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PROPERTIES OF THE NEARLY KÄHLER S
3 × S

3
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Abstract. We show how the metric, the almost complex structure and the
almost product structure of the homogeneous nearly Kähler S3

× S3 can be
recovered from a submersion π : S3

× S3
× S3

→ S3
× S3. On S3

× S3
× S3

we have the maps obtained either by changing two coordinates, or by cyclic
permutations. We show that these maps project to maps from S3

× S3 to
S3

× S3 and we investigate their behavior.

1. Introduction

Nearly Kähler manifolds are almost Hermitian manifolds with almost complex
structure J for which the tensor field ∇̃J is skew-symmetric, where ∇̃ is the Levi
Civita connection of the metric. The systematic study of these manifolds and their
relation with 3-symmetric spaces has been initiated by Gray [7, 8]. Recently it
has been shown by Butruille [4] that the only homogeneous 6-dimensional nearly
Kähler manifolds are the nearly Kähler 6-sphere S6, S3 × S3, the projective space
CP 3 and the flag manifold SU(3)/U(1) × U(1). One should remark that only
very recently, the first complete non homogeneous nearly Kähler structures were
discovered on S6 and S3 × S3 in [6]. As far as their submanifolds are concerned,
strict 6-dimensional nearly Kähler manifolds have the surprising property that their
Lagrangian submanifolds are always minimal (see [10, 13]).

In this paper we show how the nearly Kähler metric g and the almost complex
structure J of S3 ×S3 can be recovered in a natural way by looking at a submersion
π : S3 × S3 × S3 → S3 × S3. Note that this is also more or less implicitly present
in [8, 9, 12, 11]. We also show how the almost product structure P defined in
[3] can be introduced using the submersion π from S3 × S3 × S3. In this way we
actually obtain three different almost product structures

Pl = cos(2πl
3 )P − sin(2πl

3 )JP, for l = 1, 2, 3.

We show in the final section that these are precisely the three possible almost
product structures which preserve the basic equations for S3 × S3 derived in [3].
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We also show how the maps which interchange the components of S3 ×S3 ×S3

give rise to isometries of S3 × S3. We call F1 (resp. F2) the isometry correspond-
ing to interchanging the first two coordinates (resp. interchanging the first and
third coordinate). We show that both these isometries preserve up to sign the
almost complex structure. And even though they do not preserve the almost prod-
uct structures individually, they do preserve the set of almost product structures
{P1, P2, P3}. This is of course the reason why in several classification theorems
for Lagrangian submanifolds, see for example [1, 2, 14], one often has 3 isomet-
ric examples with slightly different properties of the almost product structure P .
These examples are precisely obtained one from another by applying the isometries
F1 and F2. The only exception so far to this is the classification of non totally
geodesic Lagrangian submanifolds with constant sectional curvature in [5]. This is
due to the special property of the angle functions (which determine P ) of these last
examples.

2. Preliminaries

2.1. The nearly Kähler S3 × S3. In this section, we recall the homogeneous
nearly Kähler structure of S3 × S3 and mention some known results from [5, 14].
First, we can identify the 3-sphere S3 with the set of all the unit quaternions in H,
i.e., S3 = {p ∈ H | 〈p, p〉 = 1}, where the metric 〈·, ·〉 is induced from the Euclidean
metric on R4. Let i, j, k denote the standard imaginary unit quaternions. Then the
vector fields X1, X2, X3 given by

X1(p) = p i = (−x2, x1, x4,−x3),

X2(p) = p j = (−x3,−x4, x1, x2),

X3(p) = p k = (−x4, x3,−x2, x1),

where p = x1 + x2 i + x3 j + x4 k ∈ S3, form a basis of the tangent bundle TS3.
Hence, the tangent space of S3 is defined by TpS

3 = {pα | α ∈ ImH}.
Let Z(p,q) be a tangent vector of S3 × S3 at (p, q). From the known natural

identification T(p,q)(S
3 × S3) ∼= TpS

3 ⊕ TqS
3, we write Z(p,q) = (pU(p,q), qV(p,q)) or

simply Z = (pU, qV ), where U and V are imaginary quaternions. Now, we define
the vector fields on S

