
PUBLICATIONS DE L’INSTITUT MATHÉMATIQUE
Nouvelle série, tome 99(113) (2016), 1–13 DOI: 10.2298/PIM1613001D

FACTORIZED DIFFERENCE SCHEME FOR

TWO-DIMENSIONAL SUBDIFFUSION EQUATION

IN NONHOMOGENEOUS MEDIA

Aleksandra Delić, Sandra Hodžić, and

Boško S. Jovanović

Abstract. A factorized finite-difference scheme for numerical approximation
of initial-boundary value problem for two-dimensional subdiffusion equation
in nonhomogeneous media is proposed. Its stability and convergence are in-
vestigated. The corresponding error bounds are obtained.

1. Introduction

Fractional partial differential equations have broad applications in mathemat-
ics, sciences and engineering (see [9, 15, 16]), such as anomalous transport in dis-
ordered systems, processes in viscoelastic and porous media, biological and social
phenomena etc. The important characteristic of fractional differential equations is
their non-local property. This means that the next state of the system depends
not only upon its current state but also upon all of its previous states. Thus the
fractional-order models are more realistic and it is the main reason of their popular-
ity. On the other side, this feature makes the design of accurate and fast numerical
methods difficult.

In this paper we consider the first initial-boundary value problem for two-
dimensional fractional in time diffusion equation with variable coefficients. This
equation is commonly called subdiffusion equation. The problem is approximated
by factorized finite difference scheme, which belongs to the type of alternating di-
rection implicit (ADI) schemes (see [17]). This scheme combines the advantages
of explicit and implicit scheme–efficiency and stability. Analogous result for the
problem with constant coefficients is obtained in [6]. In [7] the same problem is
approximated by additive scheme–another type of ADI schemes. In [3, 11] multidi-
mensional evolution equations with fractional in space derivatives are approximated
using diverse ADI schemes.
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The paper is organized as follows. In Section 2 we introduce Riemann–Liouville
and Caputo fractional derivatives. In Section 3 we define the first initial-boundary
value problem for two-dimensional fractional in time diffusion equation and prove
existence and uniqueness of its solution. In Section 4 we define factorized difference
scheme approximating considered problem and prove its stability. In Section 5 we
investigate the convergence of the proposed factorized difference scheme.

2. Fractional derivatives

Let u be a function defined on interval [a, b] and k − 1 6 σ < k, k ∈ N. The
left Riemann–Liouville fractional derivative of order σ is defined as

(2.1) Dσ
a+u(t) =

1

Γ(k − σ)

dk

dtk

∫ t

a

u(s)

(t− s)σ+1−k
ds, t > a,

where the Γ(·) denotes the Gamma function. The right Riemann–Liouville frac-
tional derivative is defined analogously

Dσ
b−u(t) =

(−1)k

Γ(k − σ)

dk

dtk

∫ b

t

u(s)

(s− t)σ+1−k
ds, t 6 b.

For σ = k−1 from (2.1) immediately follows that Dk−1
a+ u(t) = u(k−1)(t). Moreover,

under some natural assumptions [16], we have limσ→k D
σ
a+u(t) = u(k)(t).

Commuting the derivative and integral in definition (2.1) one obtains the so-
called Caputo fractional derivative

CDσ
a+u(t) =

1

Γ(k − σ)

∫ t

a

u(k)(s)

(t− s)σ+1−k
ds.

The two definitions are linked by the following relationship

Dσ
a+u(t) = CDσ

a+u(t) +
k−1
∑

j=0

u(j)(a)
(x− a)j−σ

Γ(j − σ + 1)
.

In particular, Dσ
a+u(t) = CDσ

a+u(t) if u(a) = u′(a) = · · · = u(k−1)(a) = 0.
Unlike classical derivatives, fractional derivatives satisfy the semigroup prop-

erty under certain additional assumptions [16], for example for continuous func-
tions:

(2.2) Dσ
a+D

̺
a+u(t) = Dσ+̺

a+ u(t) if 0 < σ, ̺ < 1, u(a) = 0.

Let 0 < σ < 1, and let u(t) and v(t) be continuously differentiable functions.
Then, using the relationship between the Riemann–Liouville and Caputo fractional
derivatives one easily obtains

(2.3) (Dσ
a+u, v)L2(a,b) = (u,Dσ

b−v)L2(a,b).

Let us mention another result that will be used in the sequel. Let σ > 0 and
let u be infinitely differentiable function in R, with suppu ⊂ (a, b). Then (see [5]):

(2.4) (Dσ
a+u,D

σ
b−u)L2(a,b) = cosπσ‖Dσ

a+u‖2
L2(a,+∞).
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For the functions of many variables, the partial fractional derivatives are defined
in an analogous manner, for example

Dσ
t,a+u(x, t) =

1

Γ(k − σ)

∂k

∂tk

∫ t

a

u(x, s)

(t− s)σ+1−k
ds, k − 1 < σ < k, k ∈ N.

