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ON THE RANKS OF CERTAIN FINITE SEMIGROUPS
OF ORDER-DECREASING TRANSFORMATIONS

Abdullahi Umar*

Synopsis: Let Tn be the full transformation semigroup on a totally ordered finite
set with n elements and let K−(n, r) = {α ∈ Tn : xα ≤ x and |Imα| ≤ r}, be the
subsemigroup of Tn consisting of all decreasing maps α, for which |Imα| ≤ r. Similarly,
let In be the partial one-one transformation semigroup on a totally ordered finite set
with n elements and let L−(n, r) = {α ∈ In : xα ≤ x and |Imα| ≤ r} ∪ {∅}, be the
subsemigroup of In consisting of all decreasing partial one-one maps α (including the
empty or zero map), for which |Imα| ≤ r. If we define the rank of a finite semigroup
S as the cardinal of a minimal generating set of S, then in this paper it is shown that
the Rees quotient semigroups P−r = K−(n, r)/K−(n, r − 1) (for n ≥ 3 and r ≥ 2)
and Q−r = L−(n, r)/L−(n, r − 1) (for n ≥ 2 and r ≥ 1) each admits a unique minimal
generating set. Further, it is shown that for 1 ≤ r ≤ n − 1, rankP−r = S(n, r), the
Stirling number of the second kind, and for 1 ≤ r ≤ n− 1

rankQ−r =

(

n

r − 1

)

[

(n− r) (r + 1) + 1
]

1
.

0 – Introduction

The rank of a finite semigroup S is usually defined by

rankS = min
{

|A| : A ⊆ S, 〈A〉 = S
}

.

If S is generated by its set E of idempotents, then the idempotent rank of S is

defined by

idrankS = min
{

|A| : A ⊆ E, 〈A〉 = S
}

.
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The questions of the ranks, idempotent ranks and nilpotent ranks of certain

finite transformation semigroups have been considered by various authors in re-

cent years and we draw particular attention to Gomes and Howie [6–8], Howie

and McFadden [10], Garba [4 & 5] and Umar [12 & 13]. The aim of this paper is

to generalize the rank results obtained in [12] and [13] by analogy with [10].

1 – Finite order-decreasing full transformation semigroups

Let Xn be a finite totally ordered set, so that effectively we may identify

Xn with the set {1, 2, ..., n} of the first n natural numbers. Let Tn be the full

transformation semigroup on Xn and for n > 1 let

Singn =
{

α ∈ Tn : | Imα| ≤ n− 1
}

be the subsemigroup of all singular self-maps of Xn. Let

(1.1) S−
n =

{

α ∈ Singn : (for allx ∈ Xn) xα ≤ x
}

be the subsemigroup of Singn consisting of all decreasing singular self-maps of

Xn. For 1 ≤ r ≤ n− 1, let

K(n, r) =
{

α ∈ Tn : | Imα| ≤ r
}

,(1.2)

K−(n, r) =
{

α ∈ (S−
n )

1 : | Imα| ≤ r
}

(1.3)

be the subsemigroups of Tn and (S−
n )

1 consisting of elements α, for which |Imα|≤r

respectively. It is clear that K(n, r) and K−(n, r) are (two-sided) ideals of Tn
and of (S−

n )
1 respectively. Thus, let

Pr(n) = K(n, r)/K(n, r − 1) ,(1.4)

P−
r (n) = K−(n, r)/K−(n, r − 1) ,(1.5)

be the Rees quotient semigroups of K(n, r) and K−(n, r) respectively. As in [15]

to avoid excessive use of notation in what follows we will sometimes omit r or n

or both if there will be no confusion. Gomes and Howie [7] first showed that the

rank and idempotent rank of K(n, n− 1) = Singn are both equal to n(n− 1)/2 a

result later generalized by Howie and McFadden [10] who showed that the rank

and idempotent rank of K(n, r) and Pr(n) are both equal to S(n, r), the Stirling

number of the second kind usually defined as:

S(n, 1) = S(n, n) = 1 and S(n, r) = S(n− 1, r − 1) + r S(n− 1, r) .
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Ruškuc [11] gave an alternative proof of the result in [10].

