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SASAKI METRIC ON THE TANGENT BUNDLE
OF A WEYL MANIFOLD

Cornelia-Livia Bejan and Ilhan Giil

ABSTRACT. Let (M, [g]) be a Weyl manifold of dimension m > 2. By using
the Sasaki metric G induced by g, we construct a Weyl structure on T M.
Then we prove that it is never Einstein—Weyl unless (M, g) is flat. The main
theorem here extends to the Weyl context a result of Musso and Tricerri.

1. Introduction

The framework of the tangent bundle T'M of a manifold M provides a context
in which several geometric objects can be studied. There is a huge literature de-
voted to the tangent bundle both in mathematics and theoretical physics. Sasaki
introduced in [14] his well-known Riemannian metric on TM to study some geo-
metric properties of T'M endowed with the Sasaki metric. Some extensions of the
Sasaki metric were constructed on T'M by Abbassi and Sarih [1,2], Janyska [8],
Kowalski and Sekizawa [10], Oproiu and Papaghiuc [13], Munteanu [11], Bejan
and Druta-Romaniuc [4].

For some physical reasons, H. Weyl introduced in 1918 a unified field theory, in
order to study a generalized metrical structure. On a manifold M, a Weyl structure
is described as a conformal class of metrics [g] preserved by a torsion-free connection
D (called a Weyl connection). In the next year will be celebrated a century of a
rich literature published on Weyl’s geometry, important from various aspects, one
of them being the topic of non-Riemannian connections. Roughly speaking, a Weyl
manifold is a conformal manifold equipped with a Weyl connection which is a
torsion-free connection preserving the conformal structure. The Weyl manifold is
said to be Einstein—Weyl if the symmetric part of the Ricci tensor is proportional to
the conformal metric. In particular, Einstein—Weyl manifolds appear as the natural
background for static Yang—Mills—Higgs theory.

In Proposition 4.1, we obtain the behavior of the Sasaki metric on T'M under
the gauge transformations of the metrics in the conformal class [g]. The method
of lifting several geometric objects from the base manifold to the total space of the
tangent bundle is a very well known procedure in differential geometry. Starting
with a Weyl structure on the base manifold we construct, in Proposition 4.2, a Weyl
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structure on the total space of the tangent bundle whose conformal class of metrics
contains the Sasaki metric on TM. By using the curvature tensor field computed
previously in Lemmas 4.1 and 4.2, we may state our main result in Theorem 4.1,
which characterize (in terms of Sasaki metric) both Weyl structures on M and on
T M to be simultaneously Einstein—Weyl.

The present paper is based on the article published by the first author in [3].
The study of the present paper, made on the tangent bundle of a Weyl manifold,
will be continued by a forthcoming paper [5] on the cotangent bundle of a Weyl
manifold.

2. Weyl Manifolds

In this section, M denotes a Weyl manifold, that is an m-dimensional man-
ifold endowed with a Weyl structure W, which consists of a Riemannian metric
g and a 1-form ¢ on M [7]. There exists (as in the Riemannian case) a unique
torsion-free affine connection D on M, called the Weyl connection of W, such that
Dg = —2¢ ® g. The Weyl connection is required to be invariant under the gauge
transformation g — e**g, which means that the 1-form ¢ must change as follows:
¢ — ¢ — d\. Then the conformal class C(W) determined by g forms a primary
underlying structure.

The Levi-Civita connection V of any metric g € C(W) is related to the Weyl
connection D by

(2.1) DxY = VxY +¢(Y)X +¢(X)Y —g(X,Y)E, VXY € x(M),

where ¢ is the dual vector field of ¢ with respect to g.
Note that the squared length ||£]|? of & with respect to g is given by ||¢]|? =

9(&,§) = 9(§)-

Let Ry and R, denote respectively the curvature of the Weyl connection D
and the curvature of the Levi-Civita connection V, defined by

R[g](X,Y) = DXDY - DYDX - D[X7Y] VXaY € X(M)a

and similarly for R,. Then the relation between these curvature tensor fields is
given by

R (X,Y)Z = Ry(X,Y)Z +do(X,Y)Z = (Vy¢)(2)) X + (Vx9)(2))Y
V)¢(Z2)X —g(Y, 2)Vx§ —g(Y, 2)p(§) X

Y, Z)p(X)E = ¢(X)d(2)Y +g(X, Z)Vy¢

X, 2)08)Y — g(X, 2)o(Y)E, VX,Y,Z € x(M).

