UNE REMARQUE SUR UN THÉORÈME DE R.S. IRVING ET L.W. SMALL

THOMAS GUEDENON

Soient k un corps de caractéristique nulle, $U(\mathcal{G})$ l'algèbre enveloppante d'une algèbre de Lie de dimension finie \mathcal{G} , I un idéal premier de $U(\mathcal{G})$. Il résulte de [1] (p. 141–142) que l'on a les implications b) \Rightarrow a) \Rightarrow c) entre les conditions

- a) I est primitif (à gauche).
- b) L'intersection des idéaux premiers de $U(\mathcal{G})$ contenant strictement I est distincte de I.
- c) Le centre de l'anneau total des fractions de $U(\mathcal{G})/I$ est une extension algébrique de k.
- C. Moeglin [6] et J. Dixmier [2] ont démontré l'équivalence de ces propriétés lorsque k est algébriquement clos non dénombrable. Utilisant leurs résultats R.S. Irving [3], R.S. Irving et L.W. Small [4] et S. Yamine [6] ont démontré l'équivalence de a), b) et c) sous la seule hypothèse que k soit de caractéristique nulle.

L'objet de cette note est de prouver, supposant acquis les résultats de [2] et [6], l'équivalence de a), b) et c) d'une manière plus rapide que celles présentées antérieurement.

Théorème. Si k est un corps de caractéristique zéro les conditions a), b) et c) sont équivalentes.

Preuve: Supposons d'abord k algébriquement clos et dénombrable. Il s'agit de démontrer que c) entraı̂ne b).

Soit \mathcal{U} un ultrafiltre non principal sur un ensemble d'indices Λ tel que le corps ultra-produit $k^{\mathcal{U}}$, qui est encore algébriquement clos, soit non dénombrable. Par hypothèse le centre de $\mathrm{Fr}(U(\mathcal{G})/I)$ est réduit à k. Alors, en posant $A = U(\mathcal{G})/I$, $D = \mathrm{Fr}(U(\mathcal{G})/I)$, on a les inclusions $A \subset D \subset D^{\mathcal{U}}$. Soit Z(D) le centre de D. Il

Received: March 15, 1991.

est clair que $Z(D)^{\mathcal{U}}$ est contenue dans le centre $Z(D^{\mathcal{U}})$ de $D^{\mathcal{U}}$. Soit $y^{(1)}, ..., y^{(n)}$ un système de générateurs (fini) de la k-algèbre A.

Si $x = (\widetilde{x}_i) \in Z(D^{\mathcal{U}})$, alors on a $E = \bigcap_{j=1}^n \{i, x_i y^{(j)} = y^{(j)} x_i\} \in \mathcal{U}$. Donc en posant $z_i = x_i$ si $i \in E$ et $z_i = 1$ si $i \notin E$, on a $x = (\widetilde{z}_i)$ et $z_i \in Z(D)$. D'où l'égalité $Z(D)^{\mathcal{U}} = Z(D^{\mathcal{U}})$. Il résulte alors de l'hypothèse Z(D) = k, que $Z(D^{\mathcal{U}}) = k^{\mathcal{U}}$.

D'autre part, [5], l'idéal $k^{\mathcal{U}} \otimes I$ de $k^{\mathcal{U}} \otimes U(\mathcal{G})$ est premier et $\operatorname{Fr}(k^{\mathcal{U}} \otimes_k \frac{U}{I})$ est contenu dans $\operatorname{Fr}(\frac{U}{I})^{\mathcal{U}}$. Si x appartient au centre de $\operatorname{Fr}(k^{\mathcal{U}} \otimes \frac{U}{I})$, alors x commute à tout élément de $\frac{U}{I}$ donc appartient à $D^{\mathcal{U}}$ et par suite $x \in k^{\mathcal{U}}$. Comme $k^{\mathcal{U}}$ est algébriquement clos non dénombrable, il en résulte que $k^{\mathcal{U}} \otimes I$ est un idéal primitif de $k^{\mathcal{U}} \otimes_k U(\mathcal{G})$. Si I n'était pas primitif, I serait, [1] (p. 141–142), égal à l'intersection des idéaux premiers Q de $U(\mathcal{G})$ contenant strictement I. D'où $k^{\mathcal{U}} \otimes I = \bigcap \{k^{\mathcal{U}} \otimes Q\}$ où Q parcourt les idéaux premiers de $U(\mathcal{G})$ contenant strictement I. A fortiori $k^{\mathcal{U}} \otimes I$ serait l'intersection des idéaux premiers de $k^{\mathcal{U}} \otimes U(\mathcal{G})$ le contenant strictement, ce qui n'est pas. Donc I est primitif.

Supposons à présent que k soit non algébriquement clos et soit \overline{k} une cloture algébrique de k. Si I est un idéal premier de $U(\mathcal{G})$, soit Q est un idéal premier de $U(\mathcal{G}) \otimes \overline{k} = U(\overline{\mathcal{G}})$ tel que $Q \cap U(\mathcal{G}) = P$. On sait ([7], proposition 1) que la condition c) est satisfaite pour $(U(\mathcal{G}), I)$ si et seulement si elle est satisfaite pour $(U(\overline{\mathcal{G}}), Q)$ et que si la condition b) est satisfaite pour $U(\overline{\mathcal{G}}, Q)$ elle est satisfaite pour $U(\mathcal{G})$, $U(\mathcal$

BIBLIOGRAPHIE

- [1] DIXMIER, J. Algèbres enveloppantes, Paris, Gauthier-Villars, 1974.
- [2] DIXMIER, J. Idéaux primitifs dans les algèbres enveloppantes, J. of Algebra, 48 (1977), 96–112.
- [3] IRVING, R.S. Primitive ideals of certain noetherian algebras, *Math. Z.*, 169 (1979), 77–92.
- [4] IRVING, R.S. et SMALL, L.W. On the characterization of primitive ideals in enveloping algebras, *Math. Z.*, 173 (1980), 217–221.
- [5] Malliavin, M.-P. Ultra produits d'algèbres de Lie, L. N. in Math, 924 (1981), 157–166, Springer Verlag.
- [6] MOEGLIN, C. Idéaux primitifs des algèbres enveloppantes, J. Math. Pures et Appl., 59 (1980), 265–336.
- [7] Yammine, S. Idéaux primitifs dans les algèbres universelles, L. N. in Math., 924 (1981), 148–166, Springer Verlag.

Thomas Guedenon,

Université Pierre et Marie Curie, U.R.A. 213 du C.N.R.S., Tour 46, Couloir 46-0, 5ème étage, 4, Place Jussieu, 75252 PARIS Cedex 05 – FRANCE