It has been shown in [12] that the rank and idempotent rank of K−(n, n− 1)

are both equal to n(n − 1)/2. In this section we are going to show that in fact,

we have a similar result for the semigroups K−(n, r) and P−
r (n). However, the

proof is simpler in this case perhaps because the minimal generating set (as we

shall see later) turns out to be unique.

Recall from [3] that on a semigroup S the relation L∗(R∗) is defined by the

rule that (a, b) ∈ L∗(R∗) if and only if the elements a, b are related by the

Green’s relation L(R) in some oversemigroup of S. A semigroup S is left (right)

abundant if every L∗(R∗)-class contains an idempotent and it is abundant if it is

both left and right abundant. The join of the equivalences L∗ and R∗ is denoted

by D∗ and their intersection by H∗. To define J ∗ we first denote the L∗-class

containing the element a of the semigroup S by L∗
a. (The corresponding notation

will be used for the classes of the other relations.) Then a left (right) ∗-ideal of a

semigroup S is defined to be a left (right) ideal I of S such that L∗
a ⊆ I (R∗

a ⊆ I),

for all a ∈ I. A subset I of S is a ∗-ideal of S if it is both a left ∗-ideal and a

right ∗-ideal. We also recall from [3], that the principal ∗-ideal J ∗(a) generated

by the element a of S is the intersection of all ∗-ideals of S to which a belongs.

The relation J ∗ is defined by the rule that a J ∗ b if and only if J∗(a) = J∗(b),

where J∗(a) is the principal ∗-ideal generated by a.

We begin our investigation by noting that K−(n, r) is a ∗-ideal of (S−
n )

1 and

hence it is an abundant subsemiband of (S−
n )

1 and for α, β ∈ K−(n, r)

α L∗ β if and only if Imα = Imβ ,

α R∗ β if and only if α ◦ α−1 = β ◦ β−1 ,

α J ∗ β if and only if |Imα| = |Imβ| .

Thus K−(n, r), like Tn itself, is the union of J ∗-classes

J∗
1 , J∗

2 , ..., J∗
r ,

where

J∗
k =

{

α ∈ K−(n, r) : |Imα| = k
}

.

Moreover, K−(n, r) has S(n, k) (the Stirling number of the second kind)

R∗-classes and (n−1

k−1
) L∗-classes in each J∗

k . It follows immediately that P−
r

has S(n, r) + 1 R∗-classes and (n−1

r−1
) + 1 L∗-classes. (The term 1 comes from the

zero singleton class in each case.)
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Next we recall some results and notations from [15] that will be useful in what

follows: Let f(α) be the cardinal of

F (α) =
{

x ∈ Xn : xα = x
}

,

the set of fixed points of the map α.

Lemma 1.1 [15, Lemma 1.1]. Let α, β ∈ K−(n, r) or P−
r (n). Then

1) F (αβ) = F (α) ∩ F (β);

2) F (αβ) = F (βα).

Theorem 1.2 [15, Theorem 1.3]. Let P−
r be as defined in (1.5). Then every

α ∈ P−
r is expressible as a product of idempotents in P−

r .

Lemma 1.3 [15, Lemma 2.6]. Every R∗-class of P−
r contains a unique

idempotent.

Next we establish:

Lemma 1.4. Let ε ∈ E(K−(n, r)). Then ε is expressible as a product of

idempotents in K−(n, r) whose image sets have cardinal r.

Proof: Suppose that

ε =

(

A1 A2 ... Ak

a1 a2 ... ak

)

∈ K−(n, r) .

Notice that if k = r the result is trivial. Essentially we can either have |Ai| ≥ 2

and |Aj | ≥ 2; or |Ai| ≥ 3 for some i, j ∈ {1, ..., k}. In the former case we choose

an element a′i 6= ai in Ai and an element a′j 6= aj in Aj ; in the latter case we

choose two distinct elements a′i, a
′′
i in Ai\{ai}. Then in the former case we define

a′i f1 = a′i , x f1 = x ε (x 6= a′i) ,

a′j f2 = a′j , y f2 = y ε (y 6= a′j) ;

in the latter we define

a′i f1 = a′i , x f1 = x ε (x 6= a′i) ,

a′′i f2 = a′′i , y f2 = y ε (y 6= a′′i ) .