3 × S
3 as

Ẽ1(p, q) = (p i, 0), F̃1(p, q) = (0, q i),

Ẽ2(p, q) = (p j, 0), F̃2(p, q) = (0, q j),

Ẽ3(p, q) = (p k, 0), F̃3(p, q) = (0, q k),

which are mutually orthogonal with respect to the usual Euclidean product met-
ric on S3 × S3. The Lie brackets are [Ẽi, Ẽj ] = 2εijkẼk, [F̃i, F̃j ] = 2εijkF̃k and

[Ẽi, F̃j ] = 0, where

εijk =





1, if (ijk) is an even permutation of (123),

−1, if (ijk) is an odd permutation of (123),

0, if otherwise.
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The almost complex structure J on S3 × S3 is defined by

J(pU, qV )(p,q) =
1√
3

(p(2V − U), q(−2U + V )) ,

for U, V imaginary quaternions and therefore (pU, qV ) ∈ T(p,q)(S
3 × S

3) (see [4]).

The nearly Kähler metric on S3 ×S3 with which we choose to work is the Hermitian
metric associated to the usual Euclidean product metric on S

3 × S
3:

g(Z,Z ′) =
1

2
(〈Z,Z ′〉 + 〈JZ, JZ ′〉)

=
4

3
(〈U,U ′〉 + 〈V, V ′〉) − 2

3
(〈U, V ′〉 + 〈U ′, V 〉) ,

where Z = (pU, qV ) and Z ′ = (pU ′, qV ′). In the first line 〈·, ·〉 stands for the usual
Euclidean product metric on S3 × S3 and in the second line 〈·, ·〉 stands for the
usual Euclidean metric on S3. From the definition, it can be seen that the almost
complex structure J is compatible with the metric g.

Let G := ∇̃J . Then G is skew-symmetric and it satisfies

G(X, JY ) = −JG(X,Y ), g(G(X,Y ), Z) + g(G(X,Z), Y ) = 0,

for any vector fields X,Y, Z tangent to S3 ×S3. Therefore, S3 ×S3 equipped with g
and the almost complex structure J , becomes a nearly Kähler manifold. Moreover,
we introduce the almost product structure P , defined in [3] as

P (pU, qV )(p,q) = (pV, qU)

for U, V imaginary quaternions and therefore (pU, qV ) ∈ T(p,q)(S
3 ×S3). It satisfies

the following properties:

P 2 = Id, i.e.,P is involutive,(2.1)

PJ = −JP, i.e.,P and J anti-commute,(2.2)

g(PZ, PZ ′) = g(Z,Z ′), i.e.,P is compatible with g,(2.3)

g(PZ,Z ′) = g(Z,PZ ′), i.e.,P is symmetric.(2.4)

Furthermore, the almost product structure P and its covariant derivative ∇̃P
admit the following properties.

Lemma 2.1. [3] For tangent vector fields X, Y on (S3 × S3, g, J) the following

equations hold:

PG(X,Y ) +G(PX,PY ) = 0,(2.5)

(∇̃XP )Y = 1
2J(G(X,PY ) + PG(X,Y )),(2.6)
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The Riemannian curvature tensor R̃ on (S3 × S3, g, J) is given by

R̃(U, V )W =
5

12

(
g(V,W )U − g(U,W )V

)

+
1

12

(
g(JV,W )JU − g(JU,W )JV − 2g(JU, V )JW

)

+
1

3

(
g(PV,W )PU − g(PU,W )PV

+ g(JPV,W )JPU − g(JPU,W )JPV
)
.

(2.7)

2.2. The space S3 ×S3 ×S3. We consider S3 ×S3 ×S3 with its usual structure
induced from H3. For tangent vectors (g1V1, g2V2, g3V3) and (g1W1, g2W2, g3W3) at
the point (g1, g2, g3), we have that V1, V2, V3,W1,W2,W3 are imaginary quaternions
and that the induced metric is given by

〈(g1V1, g2V2, g3V3), (g1W1, g2W2, g3W3)〉 =

3∑

l=1

Re(glVlW̄lḡl)

= −
3∑

l=1

Re(glVlWlḡl)

=
3∑

l=1

Re(gl(〈Vl,Wl〉 − Vl ×Wl)ḡl)

=

3∑

l=1

〈Vl,Wl〉.

