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EXTENSION THEOREM OF WHITNEY TYPE FOR
S(Ri) BY USE OF THE KERNEL THEOREM

Smiljana Jaksi¢ and Bojan Prangoski

ABSTRACT. We study the expansions of the elements in S(R%) and S'(R%)
with respect to the Laguerre orthonormal basis, extending the result of M.
Guillemot-Teissier in the one dimensional case. As a consequence, we obtain
Kernel theorem for S (Ri) and S ’(Ri) and an extension theorem of Whitney

type for S(Ri).

1. Introduction

We denote by R? the set (0,00)? and by @ its closure, i.e., [0,00)%. We will
consider the space S(R?% ) which consists of all f € C>(R%) such that all derivatives

DPf pe Ng extend to continuous functions on @ and

sup x| DP f(z)| < oo, for all k,p € N.
zeRE

With this system of seminorms, S(R%) becomes an (F)-space.

The results concerning the extension of a smooth function or a function of
class C* out of some region and various reformulation of such problems are called
extension theorems of Whitney type. One can see Whitney [11], Seeley [8] and
Hormander [3, Theorem 2.3.6, p. 48]. Here we deal with a problem of extension of
a function from S(R%) onto S(R?). Theorem is the main result of the paper.
For the purpose of this theorem we prove the Schwartz kernel theorem for S (Ri)
and &'(R%), Theorem A1l

Recall, for n =0,1,2... the functions

L e
z)=—|—) (e "2 x>0
n(®) n! (da:) ( )
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xz
2

are the Laguerre polynomials and £,(z) = L,(z)e” 2 are Laguerre functions;
{L,(z), n=0,1,...} is an orthonormal basis for L?(0, ) [10, p. 108].

The problem of expanding the elements of §’'(R ) with respect to the Laguerre
orthonormal basis has been treated by Guillemont-Teissier in [4] and Duran in [I]: If
T € 8'(Ry) and a, = (T, Lp(x)), then T = >~ anLn(z) and {a,}52, decreases
slowly. Conversely, if {a, }52, decreases slowly, then there exists T' € §'(R4.) such
that 7= > jan Ly (z).

The papers [, 12}, 13] contain expansions of the same kind as in [4, d]. The
novelty of this paper is an extension of the results of [4] for the d-dimensional
case. This leads to the Schwartz kernel theorem (Theorem [1]) which states that
there is one-to-one correspondence between elements from S’'(R7"™) in two sets of
variables x and y, and the continuous linear mappings of (S(R'")), into (S'(R"))s.
As a consequence of Theorem .2}, we explain the convolution in &'(R%) in the last
remark.

The structure of the paper is as follows. We recall in Section 3 some properties
of Laguerre series and prove the convergence of the Laguerre series in & (Ri) and
S'(R4). In Section 4, we state Schwartz’s kernel theorem for S(R%) and prove an
extension theorem of Whitney type for S(R%).

2. Notation

We use the standard multi-index notation. Given a = (ay,...,aq) € N&, we

write |a| = Z?Zl i, % = (21,...,2q) @0 %) = H;i:l zt, D* = H;i:l 82—22 for

the partial derivative and X*f(x) = a2 f(z) for the multiplication operator. For
r € R4, |z| stands for the standard Euclidean norm in R.
Let s be the space of rapidly decreasing sequences, i.e.,

{antneng €54 Y lan|*n™ < oo, forallk €N,
neNg
Then s’ stands for the strong dual of s, the space of slowly increasing sequences:

{an}neNg es & Z |an|2n_2k < oo, forakeN.
neNd

3. Laguerre series

The d-dimensional Laguerre functions
d

Ln(x) = Ln, (x1) - Ly, (za) = Hﬁm (i)

i=1
form an orthonormal basis for L?(R?%) and are the eigenfunctions of the Laguerre
operator E = (Dy(x1D1) — &) -+ (Da(wqDq) — &), E: S(RL) — S(RY)
d 1
Lo(w) = E(La(@)) = [[ = (ni +5) Lala).

i=1
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Note that F is a self-adjoint operator, i.e.,
(Ef.g)=(f,Eg), [.g€dom(E)={f€L*R}); Ef € L*(R})}.
For f € S(R%) we define the n-th Laguerre coefficient by an, = [pa f(2)Ln(z)dx.
+
The Laguerre series of the function f € S(R%) is ZneNg anLy ().
In [4, p.547], the following bound on the one-dimensional Laguerre functions

is obtained:

d \P
‘xk(%) En(ac)‘ < Cpr(n+ 1)p+k7 x>0, n,pk>0.

