
PORTUGALIAE MATHEMATICA

Vol. 51 Fasc. 2 – 1994

SOME DISTRIBUTIONAL PRODUCTS
WITH RELATIVISTIC INVARIANCE

C.O.R. Sarrico

Abstract: In [1, 2] we introduced a distribution product, invariant under the action

of compact Lie groups of linear transformations. This product has application to non-

relativistic physics. Here we present a general version of the product, invariant under

various groups, including the Lorentz group.

0 – Introduction

A Lorentz invariant product of distributions based in [1, 2] will imply the
existence of a Lorents invariant function α ∈ D(IR4) such that

∫

IR4 α = 1. If such
a function α exists, it will be invariant with the linear transformation defined by
the matrix.











ch θ 0 0 sh θ
0 1 0 0
0 0 1 0

sh θ 0 0 ch θ











with θ ∈ IR ,

which is the same to say that

α(x ch θ + t sh θ, y, z, x sh θ + t ch θ) = α(x, y, z, t) for all x, y, z, t ∈ IR .

If we fix a point (x0, y0, z0, t0) in the “space-time” we see that α is a constant
function on the line

(x, y, z, t) = (x0 ch θ + t0 sh θ, y0, z0, x0 sh θ + t0 ch θ) with θ ∈ IR .

This line is not bounded in IR4 because his projection on the xot-plane is the
hiperbole x2− t2 = x2

0− t20. Thus, the only function α ∈ D(IR
4) which is Lorentz

invariant is the zero-function and we cannot have
∫

IR4 α = 1.
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Hence, it is not possible to have a Lorentz invariant product of distributions
applying the theory of [1, 2]. In the following we define a family of distributional
products with relativistic invariance based in a generalization of the methods
of [1, 2] applying the concepts of order of growth and integral of a distribution
introduced by Sebastião e Silva [4, 5].

1 – Preliminaries on limits, integrals and orders of growth of distri-
butions

Let N ∈ IN = {1, 2, 3, . . .}. By C∞ we mean the set of complex valued distri-
butions of finite order defined on IRN . Recall the following concepts introduced
by J. Sebastião e Silva [4, 5].

1.1. Let f ∈ C∞ and λ ∈ C. We say that f(t1, . . . , tN ) converge to λ as
(t1, . . . , tN )→ (+∞, · · · ,+∞) and we write f(+∞, . . . ,+∞) = λ iff there exists
a sistem of integers r1, . . . , rN ≥ 0 and a continous complex valued function
F (t1, . . . , tN ) defined on IRN such that

a) Dr1
1 . . . Drn

N F (t1, . . . , tN ) = f(t1, . . . , tN ) on IRN ;

b) ∀ δ > 0 ∃L > 0: t1, . . . , tN > L ⇒

∣

∣

∣

∣

F (t1, . . . , tN )

tr11 · · · t
rN

N

−
λ

r1! · · · rN !

∣

∣

∣

∣

< δ.

Dk means the usual derivation operator relative to the variable tk. Note that
the concept of convergence when some variables converge to +∞ and others to
−∞ is analogous.

1.2. We can define the generalized De Barrow symbol [T (t1, . . . , tN )]
(v1,...,vN )
(u1,...,uN )

by setting

[

T (t1, . . . , tN )
](v1)

(u1)
= T (v1, t2, . . . , tN )− T (u1, t2, . . . , tN )

and
[

T (t1, . . . , tN )
](v1,...,vN )

(u1,...,uN )
=
[

T (t1, . . . , tN−1, vN )−T (t1, . . . , tN−1, uN )
](v1,...,vN−1)

(u1,...,uN−1)
.

Now, we will say that f ∈ C∞ is Silva-integrable on IRN iff there exists a
complex valued distribution T (t1, . . . , tN ) such that

a) D1 . . . DNT (t1, . . . , tN ) = f(t1, . . . , tN ) on IRN ;

b) All parcels of the distribution defined on IR2N by [T (t1, . . . , tN )]
(v1,...,vN )
(u1,...,uN )

converge as (v1, ..., vN )→(+∞, ...,+∞) and (u1, ..., uN )→(−∞, ...,−∞).
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In this case, we will write

∫

IRN
f = lim

(v1,...,vN )→(+∞,...,+∞)
(u1,...,uN )→(−∞,...,−∞)

[

T (t1, . . . , tN )
](v1,...,vN )

(u1,...,uN )

=
[

T (t1, . . . , tN )
](+∞,...,+∞)

(−∞,...,−∞)
.