In both cases it is clear that f1, f2 are idempotents and ε = f1 f2. Moreover,

|Im f1| = |Im f2| = k + 1. Hence the result follows by induction.
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Thus we deduce from Theorem 1.2 and Lemma 1.4, that the idempotent ranks

of K−(n, r) and P−
r are the same. Hence it suffices to consider P−

r only. Now

we claim that the set of all non-zero idempotents of P−
r , i.e. E(P−

r \{0}), is the

unique minimal generating set for P−
r . However, notice that sufficiency follows

from Theorem 1.2 above and it now remains to show necessity.

Lemma 1.5. Let α, β ∈ P−
r \{0}. Then the following are equivalent:

1) αβ ∈ E(P−
r \{0});

2) α, β ∈ E(P−
r \{0}) and αβ = α.

Proof: 1)⇒2) Suppose that αβ ∈ E(P−
r \{0}). Then

r = f(αβ) ≤ f(α) ≤ |Imα| = r ,

r = f(αβ) ≤ f(β) ≤ | Imβ| = r ,

which implies that

F (α) = F (αβ) = F (β) ,

so that α, β ∈ E(P−
r \{0}) and αβ = α.

2)⇒1) This is clear.

It is now clear that necessity follows, since the product of a non-idempotent

and any other element does not give a non-zero idempotent, by Lemma 1.1. Hence

the rank and idempotent rank of P−
r are the same. Thus we now have the main

results of this section:

Theorem 1.6. Let P−
r be as defined in (1.5). Then

rankP−
r = idrankP−

r = |E(P−
r \{0})| = S(n, r) .

Proof: It follows from the fact that there are S(n, r) R∗-classes in P−
r \{0}

and each R∗-class contains a unique idempotent, by Lemma 1.3.

Theorem 1.7. Let K−(n, r) be as defined in (1.3). Then

rankK−(n, r) = idrankK−(n, r) = |E(J∗
r )| = S(n, r) .

Let (P−
n )1 be the semigroup of all order-decreasing partial transformations

(including the empty or zero map). Then
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Lemma 1.8 [15, Corollary 3.3]. Let PK−(n, r) = {α ∈ (P−
n )1 : |Imα| ≤ r}

and PP−
r (n) = PK−(n, r)/PK−(n, r − 1). Then

1) PK−(n, r) and K−(n+ 1, r + 1) are isomorphic;

2) PP−
r (n) and P−

r+1(n+ 1) are isomorphic.

Theorem 1.9. Let PK−(n, r) = {α ∈ (P−
n )1 : |Imα| ≤ r} and PP−

r (n) =

PK−(n, r)/PK−(n, r − 1). Then

1) rankPK−(n, r) = idrankPK−(n, r) = S(n+ 1, r + 1);

2) rankPP−
r (n) = idrankPP−

r (n) = S(n+ 1, r + 1).

2 – Finite order-decreasing partial one-one transformation semigroups

Let Xn = {1, 2, ..., n} and let In be the symmetric inverse semigroup on Xn.

Now for 1 ≤ r ≤ n− 1, let

L(n, r) =
{

α ∈ In : |Imα| ≤ r
}

,(2.1)

L−(n, r) =
{

α ∈ I−n : |Imα| ≤ r
}

,(2.2)

Qr(n) = L(n, r)/L(n, r − 1) ,(2.3)

Q−
r (n) = L−(n, r)/L−(n, r − 1) .(2.4)

Notice that since

L−(n, r) ⊆ PK−(n, r) ∼= K−(n+1, r+1) and Q−
r (n) ⊆ PP−

r (n) ∼= P−
r+1(n+1) ,

it follows that we can deduce certain ‘algebraic’ results for L−(n, r) and Q−
r (n)

from those for K−(n, r) and P−
r (n) respectively. In particular we have

Lemma 2.1. Let α, β ∈ L−(n, r) or Q−
r . Then

1) F (αβ) = F (α) ∩ F (β);

2) F (αβ) = F (βα).

Gomes and Howie [7] showed that the rank (as an inverse semigroup) of L(n, n)

(= In) is 3 while that of L(n, n−1) is n+1, and later Garba [4] generalized their

result by showing that the rank of L(n, r) (r ≥ 3) is (n
r
) + 1. It has been shown

in [13] that the rank and quasi-idempotent rank of L−(n, n − 1) are both equal
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to n(n + 1)/2 and in this section (as in the previous one) we are going to show

that the semigroups L−(n, r) and Q−
r (n) admit a unique minimal generating set.

