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SYMBOLIC DYNAMICS OF BIMODAL MAPS

J.P. Lampreia and J. Sousa Ramos

Abstract: We introduce a matrix that represents the homological behavior of

0-chains and that summarizes the dynamics of bimodal maps of the interval. Using

the characteristic polynomial of this matrix we deduce the kneading determinants of

bimodal maps.

1 – Introduction

Our goal in this paper is to introduce an alternative technique to the ones uti-

lized in symbolic dynamics which allows for the simple deduction of formulae for

the calculation of the topological entropy. This technique is based on a commuta-

tive diagram derived from the study of the homological configurations of graphs

associated to bimodal maps of the interval. From the partition of the interval

that corresponds to the itinerary of the critical points we introduce 0-1-chains

of complexes that translate the dynamical properties in relations of homological

type. In [11] it was introduced the kneading-determinant D(t) as a formal power

series. On the other hand, in [5] using homological properties we proved a precise

relation between the kneading-determinant and the characteristic polynomial of

a matrix A associated to the action on 1-chains of the interval with one critical

point. In this paper we extend this result to the maps of the interval with two

critical points. The advantage of this method is that the formula introduced

in proposition 2 allows to write explicitly the characteristic polynomial which is

valid for all pairs of sequences of symbols. The study of bimodal maps has found

interesting applications in physics and biology [1, 3, 10, 12, 14]. Their mathe-

matical study has drawn the attention of [4, 6, 8, 9, 11, 13]. The introduction of

a homological language into these studies was used before by [2].
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2 – Kneading theory for bimodal maps

Considering a two parameter family f(a,b) of bimodal maps on the interval

I = [−1, 1] and denoting by c1 and c2 the two critical points of f(a,b), we obtain

for each value of the pair (a, b) the orbits

O(a,b)(ci) =
{

x
(i)
j : x

(i)
j = f

j
(a,b)(ci), j ∈ N

}

,

where i = 1, 2. After a reordering of the elements x
(i)
j of these orbits we get a

partition {Ik = [zk, zk+1]} of the interval I = [x
(2)
1 , x

(1)
1 ]. With the aim of studying

the topological properties of these orbits we associate to each orbit O(a,b)(ci) a

sequence of symbols S = S1S2 . . . Sj . . . where Sj = L if f j(a,b)(ci) < c1, Sj = A

if f j(a,b)(ci) = c1, Sj = M if c1 < f
j
(a,b)(ci) < c2, Sj = B if f j(a,b)(ci) = c2 and

Sj = R if f j(a,b)(ci) > c2. If we denote by nM the frequency of the symbol

M in a finite subsequence of S we can define the M -parity of this subsequence

according to whether nM is even or odd. In what follows we define an order

relation in Σ = {L,A,M,B,R}N that depends on the M -parity. So, for two of

such sequences, P and Q in Σ, let i be such that Pi 6= Qi and Pj = Qj for j < i.

If the M -parity of the block P1 . . . Pi−1 = Q1 . . . Qi−1 is even we say that P < Q

if Pi = L and Qi ∈ {A,M,B,R} or Pi = A and Qi ∈ {M,B,R} or Pi = M

and Qi ∈ {B,R} or Pi = B and Qi = R. If the M -parity of the same block is

odd, we say that P < Q if Pi = A and Qi = L or Pi = M and Qi ∈ {L,A} or

Pi = B and Qi ∈ {L,A,M} or Pi = R and Qi ∈ {L,A,M,B}. If no such index

i exists, then P = Q. When O(a,b)(ci) is a k-periodic orbit we get a sequence of

symbols that can be characterized by a block of length k, S(k) = S1 . . . Sk−1Ci.

