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A MULTIPLICITY RESULT FOR A CLASS OF
SUPERLINEAR ELLIPTIC PROBLEMS

ANNA MARIA MICHELETTI and ANGELA PISTOIA*

Abstract: We prove the existence of at least two solutions for a superlinear problem
—Au = ®(x,u) +7e; (u€ H(Q)) and ey is the first eigenvector of (—A, H}(2)), when
7 is large enough, if ® € C(IR,R) and ®(x, s) = g(x, s) + h(x, s) where h is a superlinear
nonlinearity with a suitable growth at 400 and g is asymptotically linear.

0 — Introduction

Let © be a bounded domain in R" (n > 2) with smooth boundary 0f2. We
study the solvability of the Dirichlet problem:

{—Au:gf)(az,u)—i—y in

(1) u=20 on Jf) ,

where ¢: Q2 x R — R is a Caratheodory’s function and y = y(z) is a given
function in L?(£2). The basic assumption on ¢ concern its behaviour at both +o0
and —oo, namely:

(2) lim p,5) = and lim P 5)

$——00 S s—+00 S

= 400 .

It is clear that the role of the parameter (3 is important. If 5 < Ay (where \; de-
notes the j-th eigenvalue of (—A, H}(€2))), the problem (1) is of the Ambrosetti—
Prodi type. From the result of Amann—Hess [1], Dancer [6], De Figueiredo [7],
De Figueiredo-Solimini [9], it follows that (1) admits at least two solutions for
certain y and no solutions for others.

Here we suppose that \; < [ < Aj;q for some j > 1. When ¢(z,s) =
B s+ (sT)P where 2 < p < (n+2)/(n—2) for n > 3, Ruf-Srikanth in [12] and [13]
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have obtained that for y = 7 e, with 7 large enough (e; > 0 is an eigenfunction
associated with A1) (1) has at least two solutions. A solution is found directly, the
second one is found by an application of the Generalized Mountain Pass Theorem
due to Rabinowitz [11]. De Figueiredo in [8] obtains a result similiar for a very
large class of nonlinearities. The conditions required in [8] in order to apply the
Generalized Mountain Pass theorem are:

(9) $eCt, p < ¢.(x,s) with Aj < p < Aj1

and all the assumptions which are needed to get the Palais—-Smale condition. It
is therefore natural to ask if conditions (¢) are indeed necessary (see remark 8 in
[8])-

In this work we give an answer finding another class of nonlinearities (which do
not satisfy (¢)) for which the result remains valid under the weaker assumption
¢ € C(R,IR). We use a slight different variational arguments (see §2) to ob-
tain directly the existence of two different critical values for the Euler—Lagrange
functional associated with (1).

In theorem (1.6) we obtain that if (as it is usual) the Palais—Smale condition
holds, there exist at least two solutions (for y = 7Te; with 7 large enough),
when ¢(x,s) = g(z,s) + h(z, s), where h is the superlinear nonlinearity with a
suitable growth assumption at +oo (see Hio of 1.4) and g is asymptotically

linear (see 1.4). Substantially for G(z,s) = [J g(x,0)do, we require that \; <
2G(z,s) 2G(z,s)

lims— oo =2 = B < Ajp1 < liminf, 4 = for some j > 1 and the the
quantity liminfs_, 4 QGS’S) — Aj41 is suitable large with respect to Aj 11 — (.

1 — Functional setting and statement

Let © be an open bounded domain in IR"™. We consider the superlinear elliptic
boundary problem:

(1.1) {‘A“—g(xquh(x’u) —ter inQ

u=20 on 0f) ,
where g, h: 2 X R — IR are Caratheodory’s functions, which satisfy:

There exist ay,as € L?(2) and by, by € R such that for s € IR and
(1.2) ra.e. in Q, |g(z,s)| < ai(z)+b1|s| and |h(z, s)| < az(z) +by|s|? 1
where 2* = % for n > 3.