Notice that here we have identified the imaginary quaternions with the Euclidean
3-space for defining the inner and the cross products, that is 〈 , 〉 and ×. Next, we
define the following vector fields on S3 × S3 × S3 as

E1(g1, g2, g3) = (g1ḡ3ig3, 0, 0), F1(g1, g2, g3) = (0, g2ḡ3ig3, 0),

E2(g1, g2, g3) = (g1ḡ3jg3, 0, 0), F2(g1, g2, g3) = (0, g2ḡ3jg3, 0),

E3(g1, g2, g3) = (g1ḡ3kg3, 0, 0), F3(g1, g2, g3) = (0, g2ḡ3kg3, 0),

G1(g1, g2, g3) = (0, 0, ig3),

G2(g1, g2, g3) = (0, 0, jg3),

G3(g1, g2, g3) = (0, 0, kg3).

Note that using the induced metric, it immediately follows that E1, E2, E3, F1, F2,
F3, G1, G2, G3 form an orthonormal basis of the tangent space. We also have that
for any (g1, g2, g3), γ1 given by γ1(t) = (g1ḡ3e

itg3, g2, g3) is a curve in S3 × S3 × S3

with initial conditions γ1(0) = (g1, g2, g3) and γ′
1(0) = E1(g1, g2, g3). Similarly we

have that the curves γ2(t) = (g1, g2ḡ3e
itg3, g3) and γ3(t) = (g1, g2, e

itg3) are curves
in S3 × S3 × S3 with initial conditions respectively

γ2(0) = (g1, g2, g3), γ′
2(0) = F1(g1, g2, g3),

γ3(0) = (g1, g2, g3), γ′
3(0) = G1(g1, g2, g3).
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By replacing i with j and k in the expressions of the curves γ1, γ2 and γ3, we define
similarly the corresponding curves for the other vectors in the basis.

We also have on each tangent space the natural linear applications:

τ̃ (g1V1, g2V2, g3V3) = (g1V2, g2V3, g3V1),

P̃1(g1V1, g2V2, g3V3) = (g1V2, g2V1, g3V3),

P̃2(g1V1, g2V2, g3V3) = (g1V3, g2V2, g3V1),

P̃3(g1V1, g2V2, g3V3) = (g1V1, g2V3, g3V2).

Note that these applications all preserve the induced metric. Moreover we have
that τ̃3 = I = P̃ 2

1 = P̃ 2
2 = P̃ 2

3 , P̃3P̃1 = τ̃ . In terms of the previously induced vector
fields, we have that

τ̃El = Gl, τ̃Fl = El, τ̃Gl = Fl,

P̃1El = Fl, P̃1Fl = El, P̃1Gl = Gl,

P̃2El = Gl, P̃2Fl = Fl, P̃2Gl = El,

P̃3El = El, P̃3Fl = Gl, P̃3Gl = Fl.

3. The nearly Kähler S3 × S3 as a Riemannian submersion

We look at the map

π : S3 × S
3 × S

3 → S
3 × S

3, (g1, g2, g3) 7→ (g1ḡ3, g2ḡ3).

It follows immediately that

π(g1, g2, g3) = π(g′
1, g

′
2, g

′
3) ⇔ (g′

1, g
′
2, g

′
3) = (g1a, g2a, g3a),

where a ∈ S3 is a unit quaternion. We have that

dπ(E1(g1, g2, g3)) = d
dt
π(g1ḡ3e

itg3, g2, g3)|t=0 = d
dt

(g1ḡ3e
it, g2ḡ3)|t=0

= (g1ḡ3i, 0) = Ẽ1(g1ḡ3, g2ḡ3) = Ẽ1(π(g1, g2, g3)).

By similar computations we obtain that

dπ(El(g1, g2, g3)) = Ẽl(π(g1, g2, g3)),

dπ(Fl(g1, g2, g3)) = F̃l(π(g1, g2, g3)),

dπ(Gl(g1, g2, g3)) = −Ẽl(π(g1, g2, g3)) − F̃l(π(g1, g2, g3)).

