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PERIODIC SOLUTIONS TO RETARDED AND PARTIAL
FUNCTIONAL DIFFERENTIAL EQUATIONS

PanaloTis K. PAvLAKOS and IOANNIS G. STRATIS

Abstract: The existence of mild and strong periodic solutions to a retarded func-
tional differential equation in a Banach space is established upon the condition that the
non-linear term is periodic. These results are then applied to a class of parabolic partial
functional differential equations.

0 — Introduction

In this note we are interested in studying periodicity questions concerning
“different kinds” (mild, strong) of solutions to the retarded functional differential
equation

du(t)
(0.1) dt
U = @,

+ Au(t) = F(t,ut), t>0,

where A is the infinitesimal generator of a semigroup of linear operators T'(t),
t > 0 and F' is nonlinear, satisfying assumptions to be specified in the subsequent
section, and periodic.

Moreover, the results related to the above RFDE will serve as a basis in
establishing existence of periodic solutions for the partial functional differential
equation

(0.2) vi(w,1) = vau(@, ) + f (B0t = 7), valwt=1)), (2,1) € [0,7] x R,
satisfying conditions of the form
(0.3) v(0,t) =v(m,t) =0 and v(z,t) = p(x,t), te[-r0],

for suitable f.
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Periodicity problems for functional differential equations have been studied by
many authors, see for example, [1], [5], [7], and the references therein. Travis and
Webb [12], [13] have studied the problems of existence (and stability) of solutions
of (0.1), using methods derived from the fundamental results of Segal [11].

Section 1 contains definitions and preliminaries to be used in the subsequent
development. In Section 2 we establish the main results, assuming that the
forcing term F is periodic. In Section 3, we use the results of Section 2 to study
the equation ((0.2), (0.3)).

1 — Notation and preliminaries

Throughout this paper E will denote a Banach space over a real or complex
field with norm ||-||. C':=C([—r,0]; E') will denote the Banach space of continuous
E-valued functions on [—r, 0], with the supremum norm, r being a positive real
number. If u is a function with domain [0 — r, o + 1), then for any ¢ € [0, 0 + b),
u; will denote the element of C, defined by w:(0) = u(t +6), —r < 6 < 0.
B(E, F) will denote the space of bounded, linear, everywhere defined operators
from E to E. A strongly continuous semigroup on E is a family T'(¢), t > 0,
of everywhere defined (possibly nonlinear) operators from FE to E, satisfying
T(t+s)=T(t)T(s), s,t >0, and T(¢) z is continuous as a function from [0, co)
to E for each fixed x € E. The infinitesimal generator A of T'(t), ¢t > 0, is the
function from E to E defined by Az = limy_o, T(t)tx_x, with domain D(A) the
set, of all x for which this limit exists.

We will be dealing with the abstract ordinary functional differential equation
in F, of the form

du(t)
(1.1) dt
Uy = @ .

+ Au(t) = F(t,ut), t>0,

We will make the following assumptions on the operator A:

(A1) Ais closed, densely defined linear operator in E, and — A is the infinites-
imal generator of an analytic semigroup 7T'(¢), t > 0, satisfying

|T(t) x| < pe||z|| for t >0, z€E,

where p and « are real constants.

Moreover we shall need assumptions on the fractional power A% of A:
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(A2) For a € [0,1), |[A*T(t) x| < pat=2e||z|, for t > 0, x € E, where pq
is a real positive constant;

(A3) A~® € B(E,FE); so E,:=D(A%) is a Banach space when endowed with
the norm ||z||, = ||A% || for z € Eg;

(A4) A™® satisfies ||[T'(t) —I]A™?|| < vg t® for t > 0, where v, is a real positive
constant;

(A5) T'(t) is compact for each ¢ > 0.

C, will denote the Banach space of continuous functions C([—r,0]; E,) with
the norm |||, = sup{||A% )| : 0 € [-r,0]}. F is supposed to satisfy the
assumption:

(F1) F: D — FE is continuous, where D is an open set in IR x Cj,.