3. Problem formulation

We shall consider the time fractional diffusion equation

(3.1) Dα
t,0+u+ Lu = f(x, t), 0 < α < 1, x = (x1, x2) ∈ Ω, t ∈ (0, T ),

where Ω = (0, 1) × (0, 1), Q = Ω × (0, T ) and

Lu = −

2
∑

i,j=1

∂

∂xi

(

aij
∂u

∂xj

)

+ au,

are subject to homogeneous boundary and initial conditions

u(x, t) = 0, x ∈ ∂Ω, t ∈ (0, T ),(3.2)

u(x, 0) = 0, x ∈ Ω̄.(3.3)

We assume that the coefficients of the differential operator Lu satisfy the standard
ellipticity assumptions

(3.4)

aij , a ∈ L∞(Ω), a > 0, aij = aji,

2
∑

i,j=1

aijξiξj > c0

2
∑

i=1

ξ2
i , x ∈ Ω, ξ = (ξ1, ξ2) ∈ R

2, c0 > 0.

Initial-boundary value problem (3.1)–(3.3) is often called sub-diffusion problem.
With Ck(Ω) and Ck(Ω̄) we denote the spaces of k-fold differentiable functions

in Ω and Ω̄, respectively. In particular, Ċ∞(Ω) = C∞
0 (Ω) stand for the space of

infinitely differentiable functions with compact support in Ω. As usual, the space
of measurable functions whose squares are Lebesgue integrable in Ω is denoted by
L2(Ω). We also use W σ,p(Ω) to denote the Sobolev spaces [1]. By Ẇ σ,p(Ω) =
W σ,p

0 (Ω) we denote the closure of Ċ∞(Ω) with the respect to the norm of W σ,p(Ω).
In particular, for p = 2 we set Hσ(Ω) = W σ,2(Ω) and Ḣσ(Ω) = Ẇ σ,2(Ω).

For σ > 0 we set

|u|Cσ
+[a,b] = ‖Dσ

a+u‖C[a,b], |u|Cσ
−

[a,b] = ‖Dσ
b−u‖C[a,b],

‖u‖Cσ
±

[a,b] =
(

‖u‖2
C[σ]− [a,b]

+ |u|2Cσ
±

[a,b]

)1/2
,

|u|Hσ
+(a,b) = ‖Dσ

a+u‖L2(a,b), |u|Hσ
−

(a,b) = ‖Dσ
b−u‖L2(a,b),

‖u‖Hσ
±

(a,b) =
(

‖u‖2
H[σ]− (a,b)

+ |u|2Hσ
±

(a,b)

)1/2
,

where [σ]− denotes the largest integer < σ. Then we define Cσ
±[a, b] as the space

of functions u ∈ C [σ]−

[a, b] with the finite norms ‖u‖Cσ
±

[a,b]. The space Hσ
±(a, b) is

defined analogously, while the space Ḣσ
±(a, b) is defined as the closure of Ċ∞(a, b)

with respect to the norm ‖ · ‖Hσ
±

(a,b). Because for σ = k ∈ N ∪ {0} fractional
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derivative reduces to standard k-th derivative, we have Ck
±[a, b] = Ck[a, b] and

Hk
±(a, b) = Hk(a, b).

The following result holds:

Lemma 3.1. (See [12]) For σ > 0, σ 6= k + 1/2, k ∈ N, the spaces Ḣσ
+(a, b),

Ḣσ
−(a, b) and Ḣσ(a, b) are equal and their norms are equivalent.

For the vector valued functions mapping real interval [0, T ] or (0, T ) into Banach
space X we introduce the spaces Ck([0, T ], X), k ∈ N∪{0} and Hσ((0, T ), X), σ >

0, in the usual way [13]. In analogous manner we define the spaces Cσ
±([0, T ], X)

and Hσ
±((0, T ), X).

Taking the inner product of equation (3.1) with test function v and using
partial integration and relations (2.2) and (2.3) one obtains the following weak
formulation of the problem (3.1)–(3.3): find u ∈ Ḣ1,α/2(Q) = L2((0, T ), Ḣ1(Ω)) ∩
Ḣα/2((0, T ), L2(Ω)) such that

a(u, v) = l(v), ∀v ∈ Ḣ1,α/2(Q),

where

a(u, v) =
(

D
α/2
t,0+u,D

α/2
t,T −

v
)

L2(Q) +

2
∑

i,j=1

(

aij
∂u

∂xj
,
∂v

∂xi

)

L2(Q)
+ (au, v)L2(Q)

and

l(v) = (f, v)L2(Q).