From (2.2), it follows that the Ricci tensor field Ricpg of the Weyl connection
D and the Ricci tensor field Ric, of the Levi-Civita connection V are related by

Ricy)(X,Y) = Ricy(X,Y) +dp(X,Y) + (6¢ — (m — 2)||£]*) (X, Y)
— (m = 2)(Vx®)Y + (m — 2)6(X)o(Y), VX,Y,€ x(M),
where the co-differential d¢ of ¢ is defined by
dp = —trace, {(U, V) = (Vuo)V}.

(2.2) ij((
+ g(
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Hence the symmetric part Rich }]'m of Ricy, is given by
(2.3) Ric;1™(X,Y) = Ricy (X, Y) + (6¢ — (m — 2)[[€]*)g(X. Y)

~ Lm - D[V + (Vye)x]
+ (m—2)p(X)p(Y), VXY, € x(M).
We recall the following:

DEFINITION 2.1. A manifold M endowed with a Weyl structure (g, ¢) and the
Weyl connection D is called an Einstein—Weyl manifold if the symmetrized Ricci
tensor field Ric[sg 3]'m is proportional to a metric g representing the class [g], that is
there exists a smooth function «, such that

Rlc[bg’]'m(X Y)=ag9(X)Y), VX,Y ex(M).

Since not every Weyl connection is Levi-Civita, it follows that Einstein—Weyl
manifolds provide a natural generalization of Einstein geometry, see [6].

3. Geometric objects on M lifted to T M

Let M be a connected smooth m-dimensional manifold (m > 2), whose tangent
bundle T'M has the natural projection 7 : TM — M defined by 7(z,u) = z for any
x € M and (z,u) € TM. To alocal coordinate system (U;z*,...,2™) on M around
x € M will correspond a local coordinate system (7= 2(U);zt, ..., 2™ ul,... u™)
on TM around (z,u) € TM, where for any i = 1,m, we identify the function
z'om on 7 1(U) with 2% on U and we denote u = >_1", u’(32;) at any point
(z,u) € 7~ 1(U). Then

0 0 0 0
{<8$1)(ru) ' ’<8xim>(z,u)’(aul>(ru) ’ ’(W)(m,u)}

is a basis for the tangent space T(, ) (T'M).

From [15], some geometric objects on the manifold M can be lifted to TM as
follows.

If f is a function on M, then the vertical lift f¥ of f is given by f¥ = fom.
The horizontal lift f* of f is f* = 0.

Let X be a vector field on M which is locally represented by

m ia
X:;X o

If g is a Riemannian metric on M, whose Levi-Civita connection is V with {I'%, }

its Christoffel symbols, then the vertical and horizontal lifts XV and X" of X are
given respectively by

0
Xfoy = Z;sz, ZXZ

Z i X7ub

i,7,k=1
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Let w be a 1-form on M. Then the horizontal lift w” of w is defined by
WX =0, Wh(X?) = (w(X))".
The vertical lift w¥ of w is defined by
W' (XY) =0, (X" = (w(X))".
The Lie bracket operation of vector fields on the tangent bundle is given by
XY Ny = 0 XYy = (VXY

[Xh7 Yh}(w,u) = [Xa Y}h (R(Xa Y)u)v

(mu)

4. Sasaki metric on the tangent bundle

Any Riemannian metric g on a manifold M defines the Sasaki metric G on TM
at any point (z,u) € TM by

G(w,u)(Xh7Yh) — gT(X7Y) = G(a:,u)(XU,Yv),
Glauw) (X", YY) =0, VX,Y € x(M).

PROPOSITION 4.1. The Sasaki metrics on T M, corresponding to any represen-
tative of the conformal class [g] on M, form a class which is invariant under the
vertical conformal change. That is, if g is a metric on the manifold M and G is
its corresponding Sasaki metric on TM, then to any conformal change g — e g on
M , will correspond the change of the Sasaki metric G +— (e*)*G on TM.