(A quasi-idempotent is an element α for which α4 = α2, or equivalently is an

element α for which α2 is an idempotent.)

Before recalling a definition, a result and notations (from [16]) that will be

useful in what follows, first let s(α) be the cardinal of

S(α) =
{

x ∈ Domα : xα 6= x
}

,

the set of shifting points of the map α. Then an element η in Q−
r is called

amenable if s(η) ≤ 1 and A(η) ⊆ Dom η, where

A(η) =
{

y ∈ Xn : (∃x ∈ Xn) x η < y < x
}

=
{

y ∈ Xn : (∃x ∈ S(η)) x η < y < x
}

.

Notice that all amenable elements are quasi-idempotents but not vice-versa.

Lemma 2.2 [16, Lemmas 1.5 and 1.6]. Let α be a non-idempotent element

in Q−
r . Then α is expressible as a product of amenable elements ηi (in Q−

r ) for

which s(ηi) = 1.

It follows from Lemma 2.2 that Q−
r is generated by AQE(Q−

r \{0}), its set of

non-zero amenable elements, whose cardinal is denoted by q(n, r). If we denote by

quaidrank S the quasi-idempotent rank of S then the following is now immediate:

Corollary 2.3. quaidrankQ−
r ≤ q(n, r).

Now we are going to show that AQE(Q−
r \{0}) is the unique minimal gener-

ating set for Q−
r . However, first we establish:

Lemma 2.4. For r < n let η ∈ L−(n, r) be an amenable element such that

s(η) = 1. Then η is expressible as a product of amenable elements γi ∈ L−(n, r)

for which |Im γi| = r.

Proof: Suppose that (for some 1 ≤ k < r)

η =

(

a1 ... at ... ak
a1 ... bt ... ak

)

(at > bt) .

Let Yr ⊆ Xn such that |Yr| = r, bt /∈ Yr and Dom η ⊆ Yr. Now define γ1 by

x γ1 = x η (x ∈ Dom η) , y γ1 = y (y ∈ Yr\Dom η) .
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Then clearly |Im γ1| = r, s(γ1) = 1 and γ1 is amenable. Moreover, η = idDom η γ1.

However, since idDom η is expressible as a product of idempotents γi for which

|Im γi| = r, then the result follows.

Thus we deduce from Lemmas 2.2 and 2.4 that the quasi-idempotent ranks of

L−(n, r) and Q−
r are the same. Hence it suffices to consider Q−

r only. However,

notice that sufficiency follows from Lemma 2.2 above and it now remains to show

necessity.

Lemma 2.5. Let α, β ∈ Q−
r \{0} such that αβ ∈ Q−

r \{0}. Then αβ is an

idempotent if and only if α = αβ = β.

Proof: (⇒) Suppose that αβ is idempotent. Then

r = f(αβ) ≤ f(α) ≤ |Imα| = r ,

r = f(αβ) ≤ f(β) ≤ |Imβ| = r ,

which implies that

Domα = Imα = F (α) = F (αβ) = F (β) = Imβ = Domβ

so that

α = αβ = β .

The converse is clear.

An immediate consequence of Lemma 2.5 is that any generating set for Q−
r

must contain E(Q−
r ). Next we are going to show that if γ, η are two (non-

idempotent) amenable elements in Q−
r \{0} such that their product δ is in Q−

r \{0}

also, then δ is NOT amenable. Thus, again any generating set for Q−
r must

contain AQE(Q−
r \{0}) since idempotents are partial identities in this case.

Lemma 2.6. Let γ, η ∈ AQE(Q−
r \{0}) such that s(γ) = s(η) = 1 and

γη ∈ Q−
r \{0}. Then γη is not amenable.

Proof: Let γ, η ∈ AQE(Q−
r \{0}) such that s(γ) = s(η) = 1 and γη ∈

Q−
r \{0}. First notice that Im γ = Dom η and Dom γ = Dom γη. Now suppose

that Dom γ = W . Let g ∈ W be such that g γ = h < g. For all x 6= g, we have

x γ = x. Then

Im γ = (W\{g}) ∪ {h} = Dom η ,

and there are two possibilities for η: i.e., h ∈ S(η) or h /∈ S(η). In the former we

have

g γ η = h η < h = g γ < g
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and s(γη) = 1. However, h /∈ Dom γη = Dom γ, since γ if h ∈ Dom γ then, as

h 6= g, we would have hγ = h. Whence hγ = gγ and so h = g by the injectivity

of γ. Thus γη is not amenable.