Theorem 3.1. Let α ∈ (0, 1), f ∈ L2(Q) and let the assumptions (3.4) hold.

Then the problem (3.1)–(3.3) is well posed in Ḣ1,α/2(Q) and its weak solution sat-

isfies a priori estimate

‖u‖H1,α/2(Q) 6 C‖f‖L2(Q).

The proof follows immediately using relation (2.4) and the Lax–Milgram lemma.

Remark 3.1. From Theorem 3.1 immediately follows a priori estimate

(3.5) ‖u‖B1,α/2(Q) 6 C‖f‖L2(Q)

in weaker norm [13]

‖u‖2
B1,α/2(Q) =

∫ T

0

[

(T − t)−α‖u(·, t)‖2
L2(Ω) + ‖u(·, t)‖2

H1(Ω)

]

dt.

Theorem 3.2. Let the assumptions of Theorem 3.1 hold and let aij ∈ W 1,∞(Ω).

Then solution of the problem (3.1)–(3.3) belongs to the space H2,α
+ (Q) ∩ Ḣ1,α/2(Q)

and the a priori estimate holds

‖u‖H2,α
+ (Q) 6 C‖f‖L2(Q).

The proof follows taking the inner product of (3.1) with Lu, using relation
(2.4) and the so-called ‘second fundamental inequality’ [10]

‖u‖2
H2(Ω) 6 C

(

‖Lu‖2
L2(Ω) + ‖u‖2

H1(Ω)

)

.
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In the sequel, we shall assume that aij , a ∈ C(Ω̄) instead of L∞(Ω). Through
the paper by C we shall denote the positive generic constant which may take
different values in different formulas.

4. Finite difference approximation

In the area Q̄ = [0, 1]×[0, 1]×[0, T ], we define the uniform mesh Q̄hτ = ω̄h×ω̄τ ,
where ω̄h = {x = (n1h, n2h) | n1, n2 = 0, 1, ..., N ; h = 1/N} and ω̄τ = {t = tm =
mτ |m = 0, 1, . . . ,M ; τ = T/M}. We also define ωh = ω̄h ∩ Ω, γh = ω̄h r ωh,
ω0h = ω̄h ∩ (0, 1] × (0, 1], ω1h = ω̄h ∩ (0, 1] × (0, 1), ω2h = ω̄h ∩ (0, 1) × (0, 1],
ωτ = ω̄τ ∩ (0, T ), ω−

τ = ω̄τ ∩ [0, T ) and ω+
τ = ω̄τ ∩ (0, T ]. We shall use the standard

notation from the theory of the finite difference schemes (see [17]):

v = v(x, t), v̂ = v(x, t+ τ), v̌ = v(x, t− τ), vm = v(x, tm), x ∈ ω̄h,

vxi =
v(x + hei, t) − v(x, t)

h
= vx̄i (x+ hei, t), i = 1, 2,

vt =
v(x, t + τ) − v(x, t)

τ
= vt̄(x, t+ τ) = v̂t̄,

where ei denotes the unit vector of the axis 0xi.
For a function u defined on Q̄ which satisfies zero initial condition, we approxi-

mate the left Riemann–Liouville fractional derivative Dα
t,0+u(x, tm), 0 < α < 1, by

(see [4]):

(Dα
t,0+,τu)m =

1

Γ(2 − α)

m−1
∑

l=0

(t1−α
m−l − t1−α

m−l−1)ul
t.

The following result holds:

Lemma 4.1. (See [18]) Suppose that α ∈ (0, 1), u ∈ C2([0, t], C(Ω̄)) and t ∈ ω+
τ .

Then

|Dα
t,0+u−Dα

t,0+,τu| 6
τ2−α

1 − α

[

1 − α

12
+

22−α

2 − α
− (1 + 2−α)

]

max
Q̄t

∣

∣

∣

∣

∂2u

∂t2

∣

∣

∣

∣

,

where denoted Qt = (0, t) × Ω.