Let A\; and e; for ¢ € IN denote, respectively, the eigenvalues and the associated
normalized eigenfunctions of —Av = Av in Q with v = 0 on 02. Recall that \;
is a simple eigenvalue and that e; can be choosen positive.
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Consider H{(Q) with the norm |jul|? = [, |Dul>. We consider the following
C! functional f;: H}(Q) — R:

(1.3) ft(u):;/Q|Du]2—/QG(m,u)—/QH(x,u)—i-t/Qelu,

where G(z,s) = [; g(z,0)do and H(z,s) = [j h(z,0)do.

Note that the critical points of f; are weak solutions of the problem (1.1);
hence we will study the behaviour of the functional f;, in order to look for critical
points of f;.

In the following we assume these conditions on G and H:

(G_o0, ) There exists k > 0 such that for s < —k and z a.e.
in Q: G(z,s) = %ﬁ82 + Go(z, s), where 8 € R and
|Go(z, 8)| < co(x) with cg € L1(£2);

(Gioos) For s >0 and z ae. in Q: G(z,s) > Las® + Gi(z),

where o € R and G; € LY(Q);
(1.4)

(Hioo) There exists £ > 0 such that for s > k and z a.e. in
O:H(x, s):ﬁ‘sp‘*‘l-i-ﬂo(%s) where |Hy(x,s)| <¢(x)
with ¢ € L'(Q) and 2 < p + 1 < 2%;

(H-) There exists k > 0 such that for s < —k and z a.e. in
Q|H(ac,s)] < Hl(x) with Hq € Ll(Q).

We recall the well known Palais-Smale condition (in short (P.S.) condition).

1.5 Definition. A C! function defined on a Hilbert space H satisfies
(P.S.) condition if for every sequence {up}n>1 in H with f(uy)n>1 bounded and
{V f(un)}n>1 converging to zero, there exists a convergent subsequence.

In the following theorem we give an example of sufficient conditions for the
existence of at least two different critical values of the functional (1.3).

1.6 Theorem. Assume hypotheses (1.2) and (1.4) with f < a and A\; < 8 <
Aj41 for some j > 1. Moreover suppose that the (P.S.) condition holds. Then
there exists a number m €0, 1[ such that if:

m Aiv1 1—m
AJ+1—m—H()\]+1—AJ)<,8<)\j+1 and #—Tﬂ<a,
the functions f; admits, for t < 0 and |t| large enough, at least two different
critical values; hence (1.1) has at least two distinct solutions.
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1.7 Remark. To find an example of assumptions for ¢ = g + h, which
imply the Palais—-Smale condition for the functional f; see [8] page 291, where De
Figueiredo describes a large class of superlinear problems for which Palais—Smale
condition holds for the associated Euler-Lagrange functional.

2 — The variational setting

In order to study the behaviour of the functional f; of (1.3), we start recall-
ing some abstract arguments about the generalizations of the “mountain pass”
theorem due to Rabinowitz (see [11]).

Let H be an Hilbert space and f: H — IR a C! function. Let H be the
topological direct sum of two subspaces H1; and Hy and let ug € H.

2.1 Definition. The function f satisfies “linking condition”, with respect
to ug, Hi, Hs if there exist p1 > 0, po > 0 and e € H such that:

lp2 = p1| <|lell < p2+ p1

and denoted by Bj; the ball in H; centered at 0 with radius p; and By the ball
in span [e] @ Hy centered at e with radius pa, it holds:

sup f < inf f.
ug+0B1 ug+0B2

We will use the following result (see 10).
2.2 Theorem. (“Linking condition” and existence of two critical values.)
If the function f satisfies “linking condition” with respect to ug, Hy, Hy where

dim H; < +o00 and the Palais—Smale condition holds, then there exist two critical
values ¢y and ¢y for f such that:

inf f<ep< sup f< inf f<ce< sup f.
uo+B2 uo+0B1 uo+0B2 uo+DB1

3 — Proof of theorem 1.6

We premise some technical lemmas.