In the latter, since s(η) = 1, there exists h′ ∈ S(η). Now let g′ = h′ γ−1. Then

as h 6= h′ we have g 6= g′. Also

g′ γ η = h′ η < h′ ≤ g′ and g γ h = h 6= g ,

so that g, g′ ∈ S(γη). Again γη is not amenable.

Thus we have established:

Theorem 2.7. Let Q−
r be as defined in (2.5). Then

rankQ−
r = quaidrankQ−

r = q(n, r) .

Theorem 2.8. Let L−(n, r) be as defined in (2.3). Then

rankL−(n, r) = quaidrankL−(n, r) = q(n, r) .

Remark 2.9. The fact that AQE(Q−
r \{0}) is the unique minimal generating

set for Q−
r is not a coincidence since Doyen [1] has shown that every periodic

J -trivial monoid has a unique minimal generating set.

The next lemma gives an expression for q(n, r), the number of amenable ele-

ments in Q−
r \{0}.

Lemma 2.10. q(n, r) =
(n

r

)

+
r
∑

i=1

(n− i)
(n− i− 1

r − i

)

(r ≥ 0).

Proof: Clearly there are (n
r
) idempotents in Q−

r \{0}. And since for every

(non-idempotent) amenable element η, s(η) = 1, then we may express η as

η =

(

x

y

)

, x > y ,

where x η = y and z η = z for all z in Dom η\{x}. Now notice that there are (n−i)

pairs of the type (x, x+ i) (x, x+ i ∈ Xn). However since {x+1, ..., x+ i− 1} ⊆

Dom η then there are (n−i−1

r−i
) ways of choosing the remaining elements of Dom η.

Thus the number of amenable elements in Q−
r \{0} is

(

n

r

)

+
r
∑

i=1

(n− i)

(

n− i− 1

r − i

)
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as required.

However, it is possible to obtain an explicit expression for q(n, r). To do this

we require these two certainly known simple results:

Lemma 2.11.
r
∑

i=1

(n− i

r − i

)

=
( n

r − 1

)

.

Proof: The proof is be repeated application of the Pascal’s triangular iden-

tity.

Lemma 2.12.
r
∑

i=1

(n− i)
(n− i− 1

r − i

)

= (n− r)
( n

r − 1

)

.

Proof:
r
∑

i=1

(n− i)
(n− i− 1

r − i

)

=
r
∑

i=1

(n− i− 1)! (n− i)

(n− r − 1)! (r − i)!

=
r
∑

i=1

(n− i)! (n− r)

(n− r)! (r − i)!
= (n− r)

r
∑

i=1

(n− i

r − i

)

= (n− r)
( n

r − 1

)

(by Lemma 2.11) .

Hence we have this result

Theorem 2.13. q(n, r) =
( n

r − 1

)

[

(n− r) (r + 1) + 1
]

r
.

Proof:

q(n, r) =
r
∑

i=1

(n− i)

(

n− i− 1

r − i

)

+

(

n

r

)

(by Lemma 2.10)

= (n− r)

(

n

r − 1

)

+

(

n

r

)

(by Lemma 2.12)

= (n− r)

(

n

r − 1

)

+
(n− r + 1)

r

(

n

r − 1

)

=

(

n

r − 1

)

[

(n− r) (r + 1) + 1
]

r
.

We conclude with the following tables which record the first six cases of S(n, r)
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and q(n, r) respectively:

r 1 2 3 4 5 6
∑

S(n, r) = Bn

n

1 1 1

2 1 1 2

3 1 3 1 5

4 1 7 6 1 15

5 1 15 25 10 1 52

6 1 31 90 65 15 1 203

r 1 2 3 4 5 6
∑

q(n, r)
n

1 1 1

2 3 1 4

3 5 6 1 12

4 7 14 10 1 32

5 9 25 30 15 1 80

6 11 39 65 55 21 1 192
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