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MOTION OF A PARTICLE SUBMITTED TO DRY FRICTION
AND TO NORMAL PERCUSSIONS

M. Laghdir and Manuel D.P. Monteiro Marques

Abstract: We consider the one-dimensional dynamics of a particle moving on a mo-

bile plane with contact being kept and dry friction. The particle is submitted to normal

loading described not only by usual forces but also by a countable set of percussions. We

prove the existence of a solution to this problem by using some convex analysis methods

and measure theory.

1 – Introduction and formulation

We consider a particle moving on a line in a horizontal mobile rigid plane.
This plane may be materialized as a vibrating table. We assume that the contact
is being kept. The particle is submitted to normal loadings which are described
by usual forces and also by a countable set of percussions. These percussions
constitute in fact the originality of the problem. Their presence implies that the
velocity function t→ U(t) may fail to be differentiable or absolutely continuous.
Instead, we only expect it to have bounded variation. Classically, we associate
with U a scalar measure on an interval of time I, called differential measure of
U , and denoted by dU . The role of the acceleration is then held by a density of
the measure dU relative to some nonnegative real measure dθ as explained in the
sequel. The actions exerted on the particle, including the contact effects, are ex-
pressed as measures. This allows us to take into account the effect of percussions.
If all the actions are smooth and contact is kept, it is known that the velocity of
the particle is an absolutely continuous function. In that case, U is a solution of a
differential inclusion, which brings together Lagrange’s equations and Coulomb’s
friction law in the sense of J.J. Moreau [3]; the acceleration is constrained to
satisfy this inclusion on I except possibly on a Lebesgue null subset of I. In the
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case where the particle is subjected both to smooth and nonsmooth effects, using
the traditional equations of the dynamic of percussions, the Lagrange’s equations
with Coulomb’s friction law and the notion of differential measure, J.J. Moreau
([2], [3]) elaborated a synthetic formulation. This formulation gives the preceding
differential inclusion on all intervals where the velocity t → U(t) is sufficiently
smooth and it describes the shocks where the discontinuities of U occur. The sys-
tem which governs the nonsmooth motion of the particle, called also a measure
differential inclusion, is formulated as follows (see [3] and [4])

(Q)



































mdU = f dθ + P dt,

f(t) ∈ ∂ψ∗
ν(t)C(−U

+(t) + e(t)) dθ a.e.,

dRT = f dθ,

dRN = ν dθ,

U(t0) = 0 ,

where m denotes the mass of the particle, t→ U(t) and t→ e(t) denote respec-
tively the velocity of the particle and the transport velocity of the plane. The
latter is supposed known and lipschitzian. P is a given tangential force, measur-
able and bounded. We denote by U+(t) and U−(t) respectively the right and left
limits at t ∈ I (the presence of U+ in system (Q) is justified in [3]). The functions
t → f(t) and t → ν(t) are respectively the density of the tangential component
dRT and of the normal component dRN of the reaction dR with respect to the
measure dθ defined on I and specified in the sequel. The normal component of
the reaction is imposed, i.e. ν is given and by assumption it is a bounded function
of t. The set C is equal to [−γ, γ], where γ > 0 represents the friction coefficient
(here we consider only the case of isotropic friction). All functions considered
in this problem are defined from a time-interval I = [t0, t0 + T ] with t0 ∈ IR
and T > 0 and take their values in IR. The first and the second equation ex-
press respectively the fundamental law of percussional dynamics and Coulomb’s
friction law. The latter is expressed by means of convex analysis where ∂ψ∗

ν(t)C

denotes the subdifferential of the support function of the convex set ν(t)C. For
some details about the equivalence between the second equation of (Q) and the
classical formulation of Coulomb’s law see [3]. The unknowns of the problem (Q)
are U and f (related through the first equation).

In section 2, we introduce the percussion measure dµ and approximate it by
a finite number of percussions. In section 3, we solve (Q) in the absence of
percussions (dθ = dt, Lebesgue measure) and of tangential forces (P = 0). In
section 4, we show that there are solutions to the approximate problems (Qn) and
then in section 5 we prove that they converge to a solution to (Q). The general
case (P 6= 0) is evoked in section 6.
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2 – Definition of the measure dθ

Let us consider a countable subset D of I containing t0 and t0+T . Let (ai)i∈IN
be a summable family of positive real numbers i.e.