In what follows, we restrict our study to the case where the two critical points are

periodic O(a,b)(c1) is p-periodic and O(a,b)(c2) is q-periodic. Note that O(a,b)(c1)

is realizable iff the block P = AP1 . . . Pp−1 is maximal, that is, σi(P ) < σ(P ),

where 1 < i ≤ p and σ(P ) = P1 . . . Pp−1A is the usual shift operator. On the

other hand, O(a,b)(c2) is realizable iff the block Q = BQ1 . . . Qq−1 is minimal,

that is, σj(Q) > σ(Q), 1 < j ≤ q. Finally, note that the pair of sequences

that are realizable satisfies the following conditions σi(P ) > σ(Q), 1 < i ≤ p

and σj(Q) < σ(P ), 1 < j ≤ q. In what follows we denote the set of such pair

of sequences by Σ(A,B). A kneading sequence (P (p), Q(q)) is a pair of sequences

such that P (p) = σ(P ) = P1 . . . Pp−1A and Q(q) = σ(Q) = Q1 . . . Qq−1B for

some pair (P,Q) ∈ Σ(A,B). Denoting by {ui = σi−1(P (p)) : i = 1, . . . , p − 1, and

u0 = σ(p−1)(P (p))}, {vj = σj−1(Q(q)) : j = 1, . . . , q − 1, and v0 = σ(q−1)(Q(q))}

two sets of sequences and by {wk : 1 ≤ k ≤ p+ q} the union of the previous sets
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with the order that corresponds to the elements zi, we can define a permutation

matrix π that maps the set (y1, . . . , yp+q) = (x
(1)
0 . . . , x

(1)
p−1, x

(2)
0 . . . , x

(2)
p−1) into the

set (z1, . . . , zp+q).

Example. To illustrate the previous definition consider the pair of sequences

(RRLMA,LLRB). Then we have u1 = RRLMA, u2 = RLMAR, u3 = LMARR,

u4 = MARRL, u0 = ARRLM , v1 = LLRB, v2 = LRBL, v3 = RBLL,

v0 = BLLR and so we get w1 = v1, w2 = u3, w3 = v2, w4 = u0, w5 = u4,

w6 = v0, w7 = u2, w8 = v3 and w9 = u1, (see fig. 1).

� � � � � � � � �
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Fig. 1 – Graph G1.

In this way, the permutation matrix π (such that, z = πy) is given by:
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In [11], Milnor–Thurston, introduced the concept of kneading-matrix and

kneading increments. These are power series that measure the discontinuity

evaluated at the turning points. For the case of bimodal maps we have two

kneading-increments defined by:

(∗) νi(t) = θc+
i
(t)− θc−

i
(t)

where θ(x) is the invariant coordinate of the sequence S0S1 . . . Sk . . . associated

to the itinerary of the point x. Note that the invariant coordinate is defined by:

θx(t) =
∞
∑

k=0

τk t
k Sk
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where τk =
∏k−1
i=0 ε(Si), k > 0, τ0 = 1, when k = 0,

ε(Si) =











−1 if Si =M

0 if Si = A or Si = B

1 if Si = L or Si = R

and θc±
i
(t) = limx→c±

i
θx(t). After separating the terms associated to the different

letters in (∗) we get:

νi(t) = Ni1(t)L+Ni2(t)M +Ni3(t)R

and from these we can define the kneading-matrix of 2× 3 elements by:

N(t) =

[

N11(t) N12(t) N13(t)
N21(t) N22(t) N23(t)

]

.

The kneading-determinant [11] is defined from the kneading-matrix according to

the following formula:

D(t) =
D1(t)

1− t
= −

D2(t)

1 + t
=
D3(t)

1− t

whereD1(t) = N12(t)N23(t)−N22(t)N13(t),D2(t) = N11(t)N23(t)−N21(t)N13(t),

D3(t) = N11(t)N22(t)−N21(t)N12(t). Finally, we define d(t) by:

d(t) = D(t) (1− tp) (1− tq) .

Example. Let’s return to the kneading sequence (RRLMA,LLRB) consid-

ered before. The symbolic sequences that correspond to the orbits of the points

c+1 and c−1 , (see [11]), are the following:

c+1 −→M(RRLMM)∞ ,

c−1 −→ L(RRLMM)∞ .

Note that the block RRLMM corresponds to the sequence RRLMA where the

symbol A is replaced by M because the parity of the block RRLM is odd. So,

we get:

ν1(t) =M − L− 2tR− 2t2R− 2t3L− 2t4M + 2t5M − 2t6R− . . .

