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ON A RESULT OF WILLIAMSON

MING-PENG GONG*

Abstract: In this paper we generalize a result of Williamson on the structure of the
kernel of a symmetrizer and also obtain some other related results.

1 — Introduction

Let Sy, be the full symmetric group of degree m and ¢(o) an arbitrary nonzero
function from S, into the complex field €. Given an m x m matrix X = [z;;]
we define its generalized matrix function d.(X) by

de(X) = Z c(o) Hxia(z') .
i=1

O'GSm

When ¢ = X is a character of a subgroup G of S,,, we will write d. as d?.
We denote by I'y, , the set of maps from {1,...,m} into {1,...,n}. If & € 'y, ,
we identify it with the m-tuple («(1),...,a(m)). For an n x n matrix A = [a;;]
and «a, € I'y,p, Ala|f] will denote the m x m matrix whose (i, j) element is
aa(i),8(j)- For a € Ty, 0 € Sy, we write a0 = (a(o(1)),...,a(a(m))). We also
write e = (1,...,m).

Let V be an n-dimensional unitary vector space over €, and ®" V be its
m-th tensor power. If o € S,,, there exists a unique linear operator P(o) on
Q™ V such that

PO)21® ... QT = Tg-1(1) @ . @ Ty—1(yy) -
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The linear mapping

O'ESm

will be called a symmetrizer. The star product x; * ... * xp, is, by definition,
Te(r1® ... @ Tuy).

As we know, the characterization of the kernel of the symmetrizer T, is equiv-
alent to that of the following set (see [2] and [4])

(1.1) N(e) = {A € My(T)] de(AX) =0, ¥ X} .

In [7], Williamson proves a fundamental combinatorial property of cyclic per-
mutations of finite sequences of integers and considers an application of this result
to the characterization of the kernel of T, when c¢ is a homomorphism from G
into C.

If A is an orbit of the subgroup G, let G® be the subgroup of G restricted
to A. Following Williamson, we denote by G the class of all subgroups G of S,
such that if A is any orbit of G the G? is cyclic. For a € I'yn we shall denote
by G4 that subgroup of G defined by

Go = {0 € G| a(o() = ali), i=1,..,m} .

For any homogeneous tensor w = y1 ® ... ® ym, « is called an indicator of w if
a(t) = a(j) if and only if y; and y; are linearly dependent. Now we are able to
state the following two results of Williamson [7]:

Theorem 1.1. Let G € G. For any «y € I'y, , such that v has at least two
elements, there exists w € I'y, ,, such that:

i) rangew C range-y;
i) (i) #w(i), i =1,....m;
iii) For each o ¢ G., there is an integer j, 1 < j < m, such that y(o(j)) = w(j).

Theorem 1.2. Let G € G and w =y ® ... ® Y. If X is any homomorphism
of G into € and ~ an indicator of w, then y; ® ... ® yy, is in the kernel of T iff

X:O'EG7 )‘(U) =0.

In this paper, we generalize Theorem 1.2 to arbitrary functions ¢. We also
obtain some other related results.
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2 — Results

Let F = {e1,...,en} be an orthonormal basis of V. For a € Ty, let 2% =
Ta(1) ® - @ To(m) and T.(2%) = x¥. Define as in [3].

b(m) = Z clom)c(o), c€ Sn
ocESm
Particularly, when ¢ = X is a character of the subgroup G, we have

(2.1) b(m) = Z Mo m)No) = )\|(C;d|) A(m) .

ceG

If v* = vy % ... x vy, with v; =1L a; e, € V, then

vF = Z aaTC(ea(1)®...®ea(m)): Z Ao €,

aEFm,n Oéerm,n

with aq = a14(1)** Gmagm)> and [eh]|? = X cq, b(0).
We have already known that (see [1], [6]):

(2.2) e =0 iff > clom)=0, Vo€ Sn

TEGq

When ¢ = A is a character of the subgroup G C S,,, a stronger result can be
obtained. In fact we have

Proposition 2.1. Let A be a character of the subgroup G. Then e}, = 0 iff
Yocg, MmoT)=0forVm1ed.

Proof: At first, we have

(€ars €5r) = Z/\ Oa,fror—1
ocelG
and
ek = Ao
=T 3 )

The “if” part is easy.
The “only if” part: When e, = 0, then for arbitrary o € G, €, = 0 and for
vV, 7 € G,

(627—7 a7r = |G’ Z)‘ aom'UT

UEG

c€Gq
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With this result, we can prove

Proposition 2.2.Let A be a character of the subgroup G. Then Y, cq Ao) =0
iff Y geq Ao) ¢(ao) = 0 for arbitrary ¢: I'y,,, — C.