This implies that dπ is surjective (and hence π is a submersion). We also see that
the space of vertical vectors V is given by

V = span{E1 + F1 +G1, E2 + F2 +G2, E3 + F3 +G3}.
Therefore, we have the space of horizontal vector fields H spanned by

{ 1
3 (2El − Fl −Gl),

1
3 (−El + 2Fl −Gl)},

for l = 1, 2, 3. It also follows that

dπ(1
3 (2El − Fl −Gl))(g1, g2, g3) = Ẽl(π(g1, g2, g3)),

dπ(1
3 (−El + 2Fl −Gl))(g1, g2, g3) = F̃l(π(g1, g2, g3)).
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Note that

〈1
3 (2El − Fl −Gl),

1
3 (2E′

l − F ′
l −G′

l)〉 = 2
3δll′

〈1
3 (2El − Fl −Gl),

1
3 (−E′

l + 2F ′
l −G′

l)〉 = − 1
3δll′

〈1
3 (−El + 2Fl −Gl),

1
3 (−E′

l + 2F ′
l −G′

l)〉 = 2
3δll′

Moreover, as the right-hand sides are independent of the point (g1, g2, g3) for which
π(g1, g2, g3) = (p, q), we see from the above formulas that we can define the canon-
ical metric, gs on S3 × S3, of the submersion π by

gs(Ẽl, Ẽl) = gs(F̃l, F̃l) = −2gs(Ẽl, F̃l) = 2
3 ,

and such that all other components vanish. Note that g = 2gs and therefore the
nearly Kähler metric is twice the metric induced by the submersion.

Theorem 3.1. The map

π : S3 × S
3 × S

3 → S
3 × S

3 : (g1, g2, g3) 7→ (g1ḡ3, g2ḡ3)

is a submersion. Moreover there exists a canonical metric gs on S3 × S3 such that

the submersion becomes a Riemannian submersion. This metric is related to the

nearly Kähler metric by g = 2gs.

Next we look at what happens with the applications τ̃ , P̃1, P̃2 and P̃3. In order
to do so we will use the following lemma.

Lemma 3.1. Let Ã be a linear application on the tangent space of S3 ×S3 ×S3.

Suppose that

(1) Ã maps vertical vector fields to vertical vector fields

(2) Ã preserves the metric

(3) If v, w are horizontal tangent vectors at resp. (g1, g2, g3) and (g1a, g2a, g3a)
such that dπ(v) = dπ(w), then we also have that dπ(Ãv) = dπ(Ãw), i.e.,

Ã preserves the fibers of π.

Then there exists a linear isometry A of the tangent space of S3 × S
3, such that

AZ(p, q) = dπ(ÃZ̃(g1, g2, g3)),

where (g1, g2, g3) is any point such that π(g1, g2, g3) = (p, q) and Z̃(g1, g2, g3) is the

unique horizontal tangent vector such that dπ(Z̃(g1, g2, g3)) = Z(p, q).

Proof. As Ã maps vertical vector fields to vertical vector fields and preserves
the metric, Ã also maps horizontal vector fields to horizontal vector fields. The
third condition then implies that the map AZ(p, q) = dπ(ÃZ̃(g1, g2, g3)), is well
defined and is an isometry. �

Note that the maps τ̃ , P̃1, P̃2, P̃3 satisfy the conditions of the above lemma.
Therefore we get the corresponding maps at the tangent space of a point (p, q) ∈
S3 × S3 given by τ , P1, P2 and P3. In terms of the vector fields Ẽl and F̃l, the map
τ can be described by

τ(Ẽl) = dπ(τ̃ (1
3 (2El − Fl −Gl)) = dπ(1

3 (2Gl − El − Fl))



PROPERTIES OF THE NEARLY KÄHLER S
3 × S

3 153

= −dπ(1
3 (2El − Fl −Gl)) − dπ(1

3 (−El + Fl −Gl)) = −Ẽl − F̃l,

τ(F̃l) = dπ(τ̃ (1
3 (−El + 2Fl −Gl)) = dπ(1

3 (2El − Fl −Gl)) = Ẽl.

