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PERIODIC SOLUTIONS TO RETARDED AND PARTIAL
FUNCTIONAL DIFFERENTIAL EQUATIONS

Panaiotis K. Pavlakos and Ioannis G. Stratis

Abstract: The existence of mild and strong periodic solutions to a retarded func-

tional differential equation in a Banach space is established upon the condition that the

non-linear term is periodic. These results are then applied to a class of parabolic partial

functional differential equations.

0 – Introduction

In this note we are interested in studying periodicity questions concerning
“different kinds” (mild, strong) of solutions to the retarded functional differential
equation

(0.1)

du(t)

dt
+Au(t) = F (t, ut) , t > 0 ,

u0 = ϕ ,

where A is the infinitesimal generator of a semigroup of linear operators T (t),
t ≥ 0 and F is nonlinear, satisfying assumptions to be specified in the subsequent
section, and periodic.
Moreover, the results related to the above RFDE will serve as a basis in

establishing existence of periodic solutions for the partial functional differential
equation

(0.2) vt(x, t) = vxx(x, t) + f
(

t, v(x, t− r), vx(x, t− r)
)

, (x, t) ∈ [0, π]× IR+ ,

satisfying conditions of the form

(0.3) v(0, t) = v(π, t) = 0 and v(x, t) = ϕ(x, t) , t ∈ [−r, 0] ,

for suitable f .
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Periodicity problems for functional differential equations have been studied by
many authors, see for example, [1], [5], [7], and the references therein. Travis and
Webb [12], [13] have studied the problems of existence (and stability) of solutions
of (0.1), using methods derived from the fundamental results of Segal [11].

Section 1 contains definitions and preliminaries to be used in the subsequent
development. In Section 2 we establish the main results, assuming that the
forcing term F is periodic. In Section 3, we use the results of Section 2 to study
the equation ((0.2), (0.3)).

1 – Notation and preliminaries

Throughout this paper E will denote a Banach space over a real or complex
field with norm ‖·‖. C :=C([−r, 0];E) will denote the Banach space of continuous
E-valued functions on [−r, 0], with the supremum norm, r being a positive real
number. If u is a function with domain [σ − r, σ + b), then for any t ∈ [σ, σ + b),
ut will denote the element of C, defined by ut(θ) = u(t + θ), −r ≤ θ ≤ 0.
B(E,E) will denote the space of bounded, linear, everywhere defined operators
from E to E. A strongly continuous semigroup on E is a family T (t), t ≥ 0,
of everywhere defined (possibly nonlinear) operators from E to E, satisfying
T (t+ s) = T (t)T (s), s, t ≥ 0, and T (t)x is continuous as a function from [0,∞)
to E for each fixed x ∈ E. The infinitesimal generator A of T (t), t ≥ 0, is the

function from E to E defined by Ax = limt→0+

T (t)x−x
t , with domain D(A) the

set of all x for which this limit exists.

We will be dealing with the abstract ordinary functional differential equation
in E, of the form

(1.1)

du(t)

dt
+Au(t) = F (t, ut) , t > 0 ,

u0 = ϕ .

We will make the following assumptions on the operator A:

(A1) A is closed, densely defined linear operator in E, and −A is the infinites-
imal generator of an analytic semigroup T (t), t ≥ 0, satisfying

‖T (t)x‖ < µeγt ‖x‖ for t > 0, x ∈ E ,

where µ and γ are real constants.

Moreover we shall need assumptions on the fractional power Aa of A:



PERIODIC SOLUTIONS TO RETARDED AND PARTIAL FUNCT. DIFF. EQ. 273

(A2) For a ∈ [0, 1), ‖Aa T (t)x‖ ≤ µa t
−a eγt‖x‖, for t > 0, x ∈ E, where µa

is a real positive constant;

(A3) A−a ∈ B(E,E); so Ea :=D(A
a) is a Banach space when endowed with

the norm ‖x‖a = ‖A
a x‖ for x ∈ Ea;

(A4) A−a satisfies ‖[T (t)−I]A−a‖ ≤ va t
a for t > 0, where va is a real positive

constant;

(A5) T (t) is compact for each t > 0.