0 <
∞
∑

i=0

ai < +∞ with ai > 0 .

We define

dµ =
∑

ti∈D

ai δti ,

where δti is the Dirac measure located at the instant ti ∈ D with value ai. Then
dµ defines a Radon measure in the sense that it is a continuous linear form on
the space of all continuous functions which we denote by C(I, IR). Furthermore,
dµ is finite and positive. The measure dθ is then defined by

dθ = dµ+ dt ,

where dt denotes the Lebesgue measure on I. Let us consider the family (In)n∈IN
given by

In =
{

ti ∈ D | i ≤ n
}

∪
{

t0 + T
}

.

Obviously (In) is a nondecreasing sequence with respect to the order defined by
the set inclusion and we have, in addition,

⋃

n In = D. We denote by (dµn) and
(dθn) two sequences of Radon measures defined by

dµn =
∑

ti∈In

ai δti and dθn = dµn + dt .

Remark. The measure dµ expresses the effects of the percussions on the
particle; more precisely, at the instant ti ∈ D, the value of the percussion imposed
on the particle is measured by ai ν(ti), where ν is the density of the normal
reaction.

Proposition 2.1.

1) (dµn) is a nondecreasing sequence with respect to the usual ordering of
measures;

2)















dµn = µ′n dµ with µ′n ∈ L
1(I, IR, dµ),

µ′n = 1 on In,

µ′n = 0 on D − In;
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3) The sequence (dµn) converges strongly to dµ (i.e. relative to the norm
defined on the space of all scalar finite measures defined on I).

Proof: 1) and 2) are obvious.

3) Notice that

‖dµn − dµ‖ = ‖µ
′
n dµ− dµ‖ = ‖µ

′
n − 1‖L1(I,IR,dµ)

and that, as n→∞,

∫

I
|µ′n − 1| dµ =

∞
∑

i=0

ai |µ
′
n(ti)− 1| =

∞
∑

n+1

ai → 0

since the family (ai) is summable.

3 – Solution of system (Q) without percussions

The purpose of this section is to study as a preliminary step the case where
the particle is submitted only to smooth effects without percussions in some
subinterval [a, b]. The velocity t → V (t) of such motion is a smooth function,
and it must satisfy the following system (Q1)

(Q1)



















m
dV

dt
= g,

g(t) ∈ ∂ψ∗
ν(t)C(−V (t) + e(t)) dt a.e.,

V (a) = V0 ,

where t→ g(t) and t→ ν(t) defined on [a, b], are respectively the tangential and
normal components of the reaction exerted by the plane (in fact, a line) on the
particle. In this case, these components are not measures but usual functions.
The system (Q1) is a particular case of a certain class of parabolic evolution
problems whose general formulation is

(Q2)







−
dV

dt
∈ ∂F (t, V (t)) dt a.e.,

V (a) = V0 ,

where F : [a, b] × IR → ]− ∞,+∞] is a normal convex proper integrand. Let
us consider X = L1([a, b], IR, dt) and Y = L∞([a, b], IR, dt) and their traditional
duality denoted by X〈 〉Y . For all x ∈ X we define

IF (x) =







∫ b

a
F (t, x(t)) dt, if t→ F (t, x(t)) is dt-integrable,

+∞, otherwise .
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For all y ∈ Y , we define a function Sy by

Sy : t→ Sy(t) =

∫ t

a
y(s) ds .

The evolution problem (Q2), where V is an absolutely continuous function, is
equivalent by virtue of [5] to

−V ∈ ∂IF
(

V (a) + SV
)

.

We introduce here a minimization problem which is equivalent to (Q2). Let
S∗ denote the adjoint operator of S with respect to the duality X〈 〉Y and let K
be the positive quadratic form defined by

K(y) = 〈Sy, y〉 = 〈S∗y, y〉 =
1

2
〈(S∗ + S)y, y〉 ,

with y ∈ Y . K is convex and weakly l.s.c. on Y . Let G be the polar function of
F with respect to the duality X〈 〉Y . By virtue of [6] we know that if IF and IG
are proper (i.e. not identical to +∞), then their polar functions (IF )

∗ et (IG)
∗

are given by (IF )
∗ = IG and (IG)

∗ = IF . IF and IG are l.s.c. respectively on
X and Y relatively to any convex topology τ compatible with this duality. The
minimization problem which is equivalent to (Q2) was given in [5] and is recalled
here.