=M − L+
−2tR− 2t2R− 2t3L− 2t4M + 2t5M

1− t5

=
M −Mt5 − L+ Lt5 − 2tR− 2t2R− 2t3L− 2t4M + 2t5M

1− t5
.
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In a similar way the symbolical sequences that correspond to the orbits of the

points c+2 and c−2 are given by R(LLRR)∞ and M(LLRR)∞, respectively. In

this way, we get:

ν2(t) = R−M + 2tL+ 2t2L+ 2t3R+ 2t4R+ 2t5L+ . . .

= R−M +
2tL+ 2t2L+ 2t3R+ 2t4R

1− t4

=
R−Rt4 −M +Mt4 + 2tL+ 2t2L+ 2t3R+ 2t4R

1− t4

and from the previous definitions, we have:

N(t) =











−1− 2t3 + t5

1− t5
1− 2t4 + t5

1− t5
−2t− 2t2

1− t5

2t+ 2t2

1− t4
−1 + t4

1− t4
1 + 2t3 + t4

1− t4











,

D(t) =
D1(t)

1− t
=

1− 2t− 2t2 + 2t3 − t4 + 3t5 + 2t6 − 4t7 + t9

(1− t4) (1− t5) (1− t)
,

d(t) =
1− 2t− 2t2 + 2t3 − t4 + 3t5 + 2t6 − 4t7 + t9

1− t

= 1− t− 3t2 − t3 − 2t4 + t5 + 3t6 − t7 − t8 .

3 – Homological configurations

In what follows we denote by G1 the graph where the nodes {wi}, i =

1, . . . , p+q , are obtained from the permutation-matrix π associated to the knead-

ing sequence and the edges are defined by the pairs (wi, wi+1), (see fig. 1). Let

C0 and C1 be the vector spaces of 0-chains and 1-chains spanned by {uk} ∪ {vj},

k = 0, . . . , p − 1, j = 0, . . . , q − 1 and by {Ii}, i = 1, . . . , p + q − 1, respectively.

In what follows we use the same symbol for the linear map and their representa-

tion matrices. The border of 1-chain is defined from a map ∂ : C1 → B0 where

∂Ii = wi+1−wi. The incidence matrix of the graph G1 is given by µ = [µij ] where

µij = δi+1,j − δi,j and δi,j is the kronecker δ-symbol. Note that with these defini-

tions B0 = ∂(C1) is isomorphic to µπ(C0). On the other hand, the shift operator

σ in Σ(A,B) takes the form of a rotation ω : C0 → C0 defined by ω(ui) = ui+1

where 0 ≤ i < p − 1 and ω(up−1) = u0 (in a similar way, ω(vj) = vj+1 where

0 ≤ j < q−1 and ω(vq−1) = v0). If we denote by η the product of µ by π, this ro-

tation induces in C1 an endomorphism α that is obtained from the commutativity
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of the following diagram:

C0
η

−−−→ B0 ←−−−
∂

C1

ω





y

α





y

α





y

C0
η

−−−→ B0 ←−−−
∂

C1

Note that from α η = η ω we could get α = η ω ηT(η ηT)−1 where ηT is the

transpose matrix of η. Note also, that if we neglect the negative signs of the

matrix α then this matrix could be obtained as the Markov adjacency matrix

associated to the partition {Ii}, and to the graph G2 (see fig. 2).

�
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Fig. 2 – Graph G2.

Example. If we return again to the kneading sequence (RRLMA, LLRB),

we get:

µ =




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










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0 0 0 0 0 −1 1 0 0
0 0 0 0 0 0 −1 1 0
0 0 0 0 0 0 0 −1 1
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0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0
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α =




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0 0 1 1 0 0 0 0
0 0 0 0 1 1 1 0
0 0 0 0 0 0 0 1
0 0 0 −1 −1 −1 −1 −1
−1 −1 −1 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 1 1 1 0 0 0
0 0 0 0 0 1 0 0
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




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

.

Lemma 1. Suppose that (P (p), Q(q)) ∈ Σ(A,B) and let α be the endomorphism

introduced previously; then the first nL and the last nR rows of α are not negative.

The other nM + 1 rows of α are not positive.

Proof: The result follows from the fact that the negative signs of α derive

from the decreasing part of the map f. In fact, in this case the images of the

intervals are obtained from the images of the boundary points (zi, zi+1) ∈ [c1, c2]

where zi+1 > zi and we have f(zi+1) < f(zi). It’s now quite obvious that all the

other rows of α are not negative.