3.1 Lemma. Assume (1.2) and (G_, 3), (H,+0o0) and (H_) of (1.4) with
Aj < B < Ajyq for some j > 1. If z € span [ej41,...] and s < 0, then:

(32) filsert2)—flser) = T a2y —o(amens(@\0)) (2142177
j+1
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where c¢; is a positive constant, w: R — IR is such that lim; ,ow(t) = 0 and:

(3.3) Q:Q(s,z):{xeﬁ:861+z§—kand861§—k}.
Moreover:
(3.4) lim sup meas(Q\Q) =0 uniformly for | z|| < const..

Proof: By definition of f; and by (G_, ) we obtain:

1
filer +2) — fi(ser) = szHQ - G(x,se; + z) — G(x, sep)
w5 1 1 2 /Q< 1 1 )

- /Q(H(:r,sel +2)— H(w,sel)) =

= %Hz“Q _ %ﬁ/@((sel + 2)2 _ (361)2) _ /Q(Go(aj, seq + Z) — G0($,8€1))

_ /Q\Q (G’(ﬂs, se1 + z) — G(x, 561)) — /Q(H(x, se1 + z) — H(z, sel)) =

Lz L 2 1 / 2
— - 5 - 2
el =58 [ 2+ 38 o H2se)

_ /Q(Go(a:, se1 +z) — Go(z, Sel)) a /

" <G(m, se1 + z) — G(x, 361))

—/Q(H(x,sel + 2) —H(a:,sel))

i1 — [ 1
>j+7z2—f/ 22+ 2se1 2
2 S = 5 [+ 2se)

_ /Q(Go(x, se1 + z) — Go(=z, sel)) - /Q\Q (G(a:,sel +2z)— G(x,sel))

- / (H(a;, sep + z) — H(x,sel)) :
Q
The definition of Q and (1.2) imply that:
/ ) ‘G(:z:, se; + z) — G(x, sel)‘ < / ) (Qa(x) + b((s e1+2)% 4 (s el)2>>
0\ o\
< / i (2@(30) + 2b(k? + \z]z))
o\Q
< cl|z[|3+ (meas(\2))7 + ¢,
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where € > 0 is such that 2* = 2(1 +¢).
Furthermore the definition of @ implies:

1
(37 58 [ 1P 2ses <28 [ Jal (i) <

2 Ja\a Q\Q

< ¢|)z]|2 (meas(Q\Q))/2 + ¢|z]|3. (meas(Q\Q))Z/=+ .
Finally by (G_o, ) it follows:
(3.8) /‘Go(a:,sel +z) — Go(x,sel)‘ <ec.
Q
At this point by (H,+o0) and (H_) of 1.4 we get:
(3.9) —/ H(x,se1 + z) +/ H(x,sey) =
Q Q

1
= _/{ N >k}( (sep + )P 4+ Hy(z, se; + z))
se1+z>

p+1
—/ H(x,sel—i-z)—/ H(z,sei + z)
{—k<se1+2z<k} {se1+2<—k}
+ H(x,sey) —/ H(z,sey) .
{se1<—k} {—k<se1<0}

Since s > 0, by definition of Q we have:

1 1
0< / (sep +2)PT < / Elia
{se1+z>k} D+ 1 {se1+z>k} D+ 1

< [|2][5 (meas(Q\Q)) 2"+ D)/

Taking in account the hypotheses (1.2) and (H, +o0), (H_) of (1.4), we esti-
mate the other terms of (3.9); hence from (3.9) and (3.10) we obtain:

(3.11) —/H(x,sel—i—z)—i-/ H(z, ser) > —||z||P*! (meas(Q\Q)) @ ~@+1)/2" .
Q Q

Finally (3.5), (3.6), (3.7), (3.8) and (3.11) imply (3.2).