PROPOSITION 4.2. Let (g,¢) be a Weyl structure on a manifold M and let G
be the Sasaki metric on TM induced by g. Then (G, @") is a Weyl structure on
TM, whose Weyl connection D 1is given by

DY = (DY) = S(Ry(X,Y )",
DxnY? = (DxY — p(Y)X + g(X,Y)E)" + %(Rg(m Y)X)",
Do Y™ = 2 (Ry(u, X)Y )"+ 6(V) X",

DX”YU:_Q(XaY)fh) VX7Y€X(M)5

where D, Ry, £ are respectively the Weyl connection on M, the curvature tensor
field of g and the dual vector field of ¢ with respect to g.

PROOF. Since (M,g) is a Riemannian manifold whose tangent bundle 7'M
is endowed with the Sasaki metric GG, then the Levi-Civita connection V of G is
defined at any point (z,u) € TM by

= 1
Van V! = (VxY)" = S (Ry (X, Y)u)",

_ 1 — 1
A1) Gy = (YY) + SRy, Y)X)", VoV = 2 (R (u, X)Y)",

VxY? =0, VX,Y €x(M).
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By using twice relation (2.1) on M and similarly on TM, then we complete the
proof. O

From (4.1), by straightforward calculations we obtain:

LEMMA 4.1. Let g be a Riemannian metric on a manifold M and let G be its
induced Sasaki metric on TM. Then the relation between the curvature tensor field
R, of the metric g on M and the curvature tensor field Rg of the metric G is given
at any point (z,u) € TM by

1
Ra(X", Y"MZ" = (R,(X,Y)Z)" + Z(Rg(u, Ry(X, Z)u)Y
— Ry(u, Ry(Y, Z)u) X + 2Ry (u, Ry(X,Y)u)Z)"
1
+ 5((VZRQ)(X7 Y)u)vv
_ 1
Ra(X",YMZ¥ = [R,(X,Y)Z + 1B (Vs By (u, ) X)u

— Ry(X, Ryl Z)Y Wil* + S[(V xRy, Z)Y
_ U h
Ro(X",Y*)Z" = L[(VxRy)(u, V) 2)" +

1
- §RQ(X’ RQ(U’Y)Z)u]vv

Ro(X"Y*)2" = — (Ry(¥. Z)X)" — & (Ry(u, V) Ry, Z) X",

Ra(X",Y")Z" = (R,(X,Y)Z)" + i[Rg(u,X)Rg(u,Y)Z

[Ry(X, 2)Y

N =

- Rg(uv Y)Rg(uv X)Z]h’
Rg(XV,Y")Z" =0, VYX,Y,Z¢c x(M).
LEMMA 4.2. Let M be an m-dimensional manifold (m > 2) endowed with the
Weyl structure (g, ¢) and let (G, ¢¥) be the induced Weyl structure on T M, where

G is the Sasaki metric. Then the symmetric part R,IC[G of the Ricci tensor field
of the Weyl structure (G, ¢") on TM satisfies:

(4.3) Riciy (X", Y") = Rica (X", Y") — %&b g(X,Y)
+ %(R' ¢ (X,Y) — Ricy(X,Y))
(44) R (XYM = 23 g(Ve R)(X, e, V) + 56RO, X)Y),
=1
(4.5)  Ricyy (XU, V") = leg(R(u,X)ei,R(u,Y)ei)

+ (80 = 2(m = 1)[|E[*)g(X,Y), VXY € x(M),
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where {e;}, 1+ ) V, R, Ricg, Ricg and RIC[ ]m are respectively an orthonormal
frame with respect to g, the Levi-Civita connection of g, the curvature of g, the
Ricci tensor field of g and G, and the symmetric part of Ricjg (and all functions
on M are identified with their vertical lift on TM ).

PROOF. We first apply Proposition 4.2. Then we use relation (2.3), in which
we replace the Weyl structure (g, ¢) on the m-dimensional manifold M, with the
Weyl structure (G, ¢") on the 2m-dimensional manifold TM. From the relation
(4.1), if we identify all functions on M with their vertical lift on T'M, then we
obtain:

Riciy (X", Y") = Rice(X",Y")
+(6(¢") = 2(m — 1)G(E", €M) G (X", Y ")
— (m = D[V )Y" + (V§0") X"]
+2(m —1)¢"(X")e" (Y")

= Ricg(X",Y") + [(6¢ — 2(m — D)[[¢]|*)g(X, V)"
—(m=D[((Vxo)Y)" + ((Vy$)X)"]
+2(m = D[o(X)o(Y)]"”

= Ricg (X", Y") + (6¢ — 2(m — 1)[[¢]]*)g(X,Y)
—(m=D[(Vx9)Y + (Vy¢)X]
+2(m = 1)¢(X)o(Y),

Ricid)" (X", Y*) = Rieg(X", Y") + L6(R(u, X)Y),
Ricd" (X", Y*) = Tg(R(u, X)ei, R, ¥ )e)
+ (00— 2(m — D |E[)g(X. Y).VX.Y € x(M).

