∗(n) log log n
< eγ ,

for all n sufficiently large. The interest in this conjecture stems from the limiting
relation

lim sup
σ(n)

σ∗(n) log log n
= eγ .

Derbal [3] proved (1.6) for all n > 17.
This article answers Question 2 above, at least partially, by proving

Theorem 1.1. For n > 570 571,

(1.7) σ∗(n) 6 1.3007 n log log n.

It takes less than 40 seconds on a 1.8 GHz laptop to compute σ∗(n) for all
1 6 n 6 570 570. One may therefore justify the number 570 571 appearing in
Theorem 1.1 as being “reasonably small", as stipulated in Question 2, as least in
regards to computational resources.

It would be of interest to address the following problem. Fix an ǫ > 0 and
determine the least value of n0 such that σ∗(n) < (1 + ǫ)6eγ

π2 n log log n for all
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n > n0. The method used to prove Theorem 1.1 is incapable of reducing the
right-hand side of (1.7) to anything less than 1.29887n log log n.

Theorem 1.1 is proved in §2. An application is given in §3. Two concluding
questions are raised in §4.

2. Proof of Theorem 1.1

We proceed as in Robin [8, p. 211]. It is sufficient to verify the inequality

on numbers Nk =
∏k

i=1 pi, where k > 2, since, for Nk 6 n < Nk+1, we have
σ∗(n)/n 6 σ∗(Nk)/Nk, whence

(2.1)
σ∗(n)

n log log n
6

σ∗(Nk)

Nk log log Nk
.

Since σ∗(pα) = 1 + pα and σ∗(n) is a multiplicative function, the right-hand side
of (2.1) is

(2.2)

∏

i6k

(

1 + p−1
i

)

log θ(pk)
,

where θ(x) =
∑

p6x log p. To bound the numerator in (2.2) we use

∑

p6x

1

p
6 log log x + B +

1

10 log2 x
+

4

15 log3 x
, (x > 10 372),

where

B = γ +
∑

p>2

{

log
(

1 −
1

p

)

+
1

p

}

= 0.26149 . . . ,

see Dusart [4]. To bound the denominator in (2.2) we use

θ(x) > x
(

1 −
0.006788

log x

)

, (x > 10 544 111),

which is also found in [4]. Therefore, since ex > x + 1 we have

∏

i6k

(

1 +
1

pi

)

6 exp

(

∑

i6k

1

pi

)

6 A1(pk) log pk,

where

A1(x) = exp
(

B +
1

10 log2 x
+

4

15 log2 x

)

, (x > 10 372).

Also

log θ(pk) > A2(pk) log pk,

where

A2(x) = 1 +
log(1 − 0.006788/ logx)

log x
, (x > 10 544 111).

It is clear that

(2.3) A2(x) < 1 < eB = 1.29887 . . . < A1(x).
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We choose a suitably large lower bound on k in order to make A1(x) and A2(x)
sufficiently close to eB and 1 respectively. Indeed, we shall bound (2.2) for pk >

15 485 863, which is equivalent to k > 1 000 000. Therefore

(2.4)

∏

i6k

(

1 + p−1
i

)

log θ(pk)
6

A1(pk)

A2(pk)
6 1.3007,

whence

(2.5)
σ∗(n)

n log log n
6

σ∗(Nk)

Nk log log Nk
6 1.3007,

for all k > 106. One may check that (2.5) also holds for 8 6 k 6 106, On a
single core PC with 32 GB of RAM, this calculation took less than a minute using
Magma. All that remains are the numbers 3 6 n 6 p1 · · · p8 = 9 699 690. A quick
computational check shows that

σ∗(570 570)

570 570 log log 570 570
> 1.3125,

and that, for all n > 570 570, the inequality (1.7) holds, which proves Theorem 1.1.
Were this lower bound on n too large for one’s tastes, one could also show

σ∗(n) 6 1.3007 n log log n,

for all n > 53 131 with only two exceptions, namely

σ∗(510 510) = (1.3245 . . .)510 510 log log 510 510, and

σ∗(570 570) = (1.3125 . . .)570 570 log log 570 570.