It now follows, by straightforward computations, that ( 2√
3
(τ+ 1

2I))2 = −I and that

the almost complex structure is given by

J = 2√
3
(τ + 1

2I).

In particular

JẼl = 2√
3
(− 1

2 Ẽl − F̃l) = 1√
3
(−Ẽl − 2F̃l,

JF̃l = 2√
3
(Ẽl + 1

2 F̃l) = 1√
3
(2Ẽl + F̃l).

Using similar computations, for the maps P1, P2 and P3, we obtain the following
lemma.

Lemma 3.2. We have that

P1 = P, P2 = − 1
2P −

√
3

2 JP, P3 = − 1
2P +

√
3

2 JP.

4. The role of the almost product structure P

The tensor P appears in the basic equations of S3 × S3 in (2.1)–(2.7).
We call a tensor P ∗ satisfying the above conditions a nearly productlike struc-

ture on S3 ×S3. In order to determine all nearly productlike structures on S3 ×S3,
we have the following lemmas.

Lemma 4.1. Let P ∗ be a structure which satisfies (2.1), (2.2), (2.3), (2.4), and

(2.7). Then there exists an angle θ such that P ∗ = cos θP + sin θJP . The converse

is also true.

Proof. We use (2.7) and we take an arbitrary vector U = X . We take V = Y
orthogonal to X , JX , P ∗PX and JP ∗PX . We take W = P ∗Y . Then we have
that (

g(P ∗Y, P ∗Y )P ∗X − g(P ∗X,P ∗Y )P ∗V

+ g(JP ∗Y, P ∗Y )JP ∗X − g(JP ∗X,P ∗Y )JP ∗V
)

=
(
g(PY, P ∗Y )PX − g(PX,P ∗Y )PY

+ g(JPY, P ∗Y )JPX − g(JPX,P ∗Y )JPY
)
.

(4.1)

Using the properties of P and P ∗, we see that the left hand side of (4.1) re-
duces to g(Y, Y )P ∗X , whereas the right hand side reduces to g(PY, P ∗Y )PX +
g(JPY, P ∗Y )JPX . Hence for any X there exists an angle θ(X) such that

P ∗X = cos(θ(X))PX + sin(θ(X))JPX.

Using the properties of P and P ∗ we deduce that

P ∗JX = −JP ∗X = cos(θ(X))PJX + sin(θ(X))JPJX.

Hence θ(JX) = θ(X). By linearity the same is now true for any linear combination
of X and JX . Take now a vector field Y , orthogonal to X and JX , such that
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‖Y ‖ = ‖X‖. For any angle α, we can now compute ψα = θ(cosαX + sinαY ). On
the one hand we have that

P ∗(cosαX + sinαY ) = cosα(cos(θ(X))PX + sin(θ(X))JPX)

+ sinα(cos(θ(Y ))PY + sin(θ(Y ))JPY ),

while on the other hand

P ∗(cosαX + sinαY ) = cosψα(cosαPX + sinαPY )

+ sinψα(cosαJPX + sinαJPY )).

As the above formula is valid for any angle α and the vector fields X , JX , Y and
JY are mutually orthogonal (and therefore independent) we deduce that θ(Y ) =
θ(X) = ψα. Hence θ(X) = θ is constant. The converse can be verified by a
straightforward computation. �

Lemma 4.2. Let P ∗ be as in Lemma 4.1. Then P ∗ satisfies (2.5) if and only

if θ is a multiple of 2π
3 , i.e., if and only if P ∗ is either P1, P2 or P3. Moreover, in

that case (2.6) is trivially satisfied.

Proof. We write P ∗(X) = cos θPX + sin θJPX. It then follows that

G(P ∗X,P ∗Y ) = cos2 θG(PX,PY ) + sin2 θG(JPX, JPY )

+ cos θ sin θ(G(PX, JPY ) +G(JPX,PY ))

= cos 2θG(PX,PY ) − sin 2θJG(PX,PY )

= − cos 2θPG(X,Y ) + sin 2θJPG(X,Y ).