By using (2.3) in the first equation of (4.6), it follows (4.3). Similarly, we
obtain (4.4) and (4.5) if we use (4.2) in the last two equations of relation (4.6),
which complete the proof. O

Now we state the main result:

THEOREM 4.1. Let (g,¢) be a Weyl structure on an m-dimensional manifold
M (m > 2), and G its induced Sasaki metric on TM. Then the Weyl structure
(G, ¢") is Einstein-Weyl on TM if and only if (M,g) is flat and ¢ satisfies the
equation (Vx @)Y + (Vy o)X = 2¢0(X)o(Y).

PROOF. To prove this statement, let {f;}, 37 m
the point 2 € M and lift it to the orthonormal frame {Fy = f}, ..., F, =
e Fpir = £V, Foy = fY} around (z,u) € TM. Let R, (resp. Rg ) be
the curvature tensor field of the metric g on M (resp. G on T M), from (4.2). Then
Ricy(X,Y) = 327" 9(Ry(X, fi) fi,Y) is the Ricci tensor field of (M, g) and simi-
larly for the Ricci tensor field Rg of (T'M,G). At any point (z,u) € TM, we may

be an orthonormal frame around
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write w = u'f; and R(fi, f;)fx = R”kfh; with respect to the orthonormal basis
{fi}i—t7m» Where the Einstein convention over repeated indices was used here.

If (G, ¢) is Einstein-Weyl on T M, i.e., ﬁfg]m = aG, then putting X =Y = f;
n (4.3) and (4.5), we obtain

o EZ IR, £5)fill> + (56 — 2(m — DJe])

1

- 7.2 ‘R fl’f] qu mTiQ(Rng(f“fl) +5(j)) + M

— 2 Ric}™ (fi. f):

M

Restricting the last identity to the zero section of T M, it follows
sym m .
(4.7) RlC y (fis fi) = m Ricy(fi, fi) + [5¢ —(m— 2)”5”2],

and we deduce that 37" (|[R(fi, fj)ull® + 2[|R(u, f;) fil|*) = 0. Replacing u by fx
in the last formula and summing over ¢ and k, we obtain

> IR fi)fell? =0
i, k=1

In particular, ||R(fi, f;)fxl|*> = 0, for all 4,4,k = 1,...,m. Hence R(fi, f;)fx = 0,
for all 4,5,k =1,...,m, and then R = 0.

Now (4.7) becomes Ric ™ (fi, fi) = [6¢ — (m — 2)[€]I%], and using (2.3), we
deduce that (Vx @)Y + (Vy¢)X = 2¢(X)o(Y).

Conversely, suppose that (Vx@)Y 4+ (Vyd)X = 2¢(X)o(Y); then (2.3) re-
duces to

(4.8) Ric 3™ (X,Y) = Ricyy (X, Y) + [0 — (m — 2)|€]*] g(X,Y),

for all X,Y € x(M). Taking into account (4.8) and the fact that R = 0, then
formulas (4.3)—(4.5) become

Riciy (X", Y") = (8¢ — (m — 2)[[€]*)g(X, V),
Rlc[sg;’]m(X Yh) =o,
Ricjy (XV,Y") = (8¢ — (m — 2)||€|]*)g(X,Y).

We deduce that Riciy = aG, where @ = (6¢— (m—2)[¢]|?)", and then (G, ¢")
is an Einstein—Weyl structure on TM. O

REMARK 1. The fact that (M, g) is flat (and consequently (T'M, G) is also flat),
from Theorem 4.1, is equivalent to the fact that (T'M,G) is Einstein (see [12]).
Hence, a result obtained by Musso and Tricerri is extended in Theorem 4.1 to Weyl
geometry.
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