We approximate initial-boundary value problem (3.1)–(3.3) with the following
factorized finite difference scheme:

(4.1)
(

(I + θταA1)(I + θταA2)Dα
t,0+,τv

)m
+ Lhv

m−1 = f̄m, x ∈ ωh,

m = 1, 2, . . . ,M, subject to zero boundary and initial conditions:

v(x, t) = 0, (x, t) ∈ γh × ω+
τ ,(4.2)

v(x, 0) = 0, x ∈ ω̄h,(4.3)

where I is the identity operator, θ is positive parameter, Aiv = −vxix̄i , i = 1, 2,
and

Lhv = −
1

2

2
∑

i,j=1

[

(aijvxj )x̄i + (aijvx̄j )xi

]

+ av.
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When the right-hand side f is a continuous function, we set f̄ = f , otherwise
we must use some averaged value, for example f̄ = T1T2f , where Ti are Steklov
averaging operators:

Tif(x, t) =

∫ 1/2

−1/2
f(x+ hsei, t) ds, i = 1, 2.

Let us note, that the finite difference scheme (4.1)–(4.3) is numerically efficient,
unlike the standard implicit scheme [19]. Indeed, to compute the values of solution
v at the time layer t = tm it is necessary to invert the operators (I + θταA1) and
(I + θταA2). By suitable ordering of mesh nodes in ωh each of these operators can
be represented by a tridiagonal matrix. In this way, the required values of solution
are obtained by two applications of the Thomas algorithm.

We define the following discrete inner products and norms:

(v, w)h = (v, w)L2(ωh) = h2
∑

x∈ωh

vw, ‖v‖h = ‖v‖L2(ωh) = (v, v)
1/2
h ,

(v, w)ih = (v, w)L2(ωih) = h2
∑

x∈ωih

vw, ‖v‖ih = ‖v‖L2(ωih) = (v, v)
1/2
ih , i = 0, 1, 2,

|v|2H1(ωh) =

2
∑

i=1

‖vx̄i‖
2
ih, ‖v‖2

H1(ωh) = |v|2H1(ωh) + ‖v‖2
h,

|v|2H2(ωh) =

2
∑

i=1

‖vx̄ixi‖
2
h + 2‖vx̄1x̄2‖2

0h, ‖v‖2
H2(ωh) = |v|2H2(ωh) + ‖v‖2

H1(ωh),

‖v‖2
L2(Qhτ ) = τ

M
∑

m=1

‖vm‖2
h, ‖v‖2

L2(Qihτ ) = τ
M

∑

m=1

‖vm‖2
ih, i = 0, 1, 2,

‖v‖2
B1,α/2(Qhτ ) = τ

M
∑

m=1

[

(

Dα
t,0+,τ(‖v‖2

h)
)m

+ ‖vm‖2
H1(ωh)

]

,

‖v‖2
H2,α

+ (Qhτ ) = τ

M
∑

m=1

[

‖(Dα
t,0+,τv)m‖2

h + ‖vm‖2
H2(ωh)

]

.

For α ∈ (0, 1) and every function v(t) defined on the mesh ω̄τ , which satisfies
the initial condition v(0) = 0, the following equality is valid (see [4])

(4.4) τ
M

∑

m=1

(

Dα
t,0+,τ(v2)

)m
=

1

Γ(2 − α)

M
∑

m=1

(

t1−α
M−m+1 − t1−α

M−m

)

(vm)2.

In particular, from here follows that the norm ‖v‖B1,α/2(Qhτ ) is well defined.

Lemma 4.2. (See [7]) For 0 < α < 1 and any function v(t) defined on the mesh

ω̄τ the following inequality is valid

(4.5) vm(Dα
t,0+,τv)m

>
1

2
(Dα

t,0+,τ (v2))m +
τ2−α(1 − 2−α)

Γ(2 − α)
(vm−1

t )2,

for m = 1, 2, . . . ,M .
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Theorem 4.1. Let α ∈ (0, 1) and θ >
Γ(2−α)
1−2−α maxij ‖aij‖C(Ω̄). Then for suf-

ficiently small τ finite difference scheme (4.1)–(4.3) is absolutely stable and its

solution satisfies the following a priori estimate:

(4.6) ‖v‖B1,α/2(Qhτ ) 6 C‖f̄‖L2(Qhτ ).

Proof. Taking the inner product of (4.1) with vm, we obtain
(

vm, BDα
t,0+,τv

m
)

h
+

(

vm,Lhv
m

)

h
−

(

vm,Lh(vm − vm−1)
)

h
=

(

vm, f̄m
)

h
,

where denoted B = (I + θταA1)(I + θταA2). The operators Lh and B are positive

and selfadjoint, so the corresponding energy norms (see [17]) ‖v‖Lh
= (Lhv, v)

1/2
h

and ‖v‖B = (Bv, v)
1/2
h are well defined.

