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SEMI-BASIC 1-FORMS AND

COURANT STRUCTURE FOR

METRIZABILITY PROBLEMS

Mircea Crasmareanu

Abstract. The metrizability of sprays, particularly symmetric linear connec-
tions, is studied in terms of semi-basic 1-forms using the tools developed by
Bucataru and Dahl in [2]. We introduce a type of metrizability in relationship
with the Finsler and projective metrizability. The Lagrangian corresponding
to the Finsler metrizability, as well as the Bucataru–Dahl characterization of
Finsler and projective metrizability are expressed by means of the Courant
structure on the big tangent bundle of T M . A byproduct of our computations
is that a flat Riemannian metric, or generally an R-flat Finslerian spray, yields
two complementary, but not orthogonally, Dirac structures on T

big
T M . These

Dirac structures are also Lagrangian subbundles with respect to the natural
almost symplectic structure of T

big
T M .

1. Introduction

The question whether a given symmetric linear connection ∇ on the manifold
M is the Levi-Civita connection of a Riemannian metric is very important from
both mathematical (where it appears as a reciprocal of the fundamental theorem of
Riemannian geometry) and physical reasons [15]. So, it has a rich history (which is
possible to begin with [9]) pointed out for example in [8], where the conditions for
local metrizability as well as the global problem are discussed in detail. Recently,
there is a growing interest for this question in control theory [12] and more gener-
ally, under the name of inverse problem, in geometrization of general and special
Lagrangian systems [14, 16].

Here we introduce a type of metrizability which involves the geometry of the
tangent bundle. Namely, we search for a metric g not on the base manifold M but
on the tangent manifold T M by imposing that g is covariant constant with respect
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to the dynamical covariant derivative of the spray associated to ∇. A condition
for this kind of metrizability is then derived by using the Finsler metrizability of
sprays characterized by Bucataru and Dahl in [2] in terms of semi-basic 1-forms.
The initial metrizability problem is recovered in terms of global smoothness of
this 1-form and also there are considered several relationships with the symplectic
geometry of T M induced by a 2-homogeneous Lagrangian L of Finsler type. In
fact, the possibility to use the symplectic structures was the motivation for our
choice of [2] as the main point of beginning the present study instead of classical
holonomy methods, [17] or [19].

We express the above Finsler (and also the projective) metrizability of a general
spray S and the corresponding Lagrangian L by means of the Courant structure
on the big tangent bundle of T M . Essential terms in the Courant bracket for sev-
eral objects are based on the coefficients of the Jacobi operator of S, as well as
on the coefficients of the curvature of the nonlinear connection induced by S. For
example, even in the Riemannian case we derive new results: the flatness of the
Riemannian metric is equivalent with the Courant isotropy of the pair (the horizon-
tal distribution, vertical dual of the Poincaré–Cartan 1-form). The same flatness
yields a half-Dirac structure on T bigT M while the above subbundle together with
(the vertical distribution, the Poincaré–Cartan 1-form) are isotropic with respect
to the natural almost symplectic structure of the big tangent bundle of T M .

Moreover, we obtain a Dirac structure VD(S)=(the vertical distribution, its
annihilator) for every Lagrangian spray S i.e., S gives the Euler–Lagrange equations
of a regular Lagrangian L; the regularity means that the Hessian of L(x, y) with
respect to the vertical variables y is nondegenerate. With respect to the dual point
of view, the pair HD(S)=(the horizontal distribution, its annihilator) is a Dirac
structure on the T bigT M if and only if the Finslerian spray S is R-flat which
means the vanishing of the curvature of its nonlinear connection; this means in the
particular case of Riemannian geometry that the metric is flat. In conclusion, for
a flat Riemannnian metric the big tangent bundle of T M is the complementary
(but not orthogonally) sum of two Dirac structures, both being also Lagrangian
subbundles for the almost symplectic structure of T bigT M as well as Lie algebroids
over T M . Let us remark that some classes of Dirac structures naturally associated
to Lagrangian systems appear also in [20] and the above results are already obtained
for the Riemannian case in [8].

2. Semibasic 1-forms for the metrizability of linear connections

Fix M a smooth n > 2 dimensional manifold with the tangent bundle T M

and cotangent bundle T ∗M . Local coordinates on M will be denoted by x = (xi),
1 6 i 6 n while the induced coordinates on T M will be denoted by (x, y) = (xi, yi).
Let {0} be the zero-section of the tangent bundle and X (T M) the Lie algebra of
vector fields on T M . A main structure of T M is the tangent structure J = ∂

∂yi ⊗dxi.