Proposition 3.1 [5]. Let J1 : Y → IR and J2 : Y → IR be two functionals
defined respectively by

J1(y) = IF (−Sy) + IG(y) + 〈Sy, y〉 ,

J2(y) = IG(y) + (IG+K)
∗(S∗y) .

a) J1 and J2 take both finite values. V is a solution to (Q2) if and only if J1
(resp. J2) attains on V a minimum, with value zero.

b) If there exists α ∈ Y such that IG(α) ∈ IR and IF is finite and continuous
at (−Sα) with respect to τ , then J2 admits at least a zero minimum on Y .

c) Let c be an element of X. If there exists α ∈ Y such that IG(α) ∈ IR and
IF is finite and continuous at (c−Sα) relative to τ then there exists u ∈ Y
such that u ∈ ∂IF (c− Su).

The aim of the following proposition is to write the second equation of (Q),
which holds dθ a.e., under another equivalent form expressed relative to the
duality X〈 〉Y , where now X = L1(I, IRn, dθ) and Y = L∞(I, IRn, dθ).
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Proposition 3.2. Let

F : I × IRn → ]−∞,+∞]

(t, x)→ F (t, x) = ψ∗
Γ(t)(x) ,

where Γ : I → IRn is a given measurable multifunction with nonempty convex
and compact values. Then

a) F is a convex normal integrand.

b) If we take H = {y ∈ L∞(I, IRn, dθ) | y(t) ∈ Γ(t) dθ a.e.} then we have

y(t) ∈ ∂ψ∗
Γ(t)(x(t)) dθ a.e. ⇔ y ∈ ∂ψ∗

H(x) .

Proof: a) It is easy to verify that ψ∗
Γ(t)(x) ∈ IR for all t ∈ I and x ∈ IR

n. By

virtue of [1] (theorem III.15, p. 70), the support function of Γ(t) is measurable
and the function F ∗

t : IR
n → IR, F ∗

t (x) = ψΓ(t)(x) with t being fixed, is convex.
Here ψΓ(t) denotes the indicator function. Since Γ takes bounded values in IR

n,
then for all t ∈ I, there exists M(t) ≥ 0 such that for all x, y ∈ IRn we have

∣

∣

∣ψ∗
Γ(t)(x)− ψ

∗
Γ(t)(y)

∣

∣

∣ ≤M(t) ‖x− y‖IRn .

Accordingly, lemma III.14, p. 70 of [1] shows that F is globally measurable.
Since Ft is convex, proper and continuous by virtue of [6], F is a convex normal
integrand.

b) Let us take

IF (x) =

∫

I
ψ∗
Γ(t)(x(t)) dθ(t) and IG(y) =

∫

I
ψΓ(t)(y(t)) dθ(t) .

Both IF : L
1(I, IRn, dθ) → IR and IG : L

∞(I, IRn, dθ) → IR take finite values
and by virtue of [6], (IF )

∗ = IG and IF = (IG)
∗. Moreover, we have by the same

result of [6]

y(t) ∈ ∂Ft(x(t)) dθ a.e. ⇔ y ∈ ∂IF (x) .

If we take H as indicated (the set of bounded selections of Γ) then we obtain
IG(y) = ψH(y) and IF (x) = (IG)

∗(x) = ψ∗
H(x). Hence

y(t) ∈ ∂ψ∗
Γ(t)(x(t)) dθ a.e. ⇔ y ∈ ∂ψ∗

H(x) .

The next corollary is formulated for a slightly more general ν than needed
here.
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Corollary 3.3. We consider

Γ: I → IRn

t→ ν(t)C ,

where C is a fixed nonempty compact interval of IR and ν = (ν1, ν2, ..., νn) defined
from I into IRn is assumed measurable and bounded on I. Γ is a measurable
multifunction and admits at least one selection belonging to L∞(I, IRn, dθ). If
we denote H = ν C then we have

y(t) ∈ ∂ψ∗
ν(t)C(x(t)) dθ a.e. ⇔ y ∈ ∂ψ∗

νC(x) .