Let’s now denote by β a matrix of (p+ q − 1)× (p+ q − 1) elements defined

by:

β =





InL
0 0

0 −InM+1 0
0 0 InR





where InL
, InM+1 and InR

are identity matrices of rank nL, nM + 1 and nR,

respectively.

Definition 1. For each kneading sequence (P (p), Q(q)) let S1 . . . Sp+q =

AP1 . . . Pp−1BQ1 . . . Qq−1, then we associate a square matrix of (p + q)(p + q)

elements γ = [γij ] defined by:

γi1 = −γi,p+1 = 2 if Si = R with i = 2, ..., p, p+ 2, ..., p+ q ,

γi1 = γi,p+1 + 2 = 2 if Si =M with i = 2, ..., p, p+ 2, ..., p+ q ,

γi1 = γi,p+1 = 0 if Si = L with i = 2, ..., p, p+ 2, ..., p+ q ,

γp+1,1 = γ1,p+1 + 2 = 2 ,

γi,i = ε(Si), with i = 2, ..., p, p+ 2, ..., p+ q ,

γ1,1 = ε(S1) + 1 = 1 ,

γp+1,p+1 = ε(Sp+1)− 1 = −1

and all the other elements of the matrix are zeros.
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Example. To the previous kneading sequence (RRLMA,LLRB) we have:

γ =

































1 0 0 0 0 0 0 0 0
2 1 0 0 0 −2 0 0 0
2 0 1 0 0 −2 0 0 0
0 0 0 1 0 0 0 0 0
2 0 0 0 −1 0 0 0 0
2 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
2 0 0 0 0 −2 0 0 1
















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

.

Proposition 1. The matrix γ introduced before satisfies the following dia-

gram:

C0
η

−−−→ B0

γ





y

β





y

C0
η

−−−→ B0

Proof: Let (y1, . . . , yp+q) = (x
(1)
0 , . . . , x

(1)
p−1, x

(2)
0 , . . . , x

(2)
q−1),

(S1, . . . , Sp+q) = (A,P1, . . . , Pp−1, B,Q1, . . . , Qq−1)

and denote by ρ the following permutation:

(y1, . . . , yp+q)→ (yρ(1), . . . , yρ(p+q)) = (z1, . . . , zp+q)

then the matrix π defined previously is given by:

π = [πij ]

where πij = δρ(i)j and, in a similar way:

η = [ηik] = [µij ] [πjk]

where µij = δi+1,j − δi,j . Thus, we have:

ηik =
∑

j

µij πjk =
∑

j

(

δi+1,j δρ(j),k − δi,j δρ(j),k
)

= δρ(i+1),k − δρ(i),k .

On the other hand, the matrix β can be given by:

βij =











ε(Sρ(i)) δij if ρ(i) 6= 1 and ρ(i) 6= p+ 1,

−δij if ρ(i) = 1 (i, j∈{1, ..., p+q−1}),

δij if ρ(i) = p+ 1 .
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If we denote by X = [Xik] = [βij ] [ηjk] so Xik =
∑

j βij ηjk and then we have:

Xik =











ε(Sρ(i)) [δρ(i+1)k − δρ(i)k] if ρ(i) 6= 1 and ρ(i) 6= p+ 1,

−δ1k − δρ(i+1)k if ρ(i) = 1 (i, j∈{1, ..., p+q−1}),

δρ(i+1)k − δp+1,k if ρ(i) = p+ 1 .

In a similar way, we denote by Y = [Yik] = [ηij ] [γjk]. Thus

Yik =
∑

j

ηij γjk = γρ(i+1)k − γρ(i)k .

Now to achieve our goal we split our proof in several different cases:

(1) Suppose first that k 6= ρ(i) and k 6= ρ(i + 1) then by definition of the

elements Xik we have Xik = 0. Obviously, in this case, if k 6= 1 and k 6= p + 1

then γρ(i+1),k = γρ(i),k = 0 (note that, according to the hypothesis these elements

are not in the main diagonal and that, in this situation (k 6= 1 and k 6= p + 1),

all the other elements of the matrix γ are zeros).