Fix also a symmetric linear connection ∇ on M and let S∇ ∈ X (T M) its
semispray; if ∇ has the local coefficients Γi

jk(x), then S∇ has the local expression
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S∇ = yi ∂
∂xi − 2Gi(x, y) ∂

∂yi with

(2.1) Gi =
1

2
Γi

jkyjyk.

We have

(2.2) J(S∇) = C

with C = yi ∂
∂yi the Liouville vector field of T M . This vector field is useful in

characterizations of homogeneous objects on T M r {0}, [2, p. 163]; namely let k be
an integer, then a vector field X is k-homogeneous if LCX = (k − 1)X , a p-form
ω is k-homogeneous if LCω = kω and a (1, 1)-tensor field L is k-homogeneous if
LCL = (k − 1)L. Here LZ is the Lie derivative with respect to the vector field Z;
the vector fields

{

∂
∂yi

}

are 0-homogeneous.

In fact S∇ is more than a semispray; it is a spray due to the 2-homogeneity of
the coefficients Gi of (2.1). Then S∇ has the reduced form S∇ = yi δ

δxi where

δ

δxi
=

∂

∂xi
− N

j
i

∂

∂yj

with N i
j = ∂Gi

∂yj = Γi
jkyk. We derive a new local basis

(

δ
δxi , ∂

∂yi

)

in X (T M), called

Berwald, which is adapted to our computations and has the dual basis
(

dxi, δyi =

dyi + N i
jdxj

)

. This decomposition of the iterated tangent bundle T (T M) produces
[2, p. 165]:

i1) the horizontal projector h = δ
δxi ⊗ dxi,

ii1) the vertical projector v = ∂
∂yi ⊗ δyi, and the following distributions and

codistributions:
i2) the horizontal distribution H(T M) = span

{

δ
δxi

}

= h(X (T M)) and its

annihilator H∗(T M) = span{δyi},
ii2) the vertical distribution V (T M) = span

{

∂
∂yi

}

= v(X (T M)) and its anni-

hilator V ∗(T M) = span{dxi}.
Therefore S∇ is a horizontal vector field while C is a vertical vector field.
Let ∇S be the dynamical covariant derivative induced on T M by S∇, [2, p. 167].

Inspired by the defining property of the Levi-Civita connection, we introduce:

Definition 2.1. The symmetric linear connection ∇ is said to be tangent

metrizable if there exists a Riemannian metric g on T M , of Sasaki type

g = gijdxi ⊗ dxj + gijδyi ⊗ δyj

such that ∇Sg = 0 which means the tangent Christoffel formula

(2.3) S(gij) = Nk
i gkj + Nk

j gki.

Our approach in finding characterizations of tangent metrizability follows closely
the techniques of Bucataru and Dahl from [2], where, among others, the following
type of metrizability is studied:
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Definition 2.2. [2, p. 178] The spray S is Finsler metrizable if there exists a
2-homogeneous Lagrangian L : T M → R such that LS(dJ L) = dL. The spray is
called projective metrizable if the above Lagrangian is 1-homogeneous.

Here dJ is the exterior derivative induced by J on forms of T M ; then dJ L(X) =
dL(JX) = (JX)(L) for any X ∈ X (T M). The fundamentals of Finsler geometry
are excellently exposed in [1].

The characterization of Finsler metrizability is obtained in [2] in terms of semi-
basic 1-forms i.e., 1-forms on T M with local expression θ = θi(x, y)dxi:

Theorem 2.1. [2, p. 177] The spray S is Finsler metrizable if and only if there

exists a 1-homogeneous semi-basic 1-form θ on the slit tangent bundle T M r {0}
such that the following Helmoltz conditions hold

(1) θ is dh-closed: dhθ = 0,

(2) θ is dJ -closed: dJ θ = 0,

(3) dθ is covariant constant with respect to ∇S: ∇S(dθ) = 0.

Then θ is called the Poincaré–Cartan 1-form of the Lagrangian L.