For instance, with N = 1
∫

IR cos t = 0 in the sense of Silva, because cos t =
D sin t and [sin t]+∞

−∞ = sin(+∞)−sin(−∞). Meanwhile, sin(+∞) = 0 on account
of sin t = D[− cos t] and cos t

t
→ 0

1! as t→ +∞. Also sin(−∞) = 0.

1.3. f ∈ C∞ is bounded on IRN in the sense of Silva iff there exists a sistem
of integers r1, . . . , rN ≥ 0 and a complex valued continuous function F defined
on IRN such that

a) Dr1
1 . . . Drn

N F (t1, . . . , tN ) = f(t1, . . . , tN ) on IRN ;

b) For any invertible linear transformation A : IRN → IRN the function
F◦A(t1,...,tN )

t
r1
1
...t

rn
N

is bounded in the usual sense on the region |t1| > k, ..., |tN | > k

where k is a positive number.

Let α ∈ IR and f ∈ C∞. We write f ∈ O(‖t‖α) as ‖t‖ → ∞ in the sense
of Silva if there are f0 ∈ C∞ bounded in the sense of Silva and a number ε > 0
such that f(t) = ‖t‖α f0(t) when ‖t‖ > ε. Recall that the concept of bounded
distribution in the sense of Silva is more general that the same concept in the
sense of Schwartz [3].

2 – The family of products

Let G be a group of unimodular transformations L : IRN → IRN (| detL| = 1)
such that there exists a C∞-function α : IRN → C obeying the conditions:

a) α is G-invariant;

b) α ∈ O(‖t‖p) as ‖t‖ → ∞ with p < −N , in the sense of Silva;

c)
∫

α = 1.

(Unless otherwise specified, all integrals are over IRN and in the sense of
Silva.)

2.1 Definition. Let T ∈ D′ and U ∈ D′
n (D′

n denotes the space of distribu-
tions with nowhere dense support). We say that there exists the product of T by
U relative to the pair (G,α) iff
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d) For each x ∈ D there exists an integer p < −N such that

T [α ∗ (Ux)] ∈ O(‖t‖p) as ‖t‖ → ∞ in the sense of Silva ,

e) The functional x →
∫

T [α ∗ (Ux)] is continuous on D (endowed with the
usual topology),

and we call product of T by U relative to the pair (G,α), the distribution T .
α
U

defined by
〈

T .
α
U, x

〉

=

∫

T [α ∗ (Ux)] for all x ∈ D .

Note that if f ∈ C∞ ∩O(‖t‖
p) with p < −N then f is Silva integrable (see [4]).

This product verifies the distributive properties and is consistent with the
product of T ∈ D′ by U ∈ D′

n defined in [1, 2]. Indeed, if α ∈ D then 〈T .
α
U, x〉 =

〈T, α ∗ (Ux)〉 = 〈Tζ−1(U), x〉 which is the (G,α)-result we have obtained in [1,
2].

Observe that the family of products defined here is really more general than
that considered in [1, 2] in the sense that it can be applied to a wider class of
groups. For instance:

2.2 Proposition. Let G be the Lorentz group in the 4-dimensional space.
Then, there exists a C∞-function α : IR4 → C such that conditions a), b), c) are
verified.

Proof: Let α(x, y, z, t) = 1
π2i

ei(x
2+y2+z2−t2). It is obvious that α is Lorentz

invariant. To see that α verifies conditions b), let us note that xα = 1
2i Dxα and

for p = 2, 3, 4, . . ., xp α = 1
2i [Dx(x

p−1α)− (p− 1)xp−2α]. Thus, for p = 0, 1, 2, . . .,
xp α =

∑

j∈IN0
aj D

jα where only a finite number of aj ∈ C are different from
zero (IN0 = IN ∪ {0}). By a similar process we conclude that for q = 0, 1, 2, . . .,
yq α =