Proof: Since Γ is a multifunction with nonempty convex compact values,
then, by virtue of [1] (theorem III.9, p. 67), Γ is measurable iff there exists a
sequence (σn)n∈IN of measurable selections of Γ such that

cl
{

σn(t) | n ∈ IN
}

= Γ(t)

(cl means the topological closure). For that, take B = Q∩C where Q is the set of
rational numbers. B may be written as a sequence (zn) since it is a countable set.
Let us consider σn = ν(t) zn. Clearly (σn) is a countable family of measurable
selections of Γ. For all t ∈ I we have

cl
{

σn(t) | n ∈ IN
}

= cl
{

ν(t) zn | n ∈ IN
}

= ν(t)C = Γ(t) .

If we take Z = −v+ e (here e is assumed to be a constant function), then the
system (Q1) will be transformed into an equivalent system in the interval [a, b]







−
dZ

dt
∈ ∂ψ∗

1
m
ν(t)C

(Z(t)) dt a.e.,

Z(a) = −V0 + e .

Let us define Γ(t) = 1
m
ν(t)C, which is a measurable multifunction (by corol-

lary 3.3). Thus, proposition 3.2 applies and so

(3.1) F (t, x) = ψ∗
1
m
ν(t)C

(x)

is a convex normal integrand. Moreover, (Q1) takes the form of (Q2). We solve
(Q2) by means of proposition 3.1. IF is a functional defined on L

1([a, b], IR, dt)
with finite values. By the previous results, the polar function of IF is exactly
ψH , the indicator function of the set

H =

{

ϕ ∈ L∞([a, b], IR, dt) | ϕ(t) ∈
1

m
ν(t)C dt a.e.

}

.
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Notice that the functional x→ IF (c− Sx), defined on L
∞([a, b], IR, dt) and with

c = −V0+e, is lipschitzian and that IG is finite on H. Then by proposition 3.1 c)
the problem (Q1) admits at least one solution V which is an absolutely continuous
function; in fact, its derivative is in L∞([a, b], IR, dt), so that V is lipschitzian.

4 – The approximated problem (Qn)

Now, we go back to problem (Q) and we apply to it an approximation method.
For that purpose let us consider the approximated problem (Qn) of (Q) defined
by

(4.1) mdUn = fn dθn,

(4.2) fn(t) ∈ ∂ψ
∗
ν(t)C(−U

+
n (t) + e) dθn a.e.,

Un(t0) = 0 ,























(Qn)

where

dθn = dµn + dt .

In, the support of the atomic measure dµn, is a finite set. Its elements are
λ0 < λ1 < λ2 < ... < λp with λ0 = t0 and λp = t0 + T . Let j ∈ {0, 1, ..., p}. By
integrating (4.1) on the singleton {λj} we get

(4.3) U+
n (λj) = U−

n (λj) +
aj

m
fn(λj) .

Here t → U+
n (t) and t → U−

n (t) denote respectively the right-continuous and
left-continuous regularized functions of Un, which are of bounded variation on
I, if Un is so. Here and below, we must treat slightly differently the special
cases of the endpoints. For j = 0, we consider U−

n (t0) :=Un(t0) = 0, so that

U+
n (t0) =

a0 fn(t0)
m

where fn(t0) = fn(λ0) is defined by (4.4) below. For j = p, it
is enough to define Un(t0 + T ) :=U

+
n (λp) as in (4.3) and fn(t0 + T ) = fn(λp) as

in (4.4) below.

The equation (4.2) is equivalent dθn a.e. to

fn(t) = projν(t)C

[

fn(t)− ρ(U
+
n (t)− e)

]

,

with ρ > 0 (ρ is arbitrary). If we take t = λj and ρ =
m
aj
then we get

(4.4) fn(λj) = projν(λj)C

[

−
m

aj
U−
n (λj) +

m

aj
e

]

.
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Let us consider the following system