Let us point out that our condition (2.3) corresponds to the relation (3) above.
Therefore we apply Theorem 2.1 and to this aim let ω = dθ. Recall also:

Definition 2.3. [2, p. 164] The semibasic 1-form θ is called nondegenerate if
ω is a symplectic form on T M r {0}.

Recall that a pair (ω, K) with a symplectic form and a compatible almost
complex structure yields a Riemannian metric g through the formula [4, p. 86]:

(2.4) g(·, ·) = ω(·, K·).

The required compatibility is [4, p. 90]:

(2.5) ω(KX, KY ) = ω(X, Y ).

But ∇ (equivalently S∇) yields an almost complex structure F, [2, p. 166]:

(2.6) F

( δ

δxi

)

= −
∂

∂yi
, F

( ∂

∂yi

)

=
δ

δxi

or, in the Berwald basis

F =
δ

δxi
⊗ δyi −

∂

∂yi
⊗ dxi.

Now, we are able to state the first main result of this note.

Proposition 2.1. Let ∇ be a symmetric linear connection on M such that

the associated spray S∇ is Finsler metrizable via the semibasic 1-form θ. If θ is

nondegenerate i.e., the determinant det
(

∂θi

∂yj

)

is nonvanishing, then ∇ is tangent

metrizable.

Proof. We need to prove two facts.
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(I) ω and F are compatible, but this is a consequence of relations (1) and (2)
from Theorem 2.1. Indeed, after [2, p. 172], we have ω = aijdxj ∧dxi +2gijδyj ∧dxi

and dhθ = aijdxj ∧ dxi, dJθ = (gij − gji)dxj ∧ dxi with

aij =
1

2

( δθi

δxj
−

δθj

δxi

)

, gij =
1

2

∂θi

∂yj
.

A direct computation gives

ω
(

F
δ

δxi
,F

δ

δxj

)

= 0 = aij = ω
( δ

δxi
,

δ

δxj

)

,(i)

ω
(

F
∂

∂yi
,F

∂

∂yj

)

= aij = 0 = ω
( ∂

∂yi
,

∂

∂yj

)

,(ii)

ω
(

F
δ

δxi
,F

∂

∂yj

)

= −gji = −gij = ω
( δ

δxi
,

∂

∂yj

)

.(iii)

(II) ∇Sg = 0. The identity (3) reads ∇Sω = 0 and we have ∇SF = 0 from
[2, p. 169]; these two relations yield ∇Sg = 0 because of (2.4).

Let us remark that (i) and (ii) mean that the distributions H(T M) and V (T M)
are Lagrangian for ω.

The matrix of ω in the dual Berwald basis
(

dxi, δyj
)

is

ω =

(

0 −gij

gij 0

)

and then ω is non-degenerate if and only if det(g) 6= 0. The matrix of F is

F =

(

0 In

−In 0

)

and then the corresponding metric g is of Sasaki type

g =

(

0 −gij

gij 0

)

·

(

0 In

−In 0

)

=

(

gij 0
0 gij

)

. �

In this framework, lifting to the tangent bundle the geodesic equations of ∇
i.e., the flow equations of S∇ we arrive at exactly the Euler–Lagrange equations of
the Lagrangian L∇,θ = g(S, S) = g(C,C) = ω(C,F(C)) which can be thought of as
the energy of g. A dual relation to (2.2) is

(2.7) F(C) = S∇

and then

L∇,θ = ω(C, S∇) = dθ(C, S∇) =
1

2

{

C(θ(S∇)) − S∇(θ(C)) − θ([C, S∇])
}

.

Since θ is semibasic, we have θ(C) = 0 while the 2-homogeneity of S∇ reads

[C, S∇] = S∇

and then

L∇,θ = C

(1

2
θ(S∇)

)

−
1

2
θ(S∇)
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which recover the classical formula for the Hamiltonian H associated to a La-
grangian L

H = yi ∂L

∂yi
− L = C(L) − L.

But again the 2-homogeneity of S∇: C(θ(S∇)) = 2θ(S∇) gives the final expression
L∇,θ = 1

2 θ(S∇) = 1
2 θi(x, y)yi which is 2-homogeneous since θ is 1-homogeneous. A

similar formula can be derived by using the F-adjoint of θ

θ∗ = F
∗(θ) =

1

2
θiδyi

(F∗ is the version of F on 1-forms), namely L∇,θ = θ∗(C). Let us point out that
the Euler characterization of 1-homogeneity for θ

θi =
∂θi

∂yj
yj

means that θi = 2gijyj, and then L has the well-known expression L = gijyiyj .