∑

`∈IN0
b`D

`
yα and so

xp yq zr ts α =
∑

(j,`,m,n)∈IN4

0

dj`mnD
j
xD

`
yD

m
z D

n
t α ,

where only a finite number of dj`mn ∈ C are different from zero.
But, for every invertible linear transformation A : IR4 → IR4 the function

α◦A(x,y,z,t)
xjy`zmtn

is bounded in the usual sense in some region |x| > x0, |y| > y0,

|z| > z0, |t| > t0 with x0, y0, z0, t0 > 0 and we conclude that xp yq zr ts α is
bounded on IR4 in the sense of Silva. Then, (x2 + y2 + z2 + t2)3 α is bounded on
IR4 in the same sense, which proves that

α ∈ O
(

‖(x, y, z, t)‖−6
)

as ‖(x, y, z, t)‖ → ∞ in the sense of Silva .
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Applying Theorem 14.2 of [4] we have

∫

IR4

α =
1

π2 i

(

∫

IR
eix

2

dx
) (

∫

IR
eiy

2

dy
) (

∫

IR
eiz

2

dz
) (

∫

IR
e−it

2

dt
)

= 1

because
∫

IR sin(x2) dx =
∫

IR cos(x2) dx = 2
√

π
8 are simply convergent integrals

(Fresnel’s integrals) and so the corresponding Silva-integrals exist and have the
same value.

Meanwhile, the product of this approach is certainly more restricted in what
concerns the left-hand side factor.

Applying 1.2 and 1.1 we can prove a proposition we need, which is an example
of the power of the concepts introduced by S. Silva in [4, 5].

2.3 Proposition. If f ∈ C∞ is Silva integrable on IRN , then all partial
derivatives of f are Silva integrable and the integral of anyone of them is zero.

Now we can prove the usual derivation rule.

2.4 Proposition. If T ∈ D′, U ∈ D′
n, there exists T .

α
U and one of the

products (DkT ) .
α
U or T .

α
(DkU) then there exists the other product and we

have

Dk(T .
α
U) = (DkT ) .

α
U + T .

α
(DkU) , k = 1, . . . , N .

Proof: Let x ∈ D. It is easy to prove that

Dk[T (α ∗ Ux)]− (DkT )(α ∗ Ux)− T [α ∗ (DkU)x] = T [α ∗ U(Dkx)] .

By assumption we have

∫

Dk[T (α ∗ Ux)]−

∫

(DkT ) (α ∗ Ux)−

∫

T [α ∗ (DkU)x] =

∫

T [α ∗ U(Dkx)] ,

the first term is zero by Proposition 2.3 and we can write

−
〈

(DkT ) .
α
U, x

〉

−
〈

T .
α
(DkU), x

〉

=
〈

T .
α
U,Dkx

〉

= −
〈

Dk(T .
α
U), x

〉

which proves the proposition.

This product is also invariant with translations and all transformations of G.

2.5 Proposition. If T ∈ D′, U ∈ D′
n, L ∈ G, a ∈ IRN and the product

T .
α
U exists, then:
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a) τa(T .
α
U) = (τaT ) .

α
(τaU);

b) (T .
α
U) ◦ L = (T ◦ L) .

α
(U ◦ L).

Proof: Let x ∈ D.

a)
〈

τa(T .
α
U), x

〉

=
〈

T .
α
U, τ−a x

〉

=

∫

T [α∗U(τ−a x)] =

∫

T τ−a[α∗(τa U)x]

and applying theorem 13.8 of [4] we can write
〈

τa(T .
α
U), x

〉

=

∫

(τa T ) [α ∗ (τaU)x] =
〈

(τaT ) .
α
(τaU), x

〉

and the invariance of the product with translations is proved.

b)
〈

T .
α
U ◦ L, x

〉

=
〈

T .
α
U, x ◦ L−1

〉

=

∫

T [α ∗ U(x ◦ L−1)]

=

∫

T
[

α ∗ (((U ◦ L)x) ◦ L−1)
]

and again by theorem 13.8 of [4] we can write
〈

T .
α
U ◦ L, x

〉

=

∫

(T ◦ L)
[

(α ∗ (((U ◦ L)x) ◦ L−1)) ◦ L
]

.