We claim that limsup, . . meas(Q\Q) = 0 uniformely for ||z|| < ¢. For the
sake of contradiction assume that there exists (sp)n>1 and (2zn)n>1 such that
8, — —00, ||znll < ¢, 2, — 2z in L3(Q) and meas A, — p > 0, where A, =
{x € Q: sper + 2z, > 0}. Let xp(z) =1if z € A, and x,(x) =0 if z € Q\A4,,.
Then if we consider a subsequence y,, — x weakly in L?(Q) and x > 0 a.e. in Q.
Moreover 0 > [(e1+ 22) x5 — [e1x > 0, then [e; x = 0; hence x = 0 a.e. in ©,

i.e. meas A, — 0, and this is a contradiction. n
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3.12 Definition. Let o, € R and let Q: H}(2) — IR be defined by:

Q) = Qas(w) = [ Duf —a [ W= [ @)?.

3.13 Lemma. Assume (1.2) and (1.4) with A\; < 8 < Aj41 for some j > 1
and 0 < «. Then there exists a positive constant co such that, for every t < 0,

(3.14) sup fiGer +v) < fi(Se1) +ca

vespanlet,...,e;]

t
P

where 5 = 3

Proof: By definition of f; and by hypotheses (1.2)—(1.4), in the same way
of the previous lemma, we obtain there exists co > 0 such that:

filser +v) — fulser) = 3 [lsex + ol — 5 lser
- / (G(a:,sel +v) — G(x, sel)>
Q
—/gz(H(x,selev)—H(x,sel)) —I-t/Qelv
< %(Q(sel +v) — Q(sel)> —i—t/Qe1v+c2 .

If we put I'(s)
7(s2) (51— s2)

sa(sT)2+3B(s7)? and y(s) = asT—Bs™, then T'(s1) —T(s2) —
5= (51— 52)2. Therefore, since 3 < a, we get:

Q(se1 +v) — Q(se1) =
— |lser +v]]% — |sea)? — Q/Q(F(sel +0) ~ (ser))
<|lv||* + 2/QD(S€1) Dv — /Q(oz v B)v? — 2/9(04(581)+ - 5(861)7)7)

(3.16)
— vl - 8 /Q V2 + Q(se1)(v)

< PP 4 Qfseno)
J

Choose s =5 = ﬁ, then Q'(se1)(v) +t [ejv = 0. At this point by (3.15) and
(3.16) the lemma easily follows. m
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3.17 Lemma. In the same hypotheses of lemma (3.13) there exist Ry > 0
and t1 < 0 such that, for every t < tq,

(3.18) inf fi(Ge1 +2) > sup fi(se1 +v),
Zesﬁ’aﬁl[eﬁﬂm vEspanleq,...,e;]
z||=R1

=_ _t
where § = v

Proof: By lemma (3.1) if z € spanfej;1,...] and 5 = ﬂ_t/\

have:

with t < 0 we

1

(319)  fuBer +2) = fulser) < allz|® = er = (|l + |=P*) e & )12

where a > 0, ¢; > 0, e(¢,[|2]]) > 0 and lim;,_~ € (¢, ]/2]]) = 0 uniformely for
|z]] < const. We can choose (for example) R; > 0 and 1 > 0 with &1 < § such
that 2¢o + ¢1 < % R% — g1 RPT1. Hence there exists t; < 0 such that for ¢ < ¢;:

a
fe(5e1 + z) + 2¢2 < fi(5e1) + B R? —c; — ey (R} + RV
< fi(3e1) +aR? —e1 — (R2+ RV e(t, Ry)

By this fact, (3.14) and (3.19) we have that there exist R; > 0 and ¢; < 0 such
that, for t < t1:

inf ft(3e1 + z) > fi(Se1) +c2 > sup fi(Se1 +v) .
Zesﬁ)aﬁl[ej;lm} vEspanleq,...,e;]
z||=R1

The claim immediately follows. n

3.20 Definition. Let o, 3 € R be such that A\; < 8 < « for some j > 1.
We set:

M=M,p= {u € HY(Q): Q@ (u)(v) =0 Vv € spaney, .. .,ej]} :

3.21 Remark. By standard arguments, as in [2], it follows that M is the
graph of a Lipschitz map v: spanfej;1,...] — spanfe, ..., €;].