The final answer to the metrizability problem. Now, we are ready for
a return to the initial problem namely the metrizability of ∇. If we assume the
smoothness of our tools on the whole T M , then the 1-homogeneity of θ means that
the components θi are homogeneous polynomials of degree 1 in y and then g is in
fact a Riemannian metric on the base manifold M i.e., g = g(x). In conclusion, our
proposed approach for the metrizability problem of a linear connection ∇ consists
in two steps:

(1) we lift from M to the tangent bundle T M and study the Finsler metriz-
ability of S∇ obtaining the metric g,

(2) we return to the basis manifold M under the homogeneity hypothesis,
obtaining the desired metric g = g(x).

Examples 2.1. (1) Let on M = R2 the symmetric linear connection with the
only nonzero components, [19, p. 513]

Γ1
11 =

x1

(x1)2 + 1
, Γ2

22 =
x2

(x2)2 + 1
.

In the cited paper, it is proved that ∇ is the Levi-Civita connection for a metric g

on the base manifold and this g is computed. In the present framework we derive
that ∇ is tangent metrizable with the semibasic 1-form

θ1 = 2b2[(x1)2 + 1]y1 + b1

√

[(x1)2 + 1][(x2)2 + 1] y2,

θ2 = b1

√

[(x1)2 + 1][(x2)2 + 1] y1 + 2b3[(x2)2 + 1]y2

with bi real parameters.

(2) Examples of non-Finsler metrizable sprays are in [3].

It is natural to ask about ω∗ = dθ∗. A straightforward computation yields

ω∗ =
1

2
Rk

ijθkdxi ∧ dxj +
1

2
θi|jdxi ∧ δyj
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where
(

Ra
ij

)

are the components of the curvature of nonlinear connection H(T M),
[2, p. 166]

Ra
ij =

δNa
i

δxj
−

δNa
j

δxi
and θj|i =

δθj

δxi
−

∂Nk
i

∂yj
θk.

In Finsler (particularly Riemannian) geometry, by using the Cartan (particularly
Levi-Civita) linear connection, the coefficient θi|j vanish and then dθ is the unique
associated symplectic form. A Finslerian spray S with vanishing curvature R is
called R-flat [7]. So, for an R-flat Finsler metric (particularly flat Riemannian
metric) we have that θ∗ is closed.

Let us end this section by making several relationships with some previous
works.

(a) Usually, one seeks the solution of the metrizability problem bearing in mind
the holonomy groups (or algebra) according to the first fundamental paper on this
subject namely [17]. So, in [19, p. 514] are studied symmetric bilinear forms G

with

(2.8) G(AX, Y ) + G(X, AY ) = 0

for all A in the holonomy group of a given point of M . Since F of (2.6) is an almost
complex structure, the compatibility relation (2.5) reads:

(2.9) g(FX, Y ) + g(X,FY ) = 0

and we remark that the formulae (2.8) and (2.9) are formally the same. The
essential difference between these equations is that formula (2.9) is in a close relation
to the curvature (and there is no such condition if the curvature is zero) while (2.8)
is just expressing some symmetry of the metric (and survives even in the case when
R = 0). In fact, formula (2.8) corresponds rather to one of the Helmholtz condition
and its generalization involving the Jacobi endomorphism and its derivatives.

(b) In [7, p. 100] it is pointed out that F of (2.6) is not homogeneous and a new
almost complex structure is considered

FS

( δ

δxi

)

= −F
∂

∂yi
, FS

( ∂

∂yi

)

=
1

F

δ

δxi

where F is the Finslerian fundamental function corresponding to the Lagrangian
L∇,θ constructed above via L∇,θ = F 2. This new almost complex structure is 0-
homogeneous [7, p. 100], and a computation similar to that given in the proof of
Proposition 2.1 yields that ω and FS are still compatible. The formula correspond-
ing to (2.7) is FS(C) = 1

F
S∇ and then the energy of the new metric gS = ω(·,FS·)

is

L∇,θ,S =
1

F
L∇,θ = F =

√

θi(x, y)yi =
√

gijyiyj.

This 1-homogeneous Lagrangian corresponds to the projective metrizability of S∇.