(Qn0)































m
dVn0

dt
= fn0,

fn0(t) ∈ ∂ψ
∗
ν(t)C(−Vn0(t) + e) dt a.e.,

Vn0(λ0) = U+
n (λ0) =

a0 fn(t0)

m
,

where Vn0 and fn0 are defined from [λ0, λ1] into IR. This system has the same
form as (Q1), therefore it admits at least one solution (Vn0, fn0) where Vn0 is
an absolutely continuous function and fn0 ∈ L∞([λ0, λ1], IR, dt). By replacing
respectively into (4.3) and (4.4) U−

n (λ1) by Vn0(λ1), then we get fn(λ1) and
U+
n (λ1). In the same way as (Qn0), the following system

(Qn1)



























m
dVn1

dt
= fn1,

fn1(t) ∈ ∂ψ
∗
ν(t)C(−Vn1(t) + e) dt a.e.,

Vn1(λ1) = U+
n (λ1) ,

admits also one solution (Vn1, fn1), where Vn1 is an absolutely continuous func-
tion and fn1 ∈ L∞([λ1, λ2], IR, dt). This ensures the existence of U

+
n (λ2) and

fn(λ2), as in (4.3) and (4.4). As In is a finite subset of D therefore the sys-
tem (Qnj) admits at least one solution (Vnj , fnj) for all j ∈ {0, 1, ..., p − 1}
where Vnj : [λj , λj+1] → IR is an absolutely continuous function and fnj ∈
L∞([λj , λj+1], IR, dt). If we take Un : I → IR and fn : I → IR defined by



























Un(t0) = 0,

Un = Vnj on [λj , λj+1[ \{t0} (0 ≤ j ≤ p− 1),

Un(t0 + T ) = Vnp−1(t0 + T ) +
1

m
ap fn(λp) ,

and










fn = fnj on [λj , λj+1[ (0 ≤ j ≤ p− 1),

fn(λp) = projν(λp)C

[

−
m

ap
Vnp−1(t0 + T ) +

m

ap
e

]

,

we easily verify that (Un, fn) is a solution to the problem (Qn).

Remark. (Un) is constructed as a function of bounded variation which is
right-continuous in ]t0, t0 + T [.
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5 – Convergence of the problem (Qn)

We recall that the second equation of (Qn) is solved dθn a.e. We denote by
En the dθn-null subset of I in which the second equation of (Qn) is not satisfied
and we decompose it as En = An ∪Bn where An ⊂ I −D and Bn ⊂ D. Then we
can extend fn by taking

fn(α) = 0 for all α ∈ Bn .

This enables us to write fn(t) ∈ ν(t)C dθ a.e. since An is a dθ-null set. Moreover,
since ν : I → IRn is measurable and bounded on I and dθ is a finite positive
measure, then fn ∈ L

∞(I, IR, dθ) and

‖fn‖L∞(I,IR,dθ) ≤ γ ‖ν‖∞ .

As L1(I, IR, dθ) is a separable space, then we may extract a subsequence from
(fn) which converges to f ∈ L∞(I, IR, dθ) with respect to the weak topology
σ(L∞, L1, dθ). We also notice that fn dθn converges weakly to the measure f dθ,
in the following sense

lim
n→+∞

∫

I
ϕfn dθn =

∫

I
ϕf dθ

for all ϕ ∈ C(I, IR). In fact, we have

∣

∣

∣

∫

I
ϕ(fn dθn − f dθ)

∣

∣

∣ ≤ ‖ϕ‖∞ ‖ν‖∞ γ‖µ′n − 1‖L1(I,IR,dµ) +
∣

∣

∣

∫

I
ϕ(fn − f) dθ

∣

∣

∣

with fn → f σ(L∞, L1, dθ) and ‖µ′n−1‖L1(I,IR,dµ) → 0 (by prop. 2.1) as n→ +∞.
We define U as the function of bounded variation, right-continuous in

]t0, t0 + T [ such that mdU = f dθ (i.e. its Stieltjes measure is f
m
dθ) with

U(t0) = 0. Now it remains to verify that the second equation of (Q) holds.

Proposition 5.1. For all ϕ ∈ ν C where

ν C =
{

ϕ ∈ L∞(I, IR, dθ) | ϕ(t) ∈ ν(t)C dθ a.e.
}

we have

(5.1)

∫

I

(

U(t)− e(t)
) (

ϕ(t)− f(t)
)

dθ ≥ 0 .