Proof: The “if” part: Since > ,cq A(0) ¢(ao)=0 for arbitrary ¢: I'y, , —C,
let

1, if 8 =aq,

0, otherwise .

o(B) = {

Then we have

Z Ao)plao) = Z Ao)=0.

oceG c€Gq

The “only if” part: Let 7, ..., 7 be a system of right coset representatives of
G, in G. Using Proposition 2.1,

Z ANo)d(ao) = Z Z Ao 7)) p(aoTj)

oeG j=loeGq

= ZT:( > )‘(UTJ)) Platj))=0.u

j=1 0€Gq

The next result can be similarly proved:

Corollary 2.3. Let A be a character of the subgroup G. Then ) g A(0)=0
iff Y, ca Aot ¢(ao) = 0 for arbitrary ¢: Uy — C.

Now we come to discuss the case when c is an arbitrary function. With (2.2),
we can prove

Proposition 2.4. Ife} =0, then Alale] € N(c).

Proof: Let 7q,...,7. be a system of left coset representatives of G, in Sy,
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using (2.

Alalpl = ) clo)

O’ES’m

[Ramb

I
]
B

=

Q
T %
3
1
—_

S IDI

j=10€G,

-Y(X et

j=1 o€Gqa

2), for arbitrary 8 € I'y, 5, we have

Qa(i),B(a (i)

Qa(o=1(1)),8(1)

o) [1 @ato17-1) 00

=1

)ﬁaa 71(1 1)20.

=1

Noting that (see [2] or [5])

dc(Alale]

Z de A Oé’ﬂ H B()i »
1=1

BElm.n

we arrive at d.(A[ale] X) = 0 for arbitrary X. u

Bearing in mind the definition of the indicator of a homogeneous tensor, re-
calling the remark preceding (1.1) and using Proposition 2.4, we can easily prove
the following

Corollary 2.5. Let v be an indicator of w = y1 ® ... ® ym. If €3, = 0, then
Y1 ® ... ® Y, IS in the kernel of T,.

Now we are in a position to prove the main result of this paper.

Proposition 2.6. Let G be in G, ¢ an arbitrary function from G into ©
and b(w) = Y. cqc(om) c(o). Let v be an indicator of v¥ = v1 ® ... ® vp,. Then
v* =0 if and only if 3, b(o) =v(y) =0.

Proof: The “if” part follows immediately from Corollary 2.5. For the “only
if” part, our proof parallels that of [7], with some slight modifications. As in [7],
we assume that v(y) # 0. If v(1) = ... = y(m), then G, = G and

Z b(o) = Z b(o) = Z Z c(m o) c(m)

oeG, oelG oceGrmeG

= Z(Z C@”’))%Z ZC(W)HQ#O.

meG oG TeG

v(y) =
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Hence
0 =Te(01 @ ... ® Uy) = KoF Z c(o) #0,
ceG
where K is a nonzero constant.
Assume v has at least two elements. Let 7 = id, ..., 7. be a system of left
coset representatives of G, in GG. Then

Z b(o) P(o)v® = Z b(o)P(o) (v ® ... ® vpy)

ceG oeG

=K Z b(o) P(o) vg
oeG

= Kzr: Z b(r; o) P(1i0) 0%

i=10eG~

= KZ Z b(r; o) P(1;) v? .

1=10€G~

(2.3)

Let 22 = 21 ® ... ® 2p,. Then from (2.3), we have

(v*,2") = (Z b(o) P(o) v®, z®)
(2.4) e

= KZ Z b(r; o) (P(7;) v;@, 2%).

i=10€Gy

By Theorem 1.1, there exists an w such that
i) rangew C range~;
ii) (i) #w(i), i =1,...,m;
iii) For each o not in G, there is an ¢ such that v(o(i)) = w(i).

Now we may choose 2% = 21 ® ... ® 2, such that:
(2.5) (03, 2i) =1 and (v, 2i) =0 for i=1,...,m .

This is possible since « is an indicator for v®, and also because range w C range 7,
(i) # w(i) implies v,(;) and v,;) are linearly independent.
For any i we have

m

(P(Tz‘)vi?a 2%) = H(”fy(rfl(t))’zt) ’
t=1
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When i > 2, using iii) of Theorem 1.1, there exists j such that (7, (j)) =

w(j), and the term

(W12 %) = oty 2) =0

So for any i > 2, (P(7;)v$,2%) = 0.

For i = 1, according to (2.5), (v¥,2%) =1 and from (2.4),

(v, 2") =K Z blo) =Kuv(y)#0.

oeGy

Therefore, T.(v®) = v* # 0. This ends the proof.
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