On the other hand, we have that

−P ∗G(X,Y ) = − cos θPG(X,Y ) − sin θJPG(X,Y ).

As PG(X,Y ) and JPG(X,Y ) are mutually orthogonal, we see that equality holds
if and only if cos 2θ = cos θ = cos(−θ) and sin 2θ = − sin θ = sin(−θ). Hence, if
and only if, 3θ is a multiple of 2π.

In order to show that P ⋆ now satisfies also (2.6), it is sufficient to consider the

case that P ∗ = − 1
2P +

√
3

2 εJP where ε = ±1. On the one hand we get that

(∇̃XP
∗)Y = ∇̃XP

∗Y − P ∗∇̃XY

= − 1
2 (∇̃XP )Y + ε

√
3

2 ∇̃XJPY − ε
√

3
2 JP ∇̃XY

= − 1
2 (∇̃XP )Y + ε

√
3

2 (G(X,PY ) + J∇̃XPY − JP ∇̃XY )

= − 1
2 (∇̃XP )Y + ε

√
3

2 (G(X,PY ) + J(∇̃XP )Y )

= − 1
4J(G(X,PY ) + PG(X,Y ))

+ ε
√

3
4 (2G(X,PY ) −G(X,PY ) − PG(X,Y ))

= − 1
4J(G(X,PY ) + PG(X,Y )) + ε

√
3

4 (G(X,PY ) − PG(X,Y )).

On the other hand we get that

1
2J(G(X,P ∗Y ) + P ∗G(X,Y )) = − 1

4 (JG(X,PY ) + JPG(X,Y ))
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+ ε
√

3
2 (JG(X, JPY ) − PG(X,Y ))

= − 1
4 (JG(X,PY ) + JPG(X,Y ))

+ ε
√

3
4 (G(X,PY ) − PG(X,Y )).

Comparing now both right-hand sides completes the proof of the lemma. �

Combining the previous lemmas, we deduce that the only nearly productlike
structures on S3 × S3 are P1 = P , P2 and P3.

5. Some isometries of S3 × S3 and their properties

We look at the maps F̃abc, F̃1 and F̃2 of S3 × S3 × S3 defined respectively by

F̃abc(g1, g2, g3) = (ag1, bg2, cg3),

F̃1(g1, g2, g3) = (g2, g1, g3),

F̃2(g1, g2, g3) = (g3, g2, g1),

where a, b, c are unitary quaternions. We could, of course, consider

F̃3(g1, g2, g3) = F̃1 ◦ F̃2 ◦ F̃1(g1, g2, g3),

as well the cyclic permutations F̃1 ◦ F̃2 and (F̃1 ◦ F̃2)2. Their properties follow

immediately from those of F̃1 and F̃2.

An elementary computation shows that F̃abc, F̃1 and F̃2 are isometries of S3 ×
S3×S3. Note that these isometries all have the property that for any unit quaternion
d we have that

πF̃abc(g1d, g2d, g3d) = π(ag1d, bg2d, cg3d) = (ag1ḡ3c̄, bg2ḡ3c̄),

πF̃1(g1d, g2d, g3d) = π(g2d, g1d, g3d) = (g2ḡ3, g1ḡ3),

πF̃2(g1d, g2d, g3d) = π(g3d, g2d, g1d) = (g3ḡ1, g2ḡ1)

are independent of the unit quaternion d. Therefore we can define the applications
Fabc, F1 and F2 of S3 × S3 such that

π ◦ F̃abc = Fabc ◦ π, π ◦ F̃1 = F1 ◦ π, π ◦ F̃2 = F2 ◦ π.
As F̃abc, F̃1 and F̃2 are isometries of S

3 × S
3 × S

3 and the nearly Kähler metric
is a constant multiple of the metric of the Riemannian submersion, it follows that
Fabc, F1 and F2 are isometries of the nearly Kähler S3 × S3. The same remains of
course valid for all compositions of these applications. Note that these applications
are given by

Fabc(p, q) = (apc̄, bqc̄), F1(p, q) = (q, p), F2(p, q) = (p̄, qp̄).