3.22 Lemma. In the same hypotheses of lemma (3.13), if there exists u* € M
(see (3.20)) such that Q(u*) < 0, then for every s < 0, we have:

lim fi(se1 +ou™ +v) = —o00 .
vEspanleq,...,e;],0>0
[[ou* 4+v||—+o0
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Proof: By definition of f;, by similar arguments as in lemma (3.13) and
(3.16), we get that there exists c3 > 0 such that:

1 1
~Q(se; + ou* +v) — —— se; 4+ ou* + v)PHt
2 ( ) p+1 {sel—i—u*—i-vZk}( )

+63—|—t/ ei(se; + ou™ +v)
Q

fe(ser +ou* +v) <

IA

1
3 Q(se1 + ou™ +v) + c3 +t/ e1(ser + ou* +v)
Q

1
< ||ser +v||* - 5 (se1 +v)* + = 02 Q(u*)
2 Ja 2
+ Q' (u*) (se1 +v) +c3 +t/ e1(se1 + ou* +v)
Q
Aj— 1
< 32)\? l|ser +o||* + 2 o2 Q(u*) +c3+ts +t/ﬂel(au*+v) ,
J
where Q'(u*)(se1 + v) = 0 since u* € M and se; + v € spanfey,...,e;]. Since

Q(u*) < 0, the statement easily follows. m

3.23 Lemma. (f; satisfies the “linking condition”).
In the same hypotheses of lemma (3.22), then, for t negative and small enough,
the functional f; satisfies “linking condition” with respect to ugy, Hy, Ho where

(see (2.1)):

er, Hy=spanlei,...,e;], Hy=spanlejy1,...].

Proof: From lemmas (3.17) and (3.22) there exist R; > 0 and ¢; < 0 such
that for every ¢t < t; we have for some p > Rjy:

inf fi(5e1 + z) > sup fi(5e1 +v)
zESﬂar“l[eﬁrl,...] vEspanleq,...,e ]
z||l=R1

> sup fi(Ber + ou* +v) ,
vespanlet,...,e;],0>0
lour-Loll2p

where 5 = ﬁ

We wish to remark that in this case the “linking condition” of (2.1) is satis-
fied with By = {ou* +v: 0 >0, v € spanfey,...,¢;], |[ou* +v| < p} and By =
B(0, R1) Nspanfejti,...].

At this point, by lemma (3.23), the variational principle (2.2) can be applied
to obtain the following result.
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3.24 Theorem. (f; has two critical values).
Assume the same hypotheses of lemma (3.22) and suppose that the functional
ft satisfies the Palais-Smale condition (see (1.7)). Then there exist two different
critical values for the functional f; for t negative and small enough. n

We now characterized a subset S of IR? such that, if (a, ) € S, there exists
u* € M for which Q(u*) < 0.

3.25 Lemma. Let:

m Ajiy1 1—m
S:{(O&,ﬁGIR?:)\j+1—7n_|_1()\j+1—)\j)<ﬁ<)\j+1, j’n—mﬁ<a}
where m = m(j) = inf {[v? + [((ej4+1 +v)T)?: v € spanley,...,¢j]} and m €

[0,1]. Then for each (o, 3) € S there exists u* = ej11 +y(ej+1) € M (see (3.20))
such that Q(u*) < 0.