Finding the bound on the d-dimensional Laguerre functions involves not compli-
cated calculation. Hence
d

(3.1) |z*DP L, (x)] < Cp i H(m + 1)Pithi e R‘j_, n,p,k € N&.

i=1
3.1. Convergence of the Laguerre series in S(R%).
THEOREM 3.1. For f € S(R), let an(f) = [ga f(@)Ln(z)dx. Then f =
+

ZneNg an(f)L, and the series converges absolutely in S(R‘j_). Moreover the map-
ping t: S(RL) — s, o(f) = {an(f)}neng is a topological isomorphism.

PROOF. For f € S(R%) we have

0n(Ef) = (E1.£2) = E(€) = an(D(-DT (m + 3).

Moreover,

1\ Pi
—1 Pi( i _)
121( P(nit 5

for any p € N%. As EP f € S(R%) C L*(R%), we have

an(Epf) = an(f)

—

< o0, forevery pe€ Ng,

=
3
~
SN~—
o
/N
g
_l’_
Do |
N—
™)
3

Le., {an(f)}nens € s. Clearly f = ZneNg an(f)Ly, as elements of L%(R%). By
), we obtain
d

(3.2) ST e DP(an ()L (@) < Cpi Y Jan(HI[[(ni + 1P < o0

neNg neNg i=1

which yields the absolute convergence of the series in S (Ri).

To prove that ¢ is a topological isomorphism, first observe that by the above
consideration it is well defined and it is clearly an injection. Let {an}neNg € s.
Define f = ZneNg anly, € L*(R%). Now (32) proves that this series converges in

S(R%), hence f € S(RZ). Thus ¢ is bijective. Observe that, (Z2) proves that .1 is
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continuous. Since S(R%) and s are (F)-spaces, the open mapping theorem proves
that ¢ is topological isomorphism. O

3.2. Convergence of the Laguerre series in S'(R%).

THEOREM 3.2. For T € 8'(R%), let b,(T) = (T, Ly). Then {on(T)}rene € 8
and T = ZneNg bn(T)Ly. The series converges absolutely in S'(R%). Conversely,
if {bn}tnena € 8’ then there exists a T € S'(R%) such that T = ZneNg bpLy,. Asa
consequence, 8'(Ri) is topologically isomorphic to s'.

PROOF. Assume that {bn},cna € s'. Then there exists a k € N such that
ZneNg |bn|?(n| + 1)7* < co. For a bounded subset B of S(R%), Theorem [B.1]
implies that there exists C' > 0 such that ZneNg lan(£)2(Jn] + 1)%F < O, for all
[ € B, where we denote {an(f)},ene = t(f). Observe that for an arbitrary ¢ € N

we have

Z Sug|<bn£naf>| < Jsvlelg Z Z |<bn£naam(f)EM>|

In|<q neNd meNg

=sup 3 [bullan(f)] < C,
feb nGNg
ie.,

> sup |{bn L, f)] < 00,

neNg
hence ZneNg b, L, converges absolutely in S'(R%).
Let T € §'(R%). Theorem Bl implies that s : s — S'(R%) is an isomorphism
(!+ denotes the transpose of ¢). Now, one easily verifies that (t)~'T = {bn}nent,
where b, (T) = (T, L,,). Observe that for f € S(R%)

(T.f) =D an(INTLa) =D an(f)ba(T) = < > bn(T)z:n,f>,

neNg neNgd neNg

i, T =3, cna bn(T) Lo O

4. Kernel theorem

The completions of the tensor product are denoted by ®. and &, with respect
to € and 7 topologies. If they are equal, we drop the subindex.

PROPOSITION 4.1. The spaces S(R%) and S'(RL) are nuclear.

PROOF. Since s is nuclear, Theorem Bl implies that S(R) is also nuclear.
Now &'(R%) is nuclear as the strong dual of a nuclear (F)-space. O

THEOREM 4.1. The following canonical isomorphisms hold:
SERY)ESEL) = SET™), SRY)ESRY) =SR],
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PROOF. The second isomorphism follows from the first one since S(R%) is a
nuclear (F')-space. Thus, it is enough to prove the first isomorphism.

Step 1: From Theorem (1]it follows that S(RT) ® S(R™ ) is dense in S(R"™).
It suffices to show that the latter induces on the former the topology © = € (the
7 and the e topologies are the same because S(R%) is nuclear). Since the bilinear
mapping (f,g) — f® g of S(RT) x S(R?}) into S(RT+") is separately continuous,
it follows that it is continuous (S(R7') and S(R"}) are (F')-spaces). The continuity
of this bilinear mapping proves that the inclusion S(RT") ®, S(R?) — S(RTH") is
continuous, hence the topology  is stronger than the induced one from S (RTJrn)
onto S(RY") @ S(RY).