On the other hand, if k = 1 then γρ(i+1),1 = γρ(i),1 because Sρ(i) = Sρ(i+1) (to

see this, note once more that in this situation the elements γρ(i+1),1, γρ(i),1 are

not in the main diagonal). In a similar way, we can see that if k = p + 1 then

γρ(i+1),p+1 = γρ(i),p+1.

(2) Suppose now that k = ρ(i). For simplicity we subdivide this proof in the

following three cases:

(2.1) If ρ(i) 6= 1 and ρ(i) 6= p+ 1 then we have:

Xi,ρ(i) = −ε(Sρ(i)) ,

Yi,ρ(i) = −γρ(i),ρ(i) ;

note that γρ(i+1),ρ(i) = 0 because this element is not in the main diagonal

and by hypothesis is not in the first column nor in the (p + 1)-column

and all the other elements of γ are zeros. But, by definition of γ:

γρ(i)ρ(i) = ε(Sρ(i))

and so Xi,ρ(i) = Yi,ρ(i).

(2.2) If ρ(i) = 1 then Xi,1 = Xρ−1(1),1 = 1. On the other hand, we have:

Yi,1 = γρ(i+1),1 − γ11 = γρ(i+1),1 = 1 .
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Note that according to the hypothesis ρ(i) = 1 and so Si = A. Then

Si+1=M and thus, by definition of γ, γρ(i+1),1 = 1.

(2.3) If ρ(i) = p+ 1 then:

Xi,p+1 = Xρ−1(p+1),p+1 = −1

Yi,p+1 = Yρ−1(p+1),p+1 = γρ(i+1),p+1 − γρ(i),p+1 = −1 .

(Note that in this case Si = B and so Si+1 = R).

(3) The proof of the case k = ρ(i+1) is very similar to the previous one and

so the proof of Proposition 1 is completed.

In what follows we denote by θ the product of γ by the rotation ω introduced

before. Thus the square-matrix θ of (p+ q)(p+ q) elements is given by:

θi,2 = δ(Si) for i = 1, 2, ..., p+ q ,

θi,p+2 = ν(Si) for i = 1, 2, ..., p+ q ,

θp,1 = ε(Sp) ,

θi,i+1 = ε(Si) for i = 2, 3, ..., p− 1, p+ 2, ..., p+ q − 1 ,

θp+q,p+1 = ε(Sp+q) ,

and all the others elements of the matrix θ are zeros where Si is the i-element of

the p+ q-tuple (A,P1, . . . , Pp−1, B,Q1, . . . , Qq−1) and ε(L) = ε(R) = 1, ε(M) =

−1, δ(R) = δ(M) = δ(B) = 2, δ(A) = 1, δ(L) = 0, ν(L) = ν(M) = ν(A) = 0,

ν(B) = −1 and ν(R) = −2.

Then the characteristic polynomial of the matrix θ satisfies the next proposi-

tion.

Proposition 2. To each pair of sequences (P1 . . . Pp−1A,Q1 . . . Qq−1B) we

have:

Pθ(t) = det(I − θt) =

=

[

1− δ(P1) t−
p
∑

i=2

δ(Pi)
(

i−1
∏

j=1

ε(Pj)
)

ti
]

.

[

1− ν(Q1) t−
q
∑

i=2

ν(Qi)
(

i−1
∏

j=1

ε(Qj)
)

ti
]

−

[

ν(P1) t+
p
∑

i=2

ν(Pi)
(

i−1
∏

j=1

ε(Pj)
)

ti
]

.

[

δ(Q1) t+
q
∑

i=2

δ(Qi)
(

i−1
∏

j=1

ε(Qj)
)

ti
]

.
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Proof: Let θ̄ = I − θ t =




































1 −δ(A)t 0 . . . 0 0 −ν(A)t 0 . . . 0
0 1− δ(P1)t −ε(P1)t . . . 0 0 −ν(P1)t 0 . . . 0
0 −δ(P2)t 1 . . . 0 0 −ν(P2)t 0 . . . 0
...

...
... . . .

...
...

...
... . . .