Using inequality (4.5), Cauchy–Schwarz and ε inequalities and taking into ac-
count that vm = 1

2 (vm + vm−1) + 1
2 (vm − vm−1), we obtain

1

2
Dα

t,0+,τ‖vm‖2
B +

τ2−α(1 − 2−α)

Γ(2 − α)
‖vm−1

t ‖2
B +

1

2
‖vm‖2

Lh
+

1

2
‖vm−1‖2

Lh

−
τ2

2
‖vm−1

t ‖2
Lh

6
1

4ε
‖f̄m‖2

h + ε‖vm‖2
h, ∀ε > 0.

Further we have

‖v‖2
B = ‖v‖2

h+θτα‖v‖2
A1+A2

+θ2τ2α‖v‖2
A1A2

= ‖v‖2
h+θτα|v|2H1(ωh)+θ

2τ2α‖vx̄1x̄2‖2
0h.

Using (3.4) one obtains

c0|v|2H1(ωh) 6 ‖v‖2
Lh

6 c1|v|2H1(ωh) + c2‖v‖2
h,

where c1 = 2 maxij ‖aij‖C(Ω̄) and c2 = ‖a‖C(Ω̄).
From the last three inequalities it follows

1

2
Dα

t,0+,τ ‖vm‖2
h +

(

θ
(1 − 2−α)

Γ(2 − α)
−
c1

2

)

τ2|vm−1
t |2H1(ωh)

+
( 1 − 2−α

Γ(2 − α)
−
c2

2
τα

)

τ2−α‖vm−1
t ‖2

h +
c0

2
|vm|2H1(ωh) +

c0

2
|vm−1|2H1(ωh)

6
1

4ε
‖f̄m‖2

h + ε‖vm‖2
h,

whereby for

θ > θ0 =
c1Γ(2 − α)

2(1 − 2−α)
=

Γ(2 − α)

1 − 2−α
max

ij
‖aij‖C(Ω̄)

and

τ 6 τ0 =
(2(1 − 2−α)

c2Γ(2 − α)

)1/α

=
( 2(1 − 2−α)

Γ(2 − α)‖a‖C(Ω̄)

)1/α

one obtains
1

2
Dα

t,0+,τ ‖vm‖2
h +

c0

2
|vm|2H1(ωh) +

c0

2
|vm−1|2H1(ωh) 6

1

4ε
‖f̄m‖2

h + ε‖vm‖2
h.

Finally, using the discrete Poincaré inequality (see [17])

‖v‖h 6
1

4
|v|H1(ωh),
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setting ε = 4c0 and summing for m = 1, 2, . . . ,M , we obtain a priori estimate (4.6)
with

C =

√

1

8c0 min{1, 8c0

17 }
�

Note that inequality (4.6) is discrete analogue of a priori estimate (3.5). The
discrete version of Theorem 3.2 we shall prove in the special case when Lh is finite
difference approximation of Laplace operator.

Theorem 4.2. Let α ∈ (0, 1) and θ > Γ(2−α)
2(1−2−α) . Then finite difference scheme

(4.1)–(4.3) with Lhv = Av = (A1 + A2)v = −vx1x̄1 − vx2x̄2 is absolutely stable in

the norm H2,α
+ (Qhτ ) and its solution satisfies a priori estimate

(4.7) ‖v‖H2,α
+ (Qhτ ) 6 C‖f̄‖L2(Qhτ ).

Proof. Taking the inner product of (4.1) with Avm, we obtain

(Avm, BDα
t,0+,τv

m)h + (Avm, Avm)h −
(

Avm, A(vm − vm−1)
)

h
= (Avm, f̄m)h,

whereby, analogously as in the proof of Lemma 4.1

1

2
Dα

t,0+,τ ‖vm‖2
AB +

τ2−α(1 − 2−α)

Γ(2 − α)
‖vm−1

t ‖2
AB +

1

2
‖Avm‖2

h +
1

2
‖Avm−1‖2

h

−
τ2

2
‖Avm−1

t ‖2
h 6

1

4ε
‖f̄m‖2

h + ε‖Avm‖2
h.

Further we have

‖v‖2
AB > ‖v‖2

A = |v|2H1(ωh),

‖v‖2
AB > θτα‖v‖2

A2 ,

‖v‖2
A2 = ‖Av‖2

h = |v|2H2(ωh).

From the previous inequalities it follows

1

2
Dα

t,0+,τ |vm|2H1(ωh) +
(

θ
(1 − 2−α)

Γ(2 − α)
−

1

2

)

τ2|vm−1
t |2H2(ωh)

+
1

2
|vm|2H2(ωh) +

1

2
|vm−1|2H2(ωh) 6

1

4ε
‖f̄m‖2

h + ε|vm|2H2(ωh),

whereby for θ >
Γ(2−α)

2(1−2−α) , setting ε = 1/4 and summing for m = 1, 2, . . . ,M, we

obtain

2τ
M

∑

m=1

Dα
t,0+,τ |vm|2H1(ωh) + τ

M
∑

m=1

|vm|2H2(ωh) 6 4‖f̄m‖2
L2(Qhτ ).