Our bounds for σ∗(n) depend on an upper bound for A1(pk)/A2(pk) in (2.4). We
see at once from (2.3) that our method is incapable of reducing the bound 1.3007
in Theorem 1.1 to anything below 1.29887.

3. Application to exponential divisors

Given an n = pa1
1 · · · pas

s the integer d = pb1
1 · · · pbs

s is an exponential divisor of

n if bj | aj for every 1 6 j 6 s. Define the functions d(e)(n) and σ(e)(n) to be the
number of exponential divisors of n and the sum of the exponential divisors of n,
respectively. Since these functions are multiplicative we have

d(e)(n) =
r

∏

j=1

d(aj), σ(e)(n) =
r

∏

j=1

(

∑

bj |aj

p
bj

j

)

,

where d(n) is the number of divisors of n. Minculete [7, Thm. 2.1 and Cor. 2.5] has
given the following bounds for σ(e)(n) and d(n) d(e)(n)

σ(e)(n) 6
28

15
n log log n, (n > 6),

d(e)(n) d(n) 6
28

15
n log log n, (n > 5).

An application of the proof of Theorem 1.1 improves these bounds.
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Corollary 3.1. For n > 37,

(3.1) σ(e)(n) 6 1.3007 n log log n.

For n > 8,

(3.2) d(e)(n) d(n) 6 1.3007 n log log n.

Proof. The displayed formula halfway down page 1529 in [7] gives

σ(e) 6 n
∏

p|n

(

1 +
1

p

)

,

so that

(3.3)
σ(e)(n)

n log log n
6

∏

p|n

(

1 + 1
p

)

log log n
.

As before, we need only consider (3.3) on Nk 6 n < Nk+1. Using (2.4) and the
calculations in §2 we have

σ(e)(n)

n log log n
6 1.3007, (n > 9 699 691).

Checking the range 37 6 n 6 9 699 691 establishes (3.1). Minculete [7, Eq. (12)]
showed that d(n) d(e)(n) 6 σ(e)(n) for all n > 1. Using this, (3.1), and a simple
computer check for 8 6 n 6 36, establishes (3.2). �

4. Conclusion

Both of the functions σ∗(n) and σ(e)(n) are multiplicative. We have

σ∗(p) = 1 + p > σ(e)(p) = p,

and, for a > 2,

σ∗(pa) = 1 + pa < p + pa 6 σ(e)(pa),

since a = a · 1, where a and 1 are distinct. Therefore, on square-free numbers
σ∗(n) > σ(e)(n). We conclude this section by raising two questions.

(1) What is the proportion of n for which σ∗(n) > σ(e)(n)?
(2) Are there infinitely many values of n for which σ∗(n) = σ(e)(n)?

The proportion in Question 1 must be at least that of the square-free numbers,
viz. 6/π2 ≈ 0.607. A computation shows the proportion of 1 6 n 6 109 to be
approximately 0.778307. It follows from the Erdős–Wintner theorem (see, e.g., [9,
III.4]) that the density of n for which σ∗(n) > σ(e)(n) is well defined. In [2] the
density of the set of integers n for which σ(n)/n > 2 was estimated. It seems
possible that similar methods may be brought to bear on Question 1.

As for Question 2, only five values of n were found in the range 1 6 n 6 109

for which σ∗(n) = σ(e)(n), namely

n = 20, 45, 320, 6615, 382 200.

Andrew Lelechenko has also found

n = 680 890 228 200,
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which is the next smallest n after 382 200. He has also communicated to me that
σ∗(n) = σ(e)(n) also for

n = 2 456 687 209 744 634 987 008 753 664 = 249 × 4 363 953 127 297.

Acknowledgements. I am grateful to Danesh Jogia who verified (2.5) for
8 6 k 6 106, Scott Morrison who provided a much-needed tutorial on programming,
Greg Martin for a discussion on limiting distributions, and Andrew Lelechenko for
providing the last examples in §4.
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