...
−ε(Pp−1)t −δ(Pp−1)t 0 . . . 1 0 −ν(Pp−1)t 0 . . . 0

0 −δ(B)t 0 . . . 0 1 −ν(B)t 0 . . . 0
0 −δ(Q1)t 0 . . . 0 0 1− ν(Q1)t −ε(Q1)t . . . 0
0 −δ(Q2)t 0 . . . 0 0 −ν(Q2)t 1 . . . 0
...

...
... . . .

...
...

...
... . . .

...
0 −δ(Qq−1)t 0 . . . 0 ε(Qq−1) −ν(Qq−1)t 0 . . . 1





































,

where I is the identity matrix. Now, if we expand the determinant of θ̄ in terms

of the p-row elements, according to Laplace theorem we get four terms associated

to the elements θ̄p,1, θ̄p,2, θ̄p,p and θ̄p,p+2 of the matrix θ̄ (note that these are the

non-zero elements of the p-row of the matrix θ̄).

The expansion associated to the θ̄p,2 element leads to:

b(t) =
[

−(−1)p+2 δ(Pp−1) t (−1)
p−2 ε(P1) · · · ε(Pp−2) t

p−2
]

(1− νQ)

= −ε(P1) · · · ε(Pp−2) δ(Pp−1) t
p−1(1− νQ)

where

(1− νQ) = 1− ν(Q1) t−
q
∑

i=2

ν(Qi)
(

i−1
∏

j=1

ε(Qj)
)

ti

is the determinant of the matrix:




















1 −ν(Qq)t 0 . . . 0 0
0 1− ν(Q1)t −ε(Q1)t . . . 0 0
0 −ν(Q2)t 1 . . . 0 0
...

...
... . . .

...
...

0 −ν(Qq−2)t 0 . . . 1 −ε(Qq−2)t
−ε(Qq−1)t −ν(Qq−1)t 0 . . . 0 1





















which can be obtained from the expansion in terms of the last row.

The expansion associated to the θ̄p,1 element leads to a determinant that can

be obtained from the non-zero elements of the first row (δ(Pp) and ν(Pp)) giving:

c(t) =
[

−(−1)p+1 ε(Pp−1) t (−δ(Pp) t) (−1)
p−2 ε(P1) · · · ε(Pp−2) t

p−2
]

(1− νQ)

+ (−1)p+1 ε(Pp−1) t ν(Pp) t (−1)
p+2 ε(P1) · · · ε(Pp−2) t

p−2 δQ

= −ε(P1) · · · ε(Pp−1) δ(Pp) t
p (1− νQ)− ε(P1) · · · ε(Pp−1) ν(Pp)t

p δQ
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where

δQ = δ(Q1) t+
q
∑

i=2

δ(Qi)
(

i−1
∏

j=1

ε(Qj)
)

ti

is the determinant of the matrix:















−δ(Qq)t 1 0 . . . 0
−δ(Q1)t 0 −ε(Q1)t . . . 0

...
...

... . . .
...

−δ(Qq−2)t 0 0 . . . −ε(Qq−2)t
−δ(Qq−1)t −ε(Qq−1)t 0 . . . 1















which can be easily obtained from the expansion in terms of the first column.

On the other hand, the expansion associated to the θ̄p,p+2 element leads to:

e(t) =
[

−(−1)2p+2 ν(Pp−1) t (−1)
p−2 (−1)p−2 ε(P1) · · · ε(Pp−2) t

p−2
]

δQ

= −ε(P1) · · · ε(Pp−2) ν(Pp−1) t
p−1 δQ .

Finally, the expansion associated to the θ̄p,p element leads to a determinant that

is obtained from the first column giving a determinant γ̄ of (p+ q− 2)(p+ q− 2)

elements. Note that the first (p−2)(p−2) elements of this determinant are given

by:
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1− δ(P1)t −ε(P1)t . . . 0
−δ(P2)t 1 . . . 0
−δ(P3)t 0 . . . 0

...
... . . .

...
−δ(Pp−3)t 0 . . . −ε(Pp−3)t
−δ(Pp−2)t 0 . . . 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Now, after interchanging the last row with all other rows and the last column

with all other columns, we get a new determinant which is equal to the initial

one (because we only made elementary operations). Note once more, that this

determinant is formally identical to the initial determinant of the matrix θ̄ and

that the first (p− 2)(p− 2) elements of this new determinant are:

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 −δ(Pp−2)t . . . 0
0 1− δ(P1)t . . . 0
...