The first sum on the left hand side is positive according to (4.4). From equation
(4.1) it follows

‖(Dα
t,0+,τv)m‖h 6 ‖Lvm−1‖h + ‖f̄m‖h = ‖Avm−1‖h + ‖f̄m‖h

= |vm−1|H2(ωh) + ‖f̄m‖h.
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Hence,

τ

M
∑

m=1

‖(Dα
t,0+,τv)m‖2

h + τ

M
∑

m=1

|vm|2H2(ωh) 6 14‖f̄m‖2
L2(Qhτ )

and results follow using equivalence of seminorm |v|H2(ωh) and norm ‖v‖H2(ωh) for
mesh functions satisfying homogeneous boundary condition v = 0 on γh (see [17]):

|v|H2(ωh) 6 ‖v‖H2(ωh) 6

√

1 +
1

42 +
1

162 |v|H2(ωh). �

5. Convergence of the difference scheme

Let u be solution of the initial-boundary-value problem (3.1)–(3.3) and v the
solution of the difference problem (4.1)–(4.3) with f̄ = T1T2f . The error z = u− v
is defined on the mesh ω̄h × ω̄τ . Putting v = −z + u into (4.1)–(4.3) we conclude
that the error z satisfies the following finite difference scheme:

(5.1)
(

(I + θταA1)(I + θταA2)Dα
t,0+,τz

)m
+ Lhz

m−1 = ψm,

x ∈ ωh, m = 1, 2, . . . ,M,

(5.2) z = 0, x ∈ γh, t ∈ ω̄τ ,

(5.3) z0 = z(x, 0) = 0, x ∈ ωh,

where

ψm = (I + θταA1)(I + θταA2)Dα
t,0+,τu

m + Lhu
m−1 − T1T2f

m

= ξm + ηm +

2
∑

i,j=1

(ηm
ij,xi

+ ζm
ij,xi

) +

2
∑

i=1

(χm
i,xi

+ µm
i,xi

),

and
ξ = Dα

t,0+,τu− T1T2(Dα
t,0+u),

η = aǔ− T1T2(au),

ηij = T3−i

(

aij
∂u

∂xj

)∣

∣

∣

(x−0.5hei,t)
−

1

2

[

(aijux̄j )
∣

∣

(x,t) + (aijuxj )
∣

∣

(x−hei,t)

]

,

ζij =
τ

2

[

(aijux̄j t̄)
∣

∣

(x,t) + (aijuxj t̄)
∣

∣

(x−hei,t)

]

,

χi = −θταDα
t,0+,τux̄i ,

µi =
1

2
θ2τ2αDα

t,0+,τux̄ix3−ix̄3−i .

Theorem 5.1. Under the assumptions of Theorem 4.1 finite difference scheme

(5.1)–(5.3) is absolutely stable and the following a priori estimate holds:

(5.4) ‖z‖B1,α/2(Qhτ ) 6 C

[ 2
∑

i,j=1

(

‖ηij‖L2(Qihτ ) + ‖ζij‖L2(Qihτ )
)

+

2
∑

i=1

(

‖χi‖L2(Qihτ ) + ‖µi‖L2(Qihτ )
)

+ ‖ξ‖L2(Qhτ ) + ‖η‖L2(Qhτ )

]

.
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The proof is analogous to the proof of Theorem 4.1, where in the estimation of
truncation error terms containing finite differences the partial summation is used.

In such a way, to obtain the error bound for finite difference scheme (4.1)–(4.3)
it is sufficient to estimate the right-hand side terms in (5.4).

Theorem 5.2. Let the assumptions of Theorem 4.1 hold, aij , a ∈ H2(Ω) and

let the solution u of initial-boundary value problem (3.1)–(3.3) belongs to the space

C2([0, T ], C(Ω̄)) ∩ Cα
+([0, T ], H3(Ω)) ∩ H1((0, T ), H2(Ω)). Then the solution v of

finite difference scheme (4.1)–(4.3) with f̄ = T1T2f converges to u and the following

convergence rate estimate holds:

‖u− v‖B1,α/2(Qhτ ) = O(h2 + τα).

Proof. Let us set ξ = ξ1 + ξ2, where

ξ1 = Dα
t,0+,τu−Dα

t,0+u and ξ2 = Dα
t,0+u− T1T2D

α
t,0+u.

From Lemma 4.1 immediately it follows

‖ξ1‖L2(Qhτ ) 6 Cτ2−α‖u‖C2([0,T ],C(Ω̄)).