Ca will denote the Banach space of continuous functions C([−r, 0];Ea) with
the norm ‖ϕ‖ca = sup{‖A

a ϕ(θ)‖ : θ ∈ [−r, 0]}. F is supposed to satisfy the
assumption:

(F1) F : D → E is continuous, where D is an open set in IR× Ca.

To conclude this section we give the definitions of the terms “mild” and
“strong” solution of (1.1): as is well known, to (1.1) corresponds the following
integral equation,

(1.2)
u(t) = T (t− σ)ϕ(0) +

∫ t

σ
T (t− s)F (s, us) ds, t ∈ [σ, σ + nϕ) ,

uσ = ϕ, t ∈ [−r, 0] .

Then

i) u is a mild solution of (1.1), if it satisfies (1.2) and u ∈ C([σ−r, σ+nϕ);Ea);

ii) u is a strong solution of (1.1) if it satisfies (1.2) and u ∈ C([σ − r,
σ + nϕ);Ea) ∩ C

1((σ, σ + nϕ);E).

2 – Main results

We shall establish the proofs of our main results in a series of lemmata:

Lemma 2.1 (Local existence). Suppose that (A1), (A2), (A3), (A4), (A5)
and (F1) hold. For each (σ, ϕ) ∈ D there exists nϕ > 0, such that the problem

(2.1)

du(t)

dt
+Au(t) = F (t, ut) , t ∈ [σ, σ + nϕ) ,

uσ = ϕ ,

has a mild solution.

The proof can be found in [13].
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Now let F be ω-periodic in t, i.e.

(F2) There exists ω > 0: F (t+ ω, ψ) = F (t, ψ), t ∈ IR+, ψ ∈ Ca.

In order to be able to discuss periodicity of solutions, we need a continuation
result:

Lemma 2.2 (continuation of solutions). Suppose that (A1) to (A5) hold
and that (F1) is substitued by the stronger hypothesis

(F3) F : D → E is continuous, and maps closed, bounded sets of D into
bounded sets in E.

Let u defined on [σ − r, T ) be a non-continuable beyond T solution of (2.1).
Then either T = +∞, or

for any closed, bounded set W in D, there is a tw such that

(t, ut) /∈W for tw ≤ t < T .

Proof: The idea of the proof is that of Theorem 3.2 of [5], and is performed
along the lines of the proof of Proposition 3.1 of [13]. The details follow: assume
T < +∞. Let us suppose, for contradiction, that the conclusion of the Lemma
is not correct. Then we can find a closed, bounded set W in D such that for
σ ≤ t < T , (t, ut) ∈W .

Denote by ξ the sup{F (t, ψ) : (t, ψ) ∈W}. Then

∥

∥

∥u(t+ h)− u(t)
∥

∥

∥

a
≤
∥

∥

∥(T (h)− I)A−(β−a)Aβ u(t)
∥

∥

∥

+
∥

∥

∥

∫ t+h

t
Aa T (t+ h− s)F (s, us) ds

∥

∥

∥

≤ vβ−a h
β−a‖u(t)‖β +

ξ

1− a
µamax(1, e

γT )h1−a

for a < β < 1 and t, t+h ∈ (σ, T ), h > 0.

On the other hand,

‖u(t)‖β ≤
∥

∥

∥Aβ−a T (t− σ)Aa ϕ(0)
∥

∥

∥+
∥

∥

∥

∫ t

σ
Aβ T (t− s)F (s, us) ds

∥

∥

∥

≤ µβ−a e
γ(t−σ)(t− σ)a−β‖ϕ‖a + µβ ξ

∫ t−a

0
eγs s−β ds ,

whereby ‖u(t)‖β is bounded on compact subsets of (σ, T ). Therefore

∥

∥

∥u(t+ h)− u(t)
∥

∥

∥

a
≤ k hθ ,
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for suitable θ = θ(a, β), and hence u is uniformly continuous on [σ − r, T ), thus
establishing the existence of limt→T u(t). In this way, u can be continuously
extended to [σ − r, T ]. But (T, uT ) ∈ D, and so there exists a solution through
(T, uT ) beyond T , contradicting the hypothesis of the Lemma.