... . . .
...

−ε(Pp−3)t −δ(Pp−3)t . . . 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

.
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So by a recursive method we get:

det γ̄ =

=

[

1− δ(P1)t−
p−2
∑

i=2

δ(Pi)
(

i−1
∏

j=1

ε(Pj)
)

ti
] [

1− ν(Q1)t−
q
∑

i=2

ν(Qi)
(

i−1
∏

j=1

ε(Qj)
)

ti
]

−

[

ν(P1)t+
p−2
∑

i=2

ν(Pi)
(

i−1
∏

j=1

ε(Pj)
)

ti
] [

δ(Q1)t+
q
∑

i=2

δ(Qi)
(

i−1
∏

j=1

ε(Qj)
)

ti
]

.

Adding the terms b(t), c(t), e(t) to the previous one we get the desired result.

This result is very important because it is used to prove the next proposition

which establishes how the kneading-determinant and the characteristic polyno-

mial of the matrix θ are related and also because it allows for a easy computation

of the topological entropy associated to a map of the interval with two critical

points (see [6]). In fact, we have:

Proposition 3. To each pair of sequences (P1 . . . Pp−1A,Q1 . . . Qq−1B) we

have:

Pθ(t) = (1− t) (1− tp) (1− tq)D(t)

where D(t) is the kneading-determinant.

Proof:According to the previous proposition and denoting by τk =
∏k−1
i=1 ε(Si),

k > 1, τ1 = 1 when k = 1, we have:

det(I − θt) =

=

[

1− δ(P1)t−
p
∑

i=2

δ(Pi)
(

i−1
∏

j=1

ε(Pj)
)

ti
]

.

[

1− ν(Q1) t−
q
∑

i=2

ν(Qi)
(

i−1
∏

j=1

ε(Qj)
)

ti
]

−

[

ν(P1)t+
p
∑

i=2

ν(Pi)
(

i−1
∏

j=1

ε(Pj)
)

ti
]

.

[

δ(Q1)t+
q
∑

i=2

δ(Qi)
(

i−1
∏

j=1

ε(Qj)
)

ti
]

.
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Then we conclude that:

det(I − θt) =
(

1− 2
∑

1≤i≤p−1
Pi=M

τit
i − 2

∑

1≤i≤p−1
Pi=R

τi t
i − τp t

p
)

×
(

1 + 2
∑

1≤i≤q−1
Qi=R

τ̂i t
i + τ̂q t

q + 2
∑

1≤i≤q−1
Pi=R

τi t
i
)

×
(

2
∑

1≤i≤q−1
Qi=M

τ̂i t
i + 2

∑

1≤i≤q−1
Qi=R

τ̂i t
i + 2 τ̂q t

q
)

where τi =
∏i−1
j=1 ε(Pj) and τ̂i =

∏i−1
j=1 ε(Qj). In what follows we denote MP by:

MP =
∑

1≤i≤p−1
Pi=M

τi t
i

(in a similar way, MQ =
∑

1≤i≤q−1
Qi=M

τ̂i t
i, RP = . . . , RQ = . . . ) to get an abbrevi-

ated formula for det(I − θt). In fact, with these notations, we have:

det(I − θt) = (1− 2MP − 2RP − τp t
p) (1 + 2RQ + τ̂q t

q)

+ 2RP (2MQ + 2RQ + 2τ̂q t
q)

= 1 + 2RQ + τ̂q t
q − 2MP − 4MPRQ − 2MP τ̂q t

q

− 2RP + 2RP τ̂q t
q − τp t

p − 2RQ τp t
p − τp τ̂q t

p+q + 4MQRP .

In order to prove our proposition we suppose that P1 . . . Pp−1 has odd parity

and that Q1 . . . Qq−1 has even parity (the others three cases works analogously).

Then we have τp = −1, τ̂q = 1 and so:

det(I − θt) = 1 + 2RQ + tq − 2MP − 4MPRQ − 2MP t
q − 2RP

+ 2RP t
q + tp + 2RQ t

p + tp+q + 4MQRP .