From integral representation

u(x, t)−T1T2u(x, t) =
1

h2

∫ x1+h/2

x1−h/2

∫ x2+h/2

x2−h/2

(
∫ x1

x′
1

∫ x2

x′
2

∂2u

∂x1∂x2
(x′′

1 , x
′′
2 , t)dx

′′
2dx

′′
1

−

∫ x1

x′
1

∫ x1

x′′
1

∂2u

∂x2
1

(x′′′
1 , x

′
2, t)dx

′′′
1 dx

′′
1 −

∫ x2

x′
2

∫ x2

x′′
2

∂2u

∂x2
2

(x′
1, x

′′′
2 , t) dx

′′′
2 dx

′′
2

)

dx′
2dx

′
1

one obtains

‖ξ2‖L2(Qhτ ) =

(

τ

M
∑

m=1

‖ξm
2 ‖2

h

)1/2

6 Ch2‖u‖Cα
+([0,T ],H2(Ω)).

Hence,

(5.5) ‖ξ‖L2(Qhτ ) 6 C(τ2−α‖u‖C2([0,T ],C(Ω̄)) + h2‖u‖Cα
+([0,T ],H2(Ω))).

Let us set η = η1 + η2, where

η1 = aǔ− T1T2(aǔ) and η2 = T1T2(aǔ) − T1T2(au) = −τT1T2(aut̄).

The value of η1 at the mesh node x ∈ ωh is bounded linear functional of aǔ ∈ H2(e),
where e = e(x) = (x1 − h/2, x1 + h/2) × (x2 − h/2, x2 + h/2), which vanishes when
aǔ = 1, x1, x2. Using the Bramble-Hilbert lemma [2] one obtains

|η1| 6 Ch|aǔ|H2(e).

Summing this inequality over the mesh ωh and using the properties of multipliers
in the Sobolev spaces [14] we get

‖η1‖h 6 Ch2‖aǔ‖H2(Ω) 6 Ch2‖a‖H2(Ω)‖ǔ‖H2(Ω)

and finally, after summation over the mesh ω+
τ :

‖η1‖L2(Qhτ ) 6 Ch2‖a‖H2(Ω)‖u‖C([0,T ],H2(Ω)).
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The term η2 can be estimated directly:

‖η2‖L2(Qhτ ) 6 Cτ‖a‖C(Ω̄)

∥

∥

∥

∥

∂u

∂t

∥

∥

∥

∥

L2(Q)
6 Cτ‖a‖C(Ω̄)‖u‖C1([0,T ],L2(Ω)).

From the obtained inequalities it follows

(5.6) ‖η‖L2(Qhτ ) 6 C(h2‖a‖H2(Ω)‖u‖C([0,T ],H2(Ω)) + τ‖a‖C(Ω̄)‖u‖C1([0,T ],L2(Ω))).

Let us decompose ηij in the following manner

ηij = ηij1 + ηij2 + ηij3 + ηij4, where

ηij1 = T3−i

(

aij
∂u

∂xj

)∣

∣

∣

(x−0.5hei,t)
− T3−i(aij)

∣

∣

∣

(x−0.5hei)
T3−i

( ∂u

∂xj

)∣

∣

∣

(x−0.5hei,t)
,

ηij2 = T3−i (aij)
∣

∣

∣

(x−0.5hei)

[

T3−i

( ∂u

∂xj

)
∣

∣

∣

(x−0.5hei,t)
−

1

2

(

ux̄j (x, t) + uxj (x−hei, t)
)

]

,

ηij3 =
1

2

[

T3−i (aij)
∣

∣

∣

(x−0.5hei)
−

1

2

(

aij(x) + aij(x− hei)
)]

×
[

ux̄j (x, t) + uxj (x− hei, t)
]

,

ηij4 = −
1

4

[

aij(x) − aij(x − hei)
][

ux̄j (x, t) − uxj (x− hei, t)
]

.

The value of ηij1 at the mesh node x ∈ ωih is bounded bilinear functional of

(aij , u) ∈ W 1,q(ei) × W 2,2q/(q−2)(ei), where ei = e(x − 0.5hei) and q > 2, which
vanishes when aij = 1 or u = 1, x1, x2. Using the bilinear version of the Bramble–
Hilbert lemma and methodology presented in [8] one obtains

|ηij1(x, t)| 6 Ch|aij |W 1,q(ei)|u(·, t)|W 2,2q/(q−2)(ei), q > 2.