Proof: Recalling the definition of v given in (3.21), we obtain:

Qlesra+(es0) = llega +7(ess0lP —a [ (e +2(ese)*)’

~ B((er1 +2eg))7)
= llej1 el = 8 [ (e +7(e0) + (8 =) [ (e +7(ei0)*)
= A= B+ e =8 [ e+ (B=a) [ (esn+atea)t)
<X =B+ = 8) [ e + (3= ) [ (e +r(ern))*)

If \j— 3 < B—a, then Q(ejr1+7(ejr1)) < Ajy1 — B+ (8 — a)m. There exist
a and (3 for which A\j11 — 8+ (8 —a)m < 0. In fact, since m < 1, we can choose

B € (Aj, A\j41) such that % > \j — (3, that is B > By = %, and next

we take o so that % >pB—a>\—f,thatis 26— \; > a > %_I_Tmﬁ'
If Aj — B> B —a, that is a > 28 — Aj, then Q(ej+1 +v(ej+1)) < Ajy1 — B+
(Aj —B)m. Taking 8 > o, then \j 11 — B+ (Aj — ) m < 0. Hence the statement.

Finally, by (3.24) and (3.25), we get immediatly the theorem (1.6). m

REFERENCES

[1] AmanN, H. and HEss, P. — A multiplicity result for a class of elliptic boundary
value problems, Proc. Roy. Soc. Edinburg, 84 A (1979), 145-151.



[2]

[9]

[10]

[11]

[12]

[13]

SUPERLINEAR ELLIPTIC PROBLEMS 229

AMANN, H. and ZEHNDER, E. — Non trivial solutions for a class of nonresonance
problems and applications to nonlinear differential equations, Ann. Sc. Norm. Sup.
Pisa, 7 (1980), 539-603.

AMBROSETTI, A. and PRODI, G. — On the inversion of some differentiable map-
pings with singularities between Banach spaces, Ann. Mat. Pura Appl., ser. IV, 93
(1979), 231-247.

AMBROSETTI, A. and RABINOWITZ, P. — Dual variational methods in critical
point theory and applications, Jour. Funct. Analysis, 14 (1973), 349-381.
BERESTYCKY, H. and LioNs, P.L. — Sharp existence result for a class of semilinear
elliptic problems, Bol. Soc. Brasil. Mat., 12 (1981), 9-20.

DANCER, E.N. — On the ranges of certain partial differential equations, Jour.
Math. Pures Appl., 57 (1978), 351-366.

DE FIGUEIREDO, D.G. — On the superlinear Ambrosetti—Prodi problems, Nonlin-
ear Analysis, TMA, t.8 (1984), 655-665.

DE Fi1cUEIREDO, D.G. — On the superlinear elliptic problems with non linearities
interacting only with higher eigenvalues, Rocky Mountain Jour. of Math., 18 (1988),
287-303.

DE FIGUEIREDO, D.G. and SOLIMINI, S. — A variational approach to superlinear
elliptic problems, Comm. Part. Diff. Equat., 9 (1984), 699-717.

MARINO, A., MICHELETTI, A.M. and P1STOIA, A. — Some variational results on
semilinear problems with asymptotically non symmetric behaviour, Quaderno Sc.
Normale Superiore; a volume in honour of G. Prodi, Pisa (1991), 243-256.
RaBiNnowiTZ, P. — Minimazx methods in critical point theory with applications to
differential equations, C.B.M.S. Reg. Conf. Ser. in Math. 65, Amer. Math. Soc.
Providence, R.I. (1986).

Rur, B. and SRIKANTH, P.N. — Multiplicity results for ODE’s with nonlinearities
crossing all but a finite number of eigenvalues, Nonlinear Analysis, TMA 10 (1986),
157-163.

RuF, B. and SRIKANTH, P.N. — Multiplicity results for superlinear elliptic prob-
lems with partial interference with the spectrum, Jour. Math. Analysis and Appl.,
118, n.1 (1986), 15-23.

Anna Maria Micheletti,
Istituto di Matematiche Applicate “U. Dini”,
25 b, Via Bonanno, 56126 Pisa — ITALY

and
Angela Pistoia,

Dipartimento di Matematica,
Via Buonarroti, 56100 Pisa — ITALY