As indicated in [3], the isometries Fabc also preserve both the almost complex
structure J and the almost product structure P . As we will see in the next theorems,
this is no longer true for the isometries F1 and F2.

In order to investigate the behavior of J , P1, P2 and P3 under the maps F1 and
F2, we write an arbitrary tangent vector at a point (p, q) by X(p, q) = (pα, qβ),
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where α and β are imaginary quaternions. This is a tangent vector to a curve
δ(t) = (δ1(t), δ2(t)) in S3 × S3 with initial conditions

δ1(0) = p, δ2(0) = q, δ′
1(0) = pα, δ′

2(0) = qβ.

It now follows that

dF1(pα, qβ) = dF1(X(p, q)) = d
dt

F1(δ(t))|t=0

= d
dt

(δ2(t), δ1(t))|t=0 = (qβ, pα),

dF2(pα, qβ) = dF2(X(p, q)) = d
dt

F2(δ(t))|t=0

= d
dt

(δ̄1(t), δ2(t)δ̄1(t))|t=0 = (ᾱp̄, q(β + ᾱ)p̄)

= (p̄(p(−α)p̄), qp̄(p(β − α)p̄)).

On the other hand, we recall that

J(pα, qβ) = 1√
3
(p(2β − α), q(−2α+ β)),

P1(pα, qβ) = P (pα, qβ) = (pβ, qα),

wherefrom we deduce that

P2(pα, qβ) = − 1
2P (pα, qβ) −

√
3

2 JP ((pα, qβ))

= − 1
2 ((pβ, qα)) − 1

2 (p(2α− β), q(−2β + α))

= (−pα, q(β − α))

P3(pα, qβ) = − 1
2P (pα, qβ) +

√
3

2 JP ((pα, qβ))

= − 1
2 ((pβ, qα)) + 1

2 (p(2α− β), q(−2β + α))

= (p(α − β), q(−β)).

Using the above formulas, if necessary at different points and for different tangent
vectors, we now can prove the following two theorems. Notice first that P1, P2, P3,
given by Lemma 3.2, are precisely the three possible almost product structures
on S3 × S3 which preserve the basic equations. We will see that even though the
maps F1 and F2 are isometries of S3 × S3, which do not necessarily preserve the
almost product structure P , they do preserve the triple of almost product structures
{P1, P2, P3}.

Theorem 5.1. The differential of the isometry F1 anticommutes with J , i.e.,

dF1 ◦ J = −J ◦ dF1. For the almost product structures P1, P2 and P3 we have

dF1 ◦ P1 = P1 ◦ dF1,

dF1 ◦ P2 = P3 ◦ dF1,

dF1 ◦ P3 = P2 ◦ dF1.

Proof. We have

dF1(JX) = 1√
3
(q(−2α+ β), p(2β − α)),

JdF1(X) = J(q,p)(qβ, pα) = 1√
3
(q(2α− β), p(−2β + α)),
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from which the first claim follows. The other claims follow from comparing

dF1(P1X) = (qα, pβ), P1dF1(X) = (qα, pβ),

dF1(P2X) = (q(β − α), p(−α)), P2dF1(X) = (q(−β), p(α− β)),

dF1(P3X) = (q(−β), p(α − β)), P3dF1(X) = (q(β − α), p(−α)). �

Theorem 5.2. The differential of the isometry F2 anticommutes with J , i.e.,

dF2 ◦ J = −J ◦ dF2. For the almost product structures P1, P2 and P3 we have

dF2 ◦ P1 = P3 ◦ dF2,

dF2 ◦ P2 = P2 ◦ dF2,

dF2 ◦ P3 = P1 ◦ dF2.

We omit the proof of this theorem as it is similar to the one of Theorem 5.1.
From the above two results we see that J is preserved up to sign by F1 and F2

(and therefore preserved by the composition of the two). On the other hand, by a
suitable composition of F1 and F2, we see that we can switch between P = P1, P2

and P3.
Of course, by applying the isometries F1 and F2 allows us to switch between

these structures and therefore from an isometrical point of view these can not be
distinguished. As a consequence, in many classification theorems of submanifolds,
there will appear 3 isometrical examples with slightly different tensors P (see [1,
2, 14]).
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