If we consider F defined on [σ,∞) × Ca, then we can directly prove the fol-
lowing:

Corollary 2.1. Suppose that all hypothesis of Lemma 2.2 are valid. Then,
either T = +∞, or if T < +∞ then

(2.2) lim sup
t→T−

‖ut‖Ca = +∞ .

Under the assumptions of Corollary 2.1, it follows that there exists a global
solution, provided

lim sup
t→T−

‖ut‖Ca < +∞ .

We shall also need the following

Lemma 2.3. Let A satisfy (A1) and consider the initial value problem

(2.3)

du(t)

dt
+Au(t) = g(t), t > 0 ,

u(0) = x, x ∈ E ,

where g is an E-valued continuous function. Then (2.3) has a unique mild solu-
tion.

For a proof see [9], p. 106.

Now we consider the problem

(2.4)

du(t)

dt
+Au(t) = F (t, ut) ,

u(0) = ϕ ,

and we suppose that it has a global solution u(t).

We also consider the initial value problem for the inhomogeneous ordinary
differential equation

(2.5)

dz(t)

dt
+Az(t) = F (t, ut) ,

z(0) = u(0) .



276 P.K. PAVLAKOS and I.G. STRATIS

By Lemma 2.3, the problem (2.5) has a unique mild solution z(t). Let
P : C ([−r, nϕ];Ea)→ E be the Poincar mapping, defined by

(2.6) P u = z(ω) .

Finally, consider the initial value problem,

(2.7)

du(t)

dt
+Au(t) = F (t, ut) ,

u(0) = P u ,

which – by Lemma 2.3 – has, also, a unique mild solution u(t).

Let S : C ([−r, nϕ];Ea)→ C ([−r, nϕ];E) be the mapping defined by

S u = u .

We are now in a position to state and prove the basic tool for the proof of our
main results.

Lemma 2.4. The problem (2.4) has a periodic solution if and only if the
mapping S has a fixed point.

Proof: Let u be an ω-periodic solution of (2.4). Then u is, clearly, an ω-
periodic solution of (2.5) and hence Pu = u(ω). Since u is ω-periodic u(0) = u(ω),
and therefore u(0) = Pu, whereby u satisfies (2.7) and so Su = u. Conversely,
let u be a fixed point of S. By definition, u satisfies (2.5) and since u(0) = z(0),
Lemma 2.3 shows that u(t) ≡ z(t) and hence u(ω) = z(ω). Since Su = u, (2.7)
gives u(0) = Pu = z(ω). We have thus concluded that u(0) = u(ω). But F
is ω-periodic, and therefore u(t) = u(t + ω), t ∈ IR+, i.e. (2.4) has a periodic
solution.

To finish up, we have:

Lemma 2.5. Let Q be the set defined by

Q =
{

ξ ∈ C([−r, nϕ];Ea) : ξ0 = 0, ‖ξt‖Ca ≤ γ fort ∈ [0, nϕ]
}

.

Then the mapping S : Q→ C ([−r, nϕ];Ea) has at least one fixed point.

In order to prove Lemma 2.5 one can use Schauder’s fixed point theorem. It
therefore suffices to show that S maps Q into itself, S is continuous, and S(Q) is
relatively compact. These follow as in the proof of Lemma 2.1, of which Lemma
2.5 consists a restatement.
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The proof of the following theorem is a direct combination of the previous
lemmata.

Theorem 2.1. Consider the problem (2.4):

du(t)

dt
+Au(t) = F (t, ut) ,

u0 = ϕ ,

and let A satisfy (A1) to (A5) and F satisfy (F2) and (F3), with D = [σ,∞)×Ca.
Let, moreover, u defined on [σ − r, T ) satisfy

(2.8) lim sup
t→T−

‖ut‖Ca < +∞ .

Then (2.4) has an ω-periodic mild solution.