On the other hand, following the Milnor–Thurston techniques we have:

ν1(t) =M − L− 2τ1P1 t− 2τ2P2 t
2 − · · · − 2τp−1Pp−1 t

p−1 − 2τpPp t
p

− 2τ1P1 t
p+1 − 2τ2P2 t

p+2 − · · · − 2τp−1Pp−1 t
2p−1 − 2τp Pp t

2p − . . .

=M − L−
2τ1P1 t+ 2τ2P2 t

2 + · · ·+ 2τp Pp t
p

1− tp

and

ν2(t) = R−M +
2τ̂1Q1 t+ 2τ̂2Q2 t

2 + · · ·+ 2τ̂qQq t
q

1− tq
.
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Thus, with the previous assumptions τp = −1, τ̂q = 1 we have (see examples of

section 1):

ν1(t) =
M −M tp − L+ L tp − 2τ1P1 t− · · · − 2τp−1Pp−1 t

p−1 + 2M tp

1− tp

and,

ν2(t) =
R−R tq −M +M tq + 2τ̂1Q1 t+ · · ·+ 2τ̂q−1Qq−1 t

q−1 + 2R tq

1− tq

hence,

D(t) (1− t) = det









1− 2Mp + tp

1− tp
−2Rp
1− tp

−1 + 2MQ + tq

1− tq
1 + 2RQ + tq

1− tq









then, we have:

d(t) =
(1− 2MP + tp) (1 + 2RQ + tq) + 2RP (−1 + 2MQ + tq)

1− t

and so:

(1− t) d(t) = 1 + 2RQ + tq − 2MP − 4MPRQ − 2MP t
q + tp + 2RQ t

p + tp+q

+ 4RPMQ − 2RP + 2RP t
q

= det(I − θt) .

Example. If we return once more to the kneading sequence (RRLMA, LLRB)

we get:

θ =

































0 1 0 0 0 0 0 0 0
0 2 1 0 0 0 −2 0 0
0 2 0 1 0 0 −2 0 0
0 0 0 0 1 0 0 0 0
−1 2 0 0 0 0 0 0 0
0 2 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 2 0 0 0 1 −2 0 0

































and by proposition 2 we have:

Pθ(t) = 1− 2t− 2t2 + 2t3 − t4 + 3t5 + 2t6 − 4t7 + t9
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following proposition 3 we also have:

Pθ(t) = (1− t) (1− t5) (1− t4)D(t)

= (1− t) (1− t5) (1− t4)
1− 2t− 2t2 + 2t3 − t4 + 3t5 + 2t6 − 4t7 + t9

(1− t) (1− t5) (1− t4)
.

In what follows let’s denote by ψ the non-negative matrix defined by ψ = αβ.

This matrix defines a subshift of finite type that is “equivalent” to the matrix θ,

according to the next commutative diagram:

C0
η

−−−→ B0

θ





y

ψ





y

C0
η

−−−→ B0

Proposition 4. The characteristic polynomial of the matrix θ satisfies the

following result:

Pθ(t) = (1− t) det(I − ψ t) .

Proof: This result follows from the commutativity of the previous diagram,

from a generalization of this result to an exact sequence and from an homological

algebra theorem [7].

Example. We return to our kneading sequence (RRLMA, LLRB) and we

get:

ψ = αβ =



























0 0 1 1 0 0 0 0
0 0 0 0 1 1 1 0
0 0 0 0 0 0 0 1
0 0 0 1 1 1 1 1
1 1 1 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 1 1 1 0 0 0
0 0 0 0 0 1 0 0



























and det(I − ψt) = 1− t− 3t2 − t3 − 2t4 + t5 + 3t6 − t7 − t8.

To conclude we point out the simplicity of the expression in proposition 2

which according to proposition 3 allows for a simple computation of symbolic
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invariants of all the bimodal maps of the interval, this being important in ap-

plications. Note that θ is directly obtained from the kneading sequence while

the “traditional” Markov matrix (ψ, here) is obtained with a great deal more

difficulty.

This novel approach has the obvious consequence of providing a simplified

alternative method to the 0− 1 matrices.
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Universidade Técnica de Lisboa – PORTUGAL