Summing this inequality over the mesh ωih and using the Sobolev imbedding the-
orems [1] we get

‖ηij1(·, t)‖ih 6 Ch2‖aij‖W 1,q(Ω)‖u(·, t)‖W 2,2q/(q−2)(Ω)

6 Ch2‖aij‖H2(Ω)‖u(·, t)‖H3(Ω).

Analogous inequalities hold for ηij2, ηij3 and ηij4. In such a way, after summation
over the mesh ω+

τ we obtain:

(5.7) ‖ηij‖L2(Qihτ ) 6 Ch2‖aij‖H2(Ω)‖u‖C([0,T ],H3(Ω)).

The terms ζij , χi and µi can be estimated directly:

‖ζij‖L2(Qihτ ) 6 Cτ‖aij‖C(Ω̄)‖u‖H1((0,T ),H2(Ω)),(5.8)

‖χi‖L2(Qihτ ) 6 Cτα‖u‖Cα
+([0,T ],H2(Ω)),(5.9)

‖µi‖L2(Qihτ ) 6 Cτ2α‖u‖Cα
+([0,T ],H3(Ω)).(5.10)

The result follows from (5.4)–(5.10). �

In the case when Lu = −∆u we shall derive error bound in the normH2,α
+ (Qhτ ).

Then, for f ∈ C(Q̄), equation (4.1) reduces to

(5.11) ((I + θταA1)(I + θταA2)Dα
t,0+,τv)m +Avm−1 = fm, x ∈ ωh,
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where denoted Av = (A1 +A2)v = −vx1x̄1 − vx2x̄2 .
Let u be the solution of initial-boundary-value problem (3.1)–(3.3) with Lu =

−∆u, and v the solution of difference problem (5.11), (4.2), (4.3). The error z =
u− v satisfies finite the difference scheme

(5.12) ((I + θταA1)(I + θταA2)Dα
t,0+,τz

)m
+Azm−1 = ψ̄m, x ∈ ωh,

and homogeneous boundary and initial conditions (5.2)–(5.3). Here

ψ̄m = (I + θταA1)(I + θταA2)Dα
t,0+,τu

m − ∆um−1 − fm

= ξ̄m + µ̄m +

2
∑

i=1

(η̄m
i + ζ̄m

i + χ̄m
i ),

where denoted

ξ̄ = Dα
t,0+,τu− (Dα

t,0+u) = ξ1, ηi =
∂2u

∂x2
i

− uxix̄i , ζi = τ uxix̄i t̄,

χ̄i = −θταDα
t,0+,τuxix̄i = χi,xi , µ̄ = θ2τ2αDα

t,0+,τux̄1x̄1x2x̄2 = µ1,x1 + µ2,x2 .

Theorem 5.3. Let the assumptions of Theorem 4.2 hold and let the solution

u of initial-boundary value problem (3.1)–(3.3) with Lu = −∆u belong to the space

C2([0, T ], C(Ω̄)) ∩ Cα
+([0, T ], H4(Ω)) ∩ H1((0, T ), H2(Ω)). Then the solution v of

finite difference scheme (5.11), (4.2), (4.3) converges to u and the following con-

vergence rate estimate holds:

‖u− v‖H2,α
+ (Qhτ ) = O(h2 + τα).

Proof. Note that under our assumptions the function f(x, t) is continuous,
so (5.11) is well defined.

Applying a priori estimate (4.7) to (5.12) we obtain:

(5.13) ‖u− v‖H2,α
+ (Qhτ ) = ‖z‖H2,α

+ (Qhτ ) 6 C‖ψ̄‖L2(Qhτ )

6 C
[

‖ξ̄‖L2(Qhτ ) + ‖µ̄‖L2(Qhτ ) +

2
∑

i=1

(

‖η̄i‖L2(Qhτ ) + ‖ζ̄i‖L2(Qhτ ) + ‖χ̄i‖L2(Qhτ )
)

]

.

From Lemma 4.1 immediately it follows:

(5.14) ‖ξ̄‖L2(Qhτ ) 6 Cτ2−α‖u‖C2([0,T ],C(Ω̄)).

The term η̄i can be estimated using the Bramble–Hilbert lemma:

(5.15) ‖η̄i‖L2(Qhτ ) 6 Ch2‖u‖C([0,T ],H4(Ω)).

The terms ζ̄i, χ̄i and µ̄ can be estimated directly:

‖ζ̄i‖L2(Qhτ ) 6 Cτ‖u‖H1((0,T ),H2(Ω)),(5.16)

‖χ̄i‖L2(Qhτ ) 6 Cτα‖u‖Cα
+([0,T ],H2(Ω)),(5.17)

‖µ̄‖L2(Qhτ ) 6 Cτ2α‖u‖Cα
+([0,T ],H4(Ω)).(5.18)

The result follows from (5.13)–(5.18). �
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