(c) If ω and F are not compatible, then, similar to relation (11) of [13, p. 8395],
we replace ω with ωs(·, ·) = 1

2

{

ω(F·,F·) + ω(·, ·)
}

.

(d) Also, from relation (29) from [13, p. 8396], we get that S∇ is, at the same
time:
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– a Killing vector field for g,
– an infinitesimal symplectomorphism for ω,
– an infinitesimal automorphism for F.
According to [4, p. 22] for an exact symplectic form ω = dθ, there exists a

unique vector field ξ such that iξω = θ. For our case we have ξ = C so that we can
say that all semisprays have an universal symplectic potential vector field namelyC.

(e) Again from [7, p. 100], the almost complex structure F is integrable if and
only if the spray S∇ is R-flat which means that ∇ is with vanishing curvature. In
this case, the pair (g,F) is a Kähler structure on T M r {0} for which ω = dθ is the
Kähler (or fundamental) form.

3. The relationship with the Courant structure of big TM.

Associated Dirac structures

The interplay between vector fields and 1-forms of the previous section makes
necessary the consideration of the manifold T bigM := T M ⊕ T ∗M . This manifold
is the total space of a natural vector bundle π : T bigM → M ; so T bigM is called the

big tangent bundle of M [18], and is endowed with the Courant structure (〈 , 〉, [ , ])
[6]:

1. the (neutral) inner product
〈

(X, α), (Y, β)
〉

= 1
2

(

β(X) + α(Y )
)

2. the (skew-symmetric) Courant bracket

[

(X, α), (Y, β)
]

=
(

[X, Y ], LXβ − LY α −
1

2
d
(

β(X) − α(Y )
)

)

.

The same manifold T M ⊕ T ∗M is called sometimes the Pontryagin bundle of M

[11].
Going now with the similar structure by considering T M instead of M , we

derive some ways to express the Lagrangian associated to a metrizable spray:

Proposition 3.1. Let S be a spray which is Finsler metrizable through the

semibasic 1-form θ. Then the corresponding 2-homogeneous Lagrangian is

L =
〈

(C, θ), (S, θ)
〉

=
〈

(C, θ∗), (S, θ∗)
〉

=
1

2

〈

(C, θ), (S, θ∗)
〉

.

Proof. The above formulae are direct consequences of the following expres-
sions of L

〈( ∂

∂yi
, θ

)

, (S, θ)
〉

=
〈( δ

δxi
, θ

)

, (S, θ∗)
〉

=
〈( ∂

∂yi
, θ∗

)

, (C, θ)
〉

=
〈( δ

δxi
, θ∗

)

, (C, θ∗)
〉

. �

Another interesting relation is
〈( ∂

∂yi
, θ∗

)

,
( δ

δxj
, θ

)〉

= 0,

which means that the distributions (V (T M), θ∗), (H(T M), θ) are 〈 , 〉-orthogonal
on T bigT M .
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The Courant bracket on T bigT M gives the following version of Theorem 5.4
from [2, p. 177]:

Proposition 3.2. Let S be a spray on M . Then S is a Lagrangian vector

field, induced by a k-homogeneous Lagrangian, if and only if there exists a (k − 1)-
homogeneous semibasic 1-form θ ∈ Ω1(T M r {0}) such that

[

(C, θ), (S, θ)
]

=
(

S, (k − 1)θ +
(k

2
− 1

)

LSθ
)

.

It results in particular that S is:
– Finsler metrizable if and only if there exists a 1-homogeneous semibasic 1-

form θ such that
[

(C, θ), (S, θ)
]

= (S, θ),
– projective metrizable if and only if there exists a 0-homogeneous semibasic

1-form θ such that
[

(C, θ), (S, θ)
]

=
(

S, − 1
2 LSθ

)

.

Recall [18], that [ , ]-integrable, 〈 , 〉-isotropic subbundles of T bigM of maximal
rank n are called Dirac structures; so, our next aim is to derive Dirac structures in
the present framework.

With a computation similar to that of the first section we get

L δ

δxi
θ∗ = −Ra

ijθadxj + θi|jδyj

and then
[( δ

δxi
, θ∗

)

,
( δ

δxj
, θ∗

)]

=
(

Rk
ij

∂

∂yk
,
(

Rb
ja − Rb

ia

)

θbdxa +
(

θi|u − θj|u

)

δyu
)

.