We proceed to investigating under what conditions the mild solutions of (2.4)
are actually strong solutions. Arguing as in [13], it is easy to prove the following:

Theorem 2.2. Consider (2.4), and suppose that A satisfies (A1) to (A5),
while F satisfies (F2), (F3) with D = [σ,∞)× Ca, and

(F4) There exist constants λ > 0 and θ ∈ (0, 1] such that

∥

∥

∥F (t1, ψ1)− F (t2, ψ2)
∥

∥

∥ ≤ λ
{

|t1 − t2|
θ + ‖ψ1 − ψ2‖

θ
Ca

}

holds in a neighbourhood Λ of any point ofD for which (t1, ψ1), (t2, ψ2) ∈
Λ.

Let u satisfy (2.8). Then every ω-periodic mild solution of (2.4) is an
ω-periodic strong solution of (2.4).

We are concluding this section with a result concerning the positivity of solu-
tions of (2.4). Its proof follows from standard arguments and is omitted for the
sake of brevity.

Theorem 2.3. Suppose, additionally, that E is a partially ordered Banach
space with a closed cone E+. If F is positive, the semigroup T (t) is positive, and
ϕ ∈ C+, where C+ = {h ∈ C : h(t) ∈ E+ ∀t ∈ [−r, 0]} then the ω-periodic mild
(cf. Theorem 2.1) or strong (cf. Theorem 2.2) solutions of (2.4) are positive.
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3 – Application to parabolic partial functional differential equations

In this last section, we shall apply the results of Section 2 to the following
problem, whose autonomous analogue is studied in [13]. Consider the problem

(3.1) ut(x, t) = uxx(x, t) + f
(

t, u(x, t− r), ux(x, t− r)
)

,

where (x, t) ∈ [0, π]× IR+, r ∈ IR+, and

(3.2)
u(0, t) = u(π, t) = 0, t ≥ 0 ,

u(x, t) = g(x, t), (x, t) ∈ [0, π]× [−r, 0] .

Let f : IR+ × IR × IR → IR be continuous in its first and second variables and
Lipschitz continuous in its third variable, satisfying f(0, 0, 0) = 0.
Assume that f satisfies, moreover,

(3.3) |f(t, ξ, η)| ≤ k(t) (1 + |ξ|+ |η|) ,

where k( · ) is continuous on (σ,∞).
Such a condition has been considered by other authors as well, (e.g. see [6]).
We suppose that f is ω-periodic in t:

(3.4) f(t+ ω, ξ, η) = f(t, ξ, η) , t ≥ 0 .

Let E = L2([0, π]) and let A : E → E be defined by

Az = −z′′ ,

D(A) =
{

z∈E : z, z′ are absolutely continuous, z′′ ∈ E and z(0)=z(π)=0
}

.

Let am(T ) = (
2
π )

1/2 sinmT , m = 1, 2, . . ., be the orthonormal set of eigenvectors
of A, and so

Az =
∞
∑

m=1

m2(z, am) am , z ∈ D(A) .

It is well known that −A is the infinitesimal generator of an analytic semigroup
T (t), t ≥ 0, in E, given by

T (t) z =
∞
∑

m=1

e−m
2t(z, am) am , z ∈ E .

This T (t) satisfies the inequality in (A1) with µ ≥ 1, γ ≥ −1. Since

A1/2 T (t) z =
∞
∑

m=1

me−m
2t(z, am) am , z ∈ E ,
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and

‖A1/2 T (t) z‖2 ≤ sup
m≥1

{m2 e−2m2t} ‖z‖2 , z ∈ E ,

and, moreover,

tm2 e−2t(m2+γ) ≤
1

2e(1 + γ)
.

A satisfies (A2) with a = 1
2 , −1 < γ < 0, µ1/2 =

1
(2e(1+γ))1/2 . On the other hand,

since

A−1/2z =
∞
∑

m=1

1

m
(z, am) am , z ∈ E ,

and

A−1/2 T (t) z =
∞
∑

m=1

1

m
e−m

2t(z, am) am , z ∈ E ,

we have
∥

∥

∥(T (t)− I)A−1/2z
∥

∥

∥

2
≤ sup

m≥1

{

1

m2
(e−m

2t − 1)2
}

‖z‖2

and since
1

m2
(e−m

2t − 1)2 ≤
t

2

(A3) is satisfied, as well as (A4) with v1/2 =
√

2
2 .