Noting that, if V is a distribution with compact support, α ∈ C∞ and L : IRN →
IRN is unimodular, then (α ∗ V ) ◦ L = (α ◦ L) ∗ (V ◦ L), we have
〈

T .
α
U ◦ L, x

〉

=

∫

(T ◦ L)
[

(α ◦ L) ∗ ((U ◦ L)x)
]

=

∫

(T ◦ L)
[

α ∗ ((U ◦ L)x)
]

=
〈

(T ◦ L) .
α
(U ◦ L), x

〉

,

which proves that the product is G-invariant.

3 – Examples and comments

3.1. Notice that if T is a distribution with compact support and U ∈ D′
n

then there exists always the product T .
α
U and we dont need the Silva integral

to compute it because, in this case we have
〈

T .
α
U, x

〉

=

∫

T (α ∗ Ux) =
〈

T (α ∗ Ux), 1
〉

=
〈

T, α ∗ Ux
〉

.

For instance, let G be the Lorentz group in IR4 and let α a C∞-function
obeying the conditions 2a), b), c). The product of two Dirac delta distributions
is easily obtained

〈

δ .
α
δ, x

〉

= 〈δ, α ∗ δx〉 = 〈δ, x(0) · α〉 = x(0)α(0) = 〈α(0)δ, x〉 .
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Thus, we can write δ .
α
δ = α(0) δ. Formally this is the same result we have

obtained in [1] 1.5.6 relative to a group of a more restricted class which does not
include the Lorentz group.

3.2. Let G be the Lorentz group in IR4, α a C∞-function obeying the
conditions 2a), b), c) and H the Heaviside function defined on IR4. We can
compute H .

α
δ where δ is the Dirac distribution defined on IR4 noting that

a) H(α ∗ δφ) = φ(0)Hα for all φ ∈ D(IR4) (now we reserve the x letter to
note the first coordinate of the generic point (x, y, z, t) of the “space-time”) and
Hα ∈ O(‖(x, y, z, t)‖p) in the sense of Silva when ‖(x, y, z, t)‖ → ∞ with p < −4
on account of condition 2b) for α.

b) The functional φ →
∫

IR4 φ(0)Hα is continuous on D(IR4) because Hα

is Silva-integrable on IR4 and so this functional is equal to the distribution
(
∫

IR4 Hα) δ.
Now, we will prove that

∫

IR4 Hα= 1
16 in the sense of Silva. Let R : IR4→ IR4 be

any one of the 16 transformations (x, y, z, t)→ (±x,±y±z,±t) and P (x, y, z, t) =
x2 + y2 + z2 − t2. We have P ◦ L = P for all Lorentz transformation L and so
P ◦ L ◦R = P ◦R = P which proves that L ◦R is also a Lorentz transformation
and condition 2a) yields α ◦ L ◦ R = α. Then α ◦ R = α which proves that α is
R-invariant. Putting A = {−1, 1} we can write α as sum of 16 terms

α(x, y, z, t) =
∑

(i,j,k,`)∈A4

α(x, y, z, t)H(ix, jy, kz, `t) ,

thus

1 =

∫

IR4

α =
∑

(i,j,k,`)∈A4

∫

IR4

α(x, y, z, t)H(ix, jy, kz, `t) dx dy dz dt

and it is easy to see that all terms of this sum are identical: for instance, applying
the change of variable x = −s, y = u, z = v, t = w in the Silva integral we have

∫

IR4

α(x, y, z, t)H(−x, y, z, t) dx dy dz dt =

=

∫

IR4

α(s, u, v, w)H(s, u, v, w) ds du dv dw .

Then
∫

IR4 Hα = 1
16 and it is proved that H .

α
δ = 1

16 δ is independent of the α
function.

3.3. It is possible to extend this product (and also the product defined in
[1, 2]) to a larger class of situations in a simple way. Let p be an integer ≥ 0 or
p = ∞ and D′p the space of distributions of order ≤ p in the sense of Schwartz
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[3]. If T ∈ D′p, S = β + U ∈ Cp ⊕D′
n and there exists T .

α
U in the sense of 2.1

we can always define T .
α
S putting T .

α
S = Tβ+T .

α
U where Tβ is the product

in the sense of Schwartz [3].
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