For a Finslerian (particularly Riemannian) spray S the above relation becomes
[( δ

δxi
, θ∗

)

,
( δ

δxj
, θ∗

)]

=
(

Rk
ij

∂

∂yk
,
(

Rb
ja − Rb

ia

)

θbdxa
)

.

So, for a R-flat Finslerian metric (particularly flat Riemannian metric) the subbun-
dle (H(T M), θ∗) can be considered as a 1

2 -Dirac structure on T bigT M .
From

L δ

δxi
dxj = L ∂

∂yi
dxj = 0, L δ

δxi
δyj = −R

j
iadxa −

∂N
j
i

∂ya
δya, L ∂

∂yi
δyj =

∂N
j
i

∂ya
δya

we compute
[( δ

δxi
, dxj

)

,
( δ

δxk
, dxl

)]

=
(

Ra
ik

∂

∂ya
, 0

)

,
[( ∂

∂yi
, δyj

)

,
( ∂

∂yk
, δyl

)]

=
(

0,
(∂N l

i

∂ya
−

∂N
j
k

∂ya

)

δya
)

so (H(T M), V ∗(T M)) is Courant closed if and only if the Finslerian spray S (par-
ticularly Riemannian metric g) is R-flat (flat) and

(

V (T M), H∗(T M)
)

is always
Courant closed.

Another main result of this section is:

Theorem 3.1. VD(S) = (V (T M), V ∗(T M)) is a Dirac structure on T bigT M .

HD(S) = (H(T M), H∗(T M)) is a Dirac structure on T bigT M if and only if the
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Finslerian spray S, in particular the Riemannian metric g, is R-flat, in particular

is flat.

Proof. We have
〈( ∂

∂yi
, dxj

)

,
( ∂

∂yk
, dxl

)〉

= 0,
〈( δ

δxi
, δyj

)

,
( δ

δxk
, δyl

)〉

= 0

respectively
[( ∂

∂yi
, dxj

)

,
( ∂

∂yk
, dxl

)]

= (0, 0),

[( δ

δxi
, δyj

)

,
( δ

δxk
, δyl

)]

=
(

Ra
ik

∂

∂ya
,
(

R
j
ka − Rl

ia

)

dxa +
(∂N

j
k

∂ya
−

∂N l
i

∂ya

)

δya
)

which yields the conclusions. �

It results that an R-flat Finslerian spray or a flat Riemannian metric yields a
decomposition of T bigT M in complementary Dirac structures:

(3.1) T bigT M = VD(S) ⊕ HD(S)

in analogy with the decomposition of the iterated tangent bundle

T (T M) = V (T M) ⊕ H(T M).

From
〈( ∂

∂yk
, dxl

)

,
( δ

δxi
, δyj

)〉

=
1

2

(

δl
i + δ

j
k

)

the decomposition (3.1) is not 〈, 〉-orthogonal. Recall, after [10] that a pair of
complementary Dirac subspaces is called a reflector. So, the decomposition (3.1)
provides T bigT M with a reflector.

Recall also that if L is a Dirac structure on M , then the triple (L, [ , ]|L, pr :
L → T M) is a Lie algebroid on M [6, p. 645]. Therefore, we get two Lie algebroids
over T M provided by a flat Riemannian metric, or more generally R-flat Finsler
spray.

4. The relationship with the almost symplectic structure of big T M

In the first section we have a symplectic structure on T M associated with
our framework; let us remark that the big tangent bundle has a nondegenerate
skew-symmetric 2-form [18] Ω

(

(X, α), (Y, β)
)

= 1
2

(

β(X) − α(Y )
)

. Our aim in this
section is to use this almost symplectic structure of big tangent bundle for our
computations.

From

Ω
(( ∂

∂yi
, θ

)

,
( ∂

∂yj
, θ

))

= 0, Ω
(( δ

δxi
, θ∗

)

,
( δ

δxj
, θ∗

))

= 0

it results that (V (T M), θ) and (H(T M), θ∗) are Ω-isotropic subbundles of T bigT M ,
while from

Ω
(( ∂

∂yi
, dxj

)

,
( ∂

∂yk
, dxl

))

= 0, Ω
(( δ

δxi
, δyj

)

,
( δ

δxk
, δyl

))

= 0
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we get that the complementary Dirac structures VD(S) and HD(S) are Ω-Lagran-
gian subbundles of T bigT M .
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