Remark. Having shown that (5.1) holds for every ϕ ∈ ν C, we conclude that

f ∈ ∂ψ∗
νC(−U + e) ,
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with respect to the usual duality. If we recall proposition 3.2 we may now write
that

f(t) ∈ ∂ψ∗
ν(t)C

(

−U(t) + e
)

dθ a.e. ,

thus ending the proof that U solves problem (Q) (with P = 0 and e constant).

Proof: We know that fn, Un and dθn are uniformly bounded:

‖dθn‖ ≤ ‖dθ‖ , ‖fn‖L∞(I,IR,dθ) ≤ γ ‖ν‖∞
and

‖Un‖∞ ≤
γ

m
‖ν‖∞ ‖dθ‖ .

Thus, there exist M and M ′ ≥ 0 such that for all ϕ ∈ ν C we get
∣

∣

∣

∣

∫

I

(

Un(t)− e
) (

ϕ(t)− fn(t)
)

dθn −

∫

I

(

U(t)− e
) (

ϕ(t)− f(t)
)

dθ

∣

∣

∣

∣

≤

(5.2)

≤M‖µ′n − 1‖L1(I,IR,dµ) +M
′‖Un − U‖L1(I,IR,dθ)

+
∣

∣

∣

∫

I

(

U(t)− e
) (

fn(t)− f(t)
)

dθ
∣

∣

∣ .

First we show that

(5.3) lim
n→+∞

‖Un − U‖L1(I,IR,dθ) = 0 .

By integrating the measure dUn − dU =
fn

m
dθn −

f
m
dθ on [t0, t] we obtain

Un(t)− U(t) =
1

m

∫

I
κ[t0,t] fn(µ

′
n − 1) dµ+

1

m

∫

I
κ[t0,t] (fn − f) dθ ,

where κ[t0,t](·) is the characteristic function of [t0, t]. Hence

∣

∣

∣Un(t)− U(t)
∣

∣

∣ ≤
A

m
‖µ′n − 1‖L1(I,IR,dµ) +

M

m

∣

∣

∣

∫

I
κ[t0,t] (fn − f) dθ

∣

∣

∣ ,

whereA = ‖ν‖∞ γ. As |Un(t)| ≤
1
m
γ‖ν‖∞

∫

I dθ then Un ∈ L
1(I, IR, dθ). By using

proposition 2.1 and the weak convergence of fn to f we obtain that Un converges
pointwise to U on I. By the dominated convergence theorem we deduce that
(5.3) holds. Using (5.3), proposition 2.1 and the fact that

lim
n→∞

∫

I

(

U(t)− e
) (

fn(t)− f(t)
)

dθ = 0

(since t→ U(t)− e is in L1(I, IR, dθ)), we now obtain from (5.2) that

lim
n→∞

∫

I

(

Un(t)− e
) (

ϕ(t)− fn(t)
)

dθn =

∫

I

(

U(t)− e
) (

ϕ(t)− f(t)
)

dθ ≥ 0 .

In fact, the integrals depending on n are all nonnegative, since Un solves (Qn).
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6 – The general case

In this section we consider that, in addition, the particle is submitted to an
external force which we denote by P . We assume that P is a function of time
and tangential to the line of motion with P ∈ L∞(I, IR, dθ). We also allow the
transport velocity e to vary and assume that e is lipschitzian.
If we take W = −U + e, then the restriction of system (Q) to a subinterval

[a, b] of I, where the motion of the particle is assumed smooth, is given by

(Q′)











−
dW

dt
∈ ∂ψ∗

1
m
ν(t)C−ė(t)+

P (t)
m

(W (t)) dt a.e.,

W (a) = −U(a) + e(a) .

Replacing (3.1) by
F (t, x) = ψ∗

1
m
ν(t)C−ė(t)+

P (t)
m

(x) ,

it is easily seen, by applying the same technique used for solving the system (Q1),
that the system (Q′) admits at least one lipschitzian solution. By using this result
and the same procedure applied for solving (Q), we could show that system (Q)
admits at least one solution (U, f) where f ∈ L∞([a, b], IR, dθ) and U : I → IR is
a function of bounded variation satisfying the initial condition U(t0) = 0, which
is right-continuous in ]t0, t0 + T [.
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