To conclude this section we give the definitions of the terms “mild” and
“strong” solution of (1.1): as is well known, to (1.1) corresponds the following
integral equation,

(1.2) u(t) =Tt — o) e(0) + /: T(t—s)F(s,us)ds, te€[o,0+n,),

Uy = @, te[-r0].
Then
i) u is a mild solution of (1.1), if it satisfies (1.2) and u € C([c—r,04+ny); E,);

ii) u is a strong solution of (1.1) if it satisfies (1.2) and u € C([o — r,
U—Fnso);Ea)ﬂCl((a,a—Fmp);E).

2 — Main results

We shall establish the proofs of our main results in a series of lemmata:

Lemma 2.1 (Local existence). Suppose that (Al), (A2), (A3), (A4), (A5)
and (F1) hold. For each (o, ) € D there exists n, > 0, such that the problem

du(t)
(2.1) dt

UO':QO7

+ Au(t) = F(t,u), telfo,0+ny,),

has a mild solution.

The proof can be found in [13].
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Now let F' be w-periodic in t, i.e.

(F2) There exists w > 0: F(t +w,9) = F(t,%),t € RT, ¢ € C,.

In order to be able to discuss periodicity of solutions, we need a continuation
result:

Lemma 2.2 (continuation of solutions). Suppose that (A1) to (A5) hold
and that (F1) is substitued by the stronger hypothesis

(F3) F: D — E is continuous, and maps closed, bounded sets of D into
bounded sets in E.

Let u defined on [0 — r,T) be a non-continuable beyond T' solution of (2.1).
Then either T' = +o00, or
for any closed, bounded set W in D, there is a t,, such that
(t,us) ¢ W for t, <t <T.

Proof: The idea of the proof is that of Theorem 3.2 of [5], and is performed
along the lines of the proof of Proposition 3.1 of [13]. The details follow: assume
T < 4o00. Let us suppose, for contradiction, that the conclusion of the Lemma
is not correct. Then we can find a closed, bounded set W in D such that for
c<t<T, (tiu) eW.

Denote by £ the sup{F(t,v): (t,4) € W}. Then

ut + h) = ut H |(@(R) = 1) A== AP ()|
t+h
+ H/t A*T(t+h—s) F(s,us)dsH
U P D)l + 15 o max(1, €T R

fora< pf < 1andt,t+he€ (0,T), h>0.
On the other hand,

lut)lg < AP~ T(t - o) A

T(t—s) F(s,us dsH
guﬁ_aev“—%—a)a—ﬂnsouaws [ersoas,
0

whereby ||u(t)|| 3 is bounded on compact subsets of (o,T"). Therefore

|t + k) = u(t)

<kh?,
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for suitable 6 = 6(a, 3), and hence u is uniformly continuous on [0 — r,T'), thus
establishing the existence of lim;,pu(t). In this way, u can be continuously
extended to [0 — r,T]. But (T,ur) € D, and so there exists a solution through
(T, ur) beyond T, contradicting the hypothesis of the Lemma. u

If we consider F' defined on [0,00) x C,, then we can directly prove the fol-
lowing:

Corollary 2.1. Suppose that all hypothesis of Lemma 2.2 are valid. Then,
either T'= +oo, or if T' < 400 then

(2.2) limsup ||ue]|c, = +o0 .
t—T—

Under the assumptions of Corollary 2.1, it follows that there exists a global
solution, provided

lim sup |lut)|c, < +o00 .
t—T—

We shall also need the following

Lemma 2.3. Let A satisfy (Al) and consider the initial value problem

du(t) B
(2.3) 7 + Au(t) = g(t), t>0,
u(0) = =z, rekl,

where g is an E-valued continuous function. Then (2.3) has a unique mild solu-
tion.

For a proof see [9], p. 106.

Now we consider the problem

du(t) B
2.4 C o Ault) = F(tu)
u0) =¢,

and we suppose that it has a global solution u(t).
We also consider the initial value problem for the inhomogeneous ordinary
differential equation

dz(t)

(2.5) dt
2(0) = u(0) .

+ Az(t) = F(t,u) ,
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By Lemma 2.3, the problem (2.5) has a unique mild solution z(¢). Let
P: C([-r,ny.l; Eq) — E be the Poincar mapping, defined by

(2.6) Pu=zw) .