Noting that the eigenvalues of A1/2 are λm = 1
m , we have that A

−1/2 is
compact. But this is a necessary and sufficient condition for an analytic semigroup
T (t), t > 0 to be compact, and hence (A5) is also satisfied.

Now, let F : IR+ × C1/2 → E be defined by

F (t, ϕ)(x) = f
(

t, ϕ(−r)(x), ϕ(−r)′(x)
)

, ϕ ∈ C1/2, x ∈ [0, π] .

Since f is continuous in its first and second variables and Lipschitz continuous
in the third, and since z ∈ D(A1/2) implies that z is absolutely continuous and
z′ ∈ E, F is well defined.

To prove the continuity of F , it suffices to show that the mapping
φ : IR+ × C1/2 → IR+ × E × E defined by

φ(t, ϕ) = (t, ϕ(−r), ϕ(−r)′)

is continuous.
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Indeed, we observe that

∥

∥

∥ϕ1(−r)− ϕ2(−r)
∥

∥

∥

2

E
=

∫ π

0

∣

∣

∣ϕ1(−r)(T )− ϕ2(−r)(T )
∣

∣

∣

2
dT

=
∞
∑

m=1

(

ϕ1(−r)− ϕ2(−r), am
)2

≤
∞
∑

m=1

m2
(

ϕ1(−r)− ϕ2(−r), am
)2

≤
∥

∥

∥A1/2(ϕ1(−r)− ϕ2(−r))
∥

∥

∥

2

≤ ‖ϕ1 − ϕ2‖
2
C1/2

,

while, on the other hand

∥

∥

∥ϕ1(−r)
′ − ϕ2(−r)

′
∥

∥

∥

2

E
=

∫ π

0

∣

∣

∣ϕ1(−r)
′(T )− ϕ2(−r)

′(T )
∣

∣

∣ dt =

=
∞
∑

m=1

∞
∑

k=1

(

ϕ1(−r)− ϕ2(−r), am
) (

ϕ1(−r)− ϕ2(−r), ak
)

(a′m, a
′
k)

=
∞
∑

m=1

∞
∑

k=1

(

ϕ1(−r)− ϕ2(−r), am
) (

ϕ1(−r)− ϕ2(−r), ak
)

(−a′′m, ak)

=
∞
∑

m=1

(

ϕ1(−r)− ϕ2(−r), am
)2
m2

=
∥

∥

∥A1/2(ϕ1(−r)− ϕ2(−r))
∥

∥

∥

2

≤ ‖ϕ1 − ϕ2‖
2
C1/2

,

thus proving the referred to continuity.

By (3.3) it follows that F satisfies

‖F (t, ϕ)‖ ≤ k(t)
(

1 + ‖ϕ‖C1/2

)

,

whereby we have that F maps closed, bounded subsets of IR+×C1/2 into bounded
sets of L2([0, π]).

It remains to show that the solutions of ((3.1), (3.2)) are defined globally. This
can fail only if there exist tn → T < ∞, such that ‖utn‖C1/2

→ ∞. However,
since

‖ut‖C1/2
= sup

{

‖A1/2u(θ)‖ : θ ∈ [−r, 0]
}
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and u satisfies (1.1), we have

‖ut‖C1/2
≤
∥

∥

∥A1/2−a T (t− σ)Aag(0)
∥

∥

∥+
∥

∥

∥

∫ t

σ
A1/2 T (t− s)F (s, us) ds

∥

∥

∥ ≤

≤ µ1/2−a(t− σ)
a−1/2 eγ(t−a)‖g‖Ca +

∫ t

σ
‖A1/2 T (t− s)‖ k(s)

(

1 + ‖us‖C1/2

)

ds

for γ ∈ (−1, 0), µ1/2−a ∈ IR
+, a ∈ [0, 1/2).

By Gronwall’s inequality, it follows that ‖ut‖C1/2
remains bounded as t→ T .

We have, therefore, passed in the setting of Section 2, and Theorem 2.1 ensures
that the equation (3.1) with data (3.2), and f satisfying the aforementioned
assumptions, prossesses an ω-periodic mild solution.
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