Step 2: Let A" and B’ be equicontinuous subsets of S’(R7*) and S'(R? ), re-
spectively. There exist C' > 0 and j,! € N such that

sup (T, )| < Cllpllju and  sup [(F,¢)| < Cllollj,
TeA FeB’
where
[I£1l;; = sup sup |ackDpf(ac)| < 0.
[k|<g zGRi
[p|<l

Forall T € A’ and F € B’ we have

(To @ Fy, x(@,9))| = [(Fy, (Te, x(2,9)))| < C sup sup [y*(Ty, Dhx(z,y))]
|k|<j yERY
lp|<t

2 K kyp'
< C% sup sup sup |27 y" DY Dyx(z,y)|
|k|<J |K'|<j z€RY
IpI<t |p'|<1 yeRY

< C?llx(@, |l k). ), for all x € S(RT) @ S(RY).

It follows that the e topology on S(R7T") ® S(R') is weaker than the induced one
from S(R7™). O

As a consequence of this theorem we have the following important

THEOREM 4.2. The restriction mapping f +— thi’ S(R?) — S(R‘j_) is a topo-
logical homomorphism onto.

The space S(RL) is topologically isomorphic to the quotient space S(R?)/N,
where N = {f € S(RY) | supp f C R N\ R%L}. Consequently, S'(R%) can be identi-
fied with the closed subspace of S'(R%) which consists of all tempered distributions
with support in RY.

PrOOF. Obviously, the restriction mapping f +— thi’ S(R?Y) — S(R‘j_) is
continuous. We prove its surjectivity by induction on d. For clarity, denote the
d-dimensional restriction by Rgz. For d = 1, the surjectivity of R; is proved in
[i, p.168]. Assume that R, is surjective. By the open mapping theorem, Ry
and R; are topological homomorphisms onto since all the underlying spaces are
(F)-spaces. By the above theorem, R4, R; is continuous mapping from S(R?+1!)
to S(R‘fl) (S(RYBS(R) =2 S(R4Y) by the Schwartz kernel theorem). Clearly
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Ry®:R1 = Ray1. As S(R¥1) and S(R%T) are (F)-spaces, [6] Theorem 7, p. 189]
implies that Rgy; is also surjective.

The surjectivity of the restriction mapping together with the open mapping the-
orem implies that it is homomorphism. Clearly N is a closed subspace of S(R%) and
ker Ry = N. Thus R, induces natural topological isomorphism between S(R)/N
and S(RY). Hence (S(Rd)/N); is topologically isomorphic to S'(R%) (the index b
stands for the strong dual topology). Since S(R?) is an (FS)-space, [5, Theorem
A.6.5, p.255] implies that (S(]Rd)/N);7 is topologically isomorphic to the closed
subspace Nt = {T € §'(R?) | (T, f) = 0, for all f € N} of S'(R?) which is exactly
the subspace of all tempered distributions with support in @. O

Given f,g € S'(R%), Theorem implies that we can consider them as el-
ements of S’(R?) with support in R‘j_. Now, one easily verifies that for each
¢ € S(RY), we have (f(2)®9g(y))p(z+y) € D}, (R*?), hence the §’-convolution of f
and g exists (see [9 p. 26]). Also, if supp NRE = 0, then (f(z)®g(y))p(z+y) =0,
hence supp f g C R4, ie., f+g € S'(RL). Thus

(f#9.90) = (f(x) @ g(¥) p(z + 1)), ¢ € SRY)
(observe that the function ¢ (z,y) = ¢(z +y) is an element of S(R3%)).
REMARK 4.1. [1} Remark 3.7 for d = 1] Let us show that &'(R%) is a convo-

lution algebra. Given f,g € S’ (Ri), we compute the n-th Laguerre coefficient of
f*g. Ifa, ={(f L,) and b, = (g, L), then

(fx9,Ln(t)) = (f(z) @ g(y), Ln(z +y))-

Now, LL(24+y) = Y1 Ln-n(@)Li(y) and Ly (t) = L1 (6)~ L1, (1) (see [2 p. 192)
where L} (z) =Y 1_, (”‘H)(( x)* /k!). In order to simplify the proof, we consider
the case d = 2. Then

2
(7 £a(0) = ( £2) © 90 TT(Lh, (o 00) — £ s+
=1
2 n;—1
= <f( ) & g(y H < Z Enlfk xz)ﬁk yz Z Enlfk 71(931)1:16 (yz)>>
=1 k;=0 k;=0
@@mw S Lot @L®) — Y Limrmnk (@)La(y)
k<(n1,n2) k<(n1—1,n2)
Y L@+ Y Lot <mm§
k<(n1,n2—1) k<(n1—1,n2—1)
= Z A(nyna)—kbk — Z A(ny—1,ns)—kbk
k<(ny,n2) k<(n1—1,n2)

- Z Uy na—1)—kbk + Z U(ny—1,n5—1)— kDR

k<(n1,n2—1) k<(n1—1,na—1)
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where a,, or b, equals zero if some component of the subindex n is less than zero.

It

is easy to verify that if (an)nenz € " and (by,)nenz € 8, then (f x g, L,,(t)) € §'.
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