Finally, consider the initial value problem,

du(t)
(2.7) dt
u(0) = Pu ,

+ Au(t) = F(t,uy) ,

which — by Lemma 2.3 — has, also, a unique mild solution u(t).
Let S: C ([—r,ny); Eq) — C ([-7,n,]; E) be the mapping defined by

Su=u.

We are now in a position to state and prove the basic tool for the proof of our
main results.

Lemma 2.4. The problem (2.4) has a periodic solution if and only if the
mapping S has a fixed point.

Proof: Let u be an w-periodic solution of (2.4). Then wu is, clearly, an w-
periodic solution of (2.5) and hence Pu = u(w). Since u is w-periodic u(0) = u(w),
and therefore u(0) = Pu, whereby u satisfies (2.7) and so Su = u. Conversely,
let u be a fixed point of S. By definition, u satisfies (2.5) and since u(0) = z(0),
Lemma 2.3 shows that u(t) = z(¢) and hence u(w) = z(w). Since Su = u, (2.7)
gives u(0) = Pu = z(w). We have thus concluded that u(0) = u(w). But F
is w-periodic, and therefore u(t) = u(t + w), t € R, i.e. (2.4) has a periodic
solution. m

To finish up, we have:

Lemma 2.5. Let Q be the set defined by
Q={ceC(l=rngli Ea): € =0, [&llc, <7 fort € [0,n,]} .

Then the mapping S: Q — C ([—r,ny]; Eq) has at least one fixed point.

In order to prove Lemma 2.5 one can use Schauder’s fixed point theorem. It
therefore suffices to show that S maps @ into itself, S is continuous, and S(Q) is
relatively compact. These follow as in the proof of Lemma 2.1, of which Lemma
2.5 consists a restatement.
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The proof of the following theorem is a direct combination of the previous
lemmata.

Theorem 2.1. Consider the problem (2.4):

du(t)
dt
Uup = ¢,

+ Au(t) = F(t,uy) ,

and let A satisfy (A1) to (A5) and F satisfy (F2) and (F3), with D = [0, 00) X C,.
Let, moreover, u defined on [0 — r,T) satisfy

(2.8) lim sup||utlc, < 400 .

t—T—

Then (2.4) has an w-periodic mild solution.

We proceed to investigating under what conditions the mild solutions of (2.4)
are actually strong solutions. Arguing as in [13], it is easy to prove the following:

Theorem 2.2. Consider (2.4), and suppose that A satisfies (A1) to (A5),
while F' satisfies (F2), (F3) with D = [0, 00) x Cy, and

(F4) There exist constants A > 0 and 6 € (0, 1] such that

HF(tlﬂh) — F(t2,¢2)H < )\{\h — o]’ + |l — %Heca}

holds in a neighbourhood A of any point of D for which (t1,1), (t2,%2) €
A.

Let w satisfy (2.8). Then every w-periodic mild solution of (2.4) is an
w-periodic strong solution of (2.4).

We are concluding this section with a result concerning the positivity of solu-
tions of (2.4). Its proof follows from standard arguments and is omitted for the
sake of brevity.

Theorem 2.3. Suppose, additionally, that E is a partially ordered Banach
space with a closed cone E™. If F is positive, the semigroup T'(t) is positive, and
o € Ct, where CT ={h € C: h(t) € E* Vt € [-r,0]} then the w-periodic mild
(cf. Theorem 2.1) or strong (cf. Theorem 2.2) solutions of (2.4) are positive.
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3 — Application to parabolic partial functional differential equations

In this last section, we shall apply the results of Section 2 to the following
problem, whose autonomous analogue is studied in [13]. Consider the problem

(3.1) (@, ) = tga(2,8) + f(t,u(z,t = 1), ug(z,t = 1))
where (z,t) € [0,7] x R, r € R", and

u(0,t) = u(m,t) =0, t>0,
(3.2)

u(z,t) = g(x,t), (x,t) € [0,7] x [—r,0] .

Let f: RT x R x IR — IR be continuous in its first and second variables and
Lipschitz continuous in its third variable, satisfying f(0,0,0) = 0.
Assume that f satisfies, moreover,

(3.3) [F (& & m)| < k(E) (L+ 1€+ Inl)

where k() is continuous on (o, c0).
Such a condition has been considered by other authors as well, (e.g. see [6]).
We suppose that f is w-periodic in ¢:

(3-4) fE+w,&n) = ft,&n), ¢=0.
Let E = L?([0,7]) and let A: E — E be defined by
Az =-2",

D(A) = {ZEE: z, 2 are absolutely continuous, z” € F and z(O):z(w):O}.

Let a,n(T) = (%)1/2 sinmT, m =1,2,..., be the orthonormal set of eigenvectors
of A, and so

Az = Z m*(2, am) am, 2 € D(A) .

m=1
It is well known that —A is the infinitesimal generator of an analytic semigroup
T(t), t >0, in E, given by

o
T(t)z = Z e_mQt(z, am) G, 2€E.
m=1
This T'(t) satisfies the inequality in (A1) with 4 > 1, v > —1. Since

o
AV2T() 2 = Z me_mQt(z,am) am, z2€FE,
m=1
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and
|AY2T () 2| < sup{m? e Y2, z€ B
m2>

and, moreover,

1
tm2 e 2tm*+7) < )
e = 2¢(1+7)
A satisfies (A2) with a = %, 1<y <0, pyyp = W On the other hand,
since
<1
A7V2, = Z—(z,am)am, zeFE,
m=1 m
and
<1
A1/2T ZE zam)am, zeFE,
m=1
we have
2
e - a2 < sup{ s - 2 e
m>1
and since
]. _ 2t 2 t
mz e =g

(A3) is satisfied, as well as (A4) with v;/, = i

Noting that the eigenvalues of A'/? are )\m = %, we have that A=1/2 is
compact. But this is a necessary and sufficient condition for an analytic semigroup
T(t), t > 0 to be compact, and hence (Ab) is also satisfied.

Now, let F': RT x C1/2 — E be defined by

Ft o)) = f (. o(=r)(@), o(~r)(@)), @€ Cipp, z€[0,].

Since f is continuous in its first and second variables and Lipschitz continuous
in the third, and since z € D(AY?) implies that z is absolutely continuous and
7' € E, F is well defined.

To prove the continuity of F, it suffices to show that the mapping
¢: RT x Cyjy = R" x E x E defined by

1s continuous.
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Indeed, we observe that

1= = ea=n), = [[er(=n@) — pal-r)()| ar
_ ni (p1(=r) = pa(-1). am>2
< 3" m2(1(=1) — pal—r).an)’
< 7!7!1”2 — o)

H @2”01/2 ’

while, on the other hand
2 ™
o=

(1(=r) = wa(=1),am) (21(=7) = w2(=7), ax) (@, af)

~

H%(—T)' — pa(—T) o1 (1) (T) — cpg(—r)’(T)‘ dt =

I
NE
NE

3
I
s
o
i
H

I
hE
hE

(w1(=r) = pa(=r),am) (1(=r) = pa(=r), ax) (=a,, ar)

3
l
e
Il

1

(01(=) — ga(=r), ) 2

[
hE

3
I

=421 (=) = 2 (-0
<1 — @2”%1/2 )

thus proving the referred to continuity.
By (3.3) it follows that F' satisfies

IEE N < k() (1+ ¢lle,. )

whereby we have that F' maps closed, bounded subsets of R* x C} /2 into bounded
sets of L2([0, 7).

It remains to show that the solutions of ((3.1), (3.2)) are defined globally. This
can fail only if there exist t, — T' < oo, such that [lu,|c,, — oo. However,
since

ludlc,, = sup{ 1A 2u(®)]: 6 € [-r,0]}
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and u satisfies (1.1), we have

lutllcy, < [AY24T(t — o) A%(0)]| +|

t
/A1/2T(t—s)F(s,us)dsH <

t
< M1/2—a(t i O_)a—l/2 6’)’(t—a)||g||ca + / HAl/Q T(t — S)H /{3(5) (1 + ||US||Cl/2) ds

for v € (=1,0), p1/2—q € R, a € [0,1/2).
By Gronwall’s inequality, it follows that ||u||c, , remains bounded as t — T'.
We have, therefore, passed in the setting of Section 2, and Theorem 2.1 ensures
that the equation (3.1) with data (3.2), and f satisfying the aforementioned
assumptions, prossesses an w-periodic mild solution.
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