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BOUNDARIES IN INDUCTIVE LIMIT
TOPOLOGICAL ALGEBRAS

R.I. Hadjigeorgiou

Abstract: We study several kinds of boundaries of an inductive limit topological

algebra in terms of those of the factor algebras.

1 – Introduction

When considering an inductive limit topological algebra, we know that the

spectrum of this algebra is homeomorphic to the projective limit of the spectra

of the factor algebras [8: p. 156, Theorem 3.1]. The aim of this paper is to

provide sufficient conditions, under which the aforementioned homeomorphism

is “boundary preserving”, in the sense that it preserves the Šilov, Bishop and

Choquet boundaries. Thus, generalizing a result of G.M. Leibowitz [7: p. 214,

Theorem 11], we show that, if the connecting maps between the factor algebras

are onto, along with their transpose maps between the respective spectra, then

the family of the Šilov boundaries constitutes a projective system of topological

spaces. In the same context, the corresponding projective limit of Šilov bound-

aries is homeomorphic to the Šilov boundary of the inductive limit topological

algebra concerned (Lemma 3.1, Theorem 3.1).

As far as the Bishop boundaries are concerned, these form a projective system

of topological spaces, in the context of an inductive system of suitable Urysohn

algebras (Lemma 4.2). Furthermore, the respective projective limit of them co-

incides, under the appropriate conditions, homeomorphically, with the Bishop

boundary of the inductive limit topological algebra involved (Theorem 4.1), due
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to the fact that the latter becomes an Urysohn algebra, when the factor algebras

are of this type (Lemma 4.1).

On the other hand, we observe that the family of the Choquet boundaries of

the factor algebras of the inductive system at issue, as before, always forms a

projective system of topological spaces (Lemma 5.1), in the corresponding (pro-

jective) limit of which the Choquet boundary of the inductive limit topological

algebra involved is imbedded, within a homeomorphism. This becomes surjective

under suitable conditions for the algebras concerned (Theorem 5.1).

2 – Preliminaries

In all that follows by a topological algebra we mean a C-algebra with (non-

empty) spectrum M(E) endowed with the Gel’fand topology . The Gel’fand map

of E is given by

(2.1)
G : E → C(M(E)) : x 7→ G(x) ≡ x̂ : M(E)→ C

: f 7→ x̂(f) := f(x) .

The image of G, denoted by E∧, is called the Gel’fand transform algebra of

E and is topologized as a locally m-convex algebra by

(2.2) E∧ ⊆ Cc(M(E)) ,

where the algebra C(M(E)) carries the topology “c” of compact convergence [8:

p. 19, Example 3.1]. Now, given an inductive system of topological algebras

(Eα, fβα), with respect to a directed index set I, let

(2.3) E = lim
−→
α

(Eα, fβα) =
⋃

α∈I

fα(Eα)

be the corresponding inductive limit topological algebra, where fα stands for the

canonical map [8: p. 113 ff]. Considering the spectra M(Eα) of the topological

algebras involved, for any α ≤ β in I, the transpose map tfβα of fβα preserves

the respective spectra iff

(2.4) fβα(Eα) ∩ (Ker(uβ))
c 6= ∅ ,

for every uβ ∈M(Eβ) [8: p. 155, (3.24)]. Thus, the family

(2.5)
(
M(Eα),

tfβα

)

constitutes a projective system of topological spaces.
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On the other hand, the transpose maps tfα, α ∈ I, of the canonical maps fα,

are well defined iff

(2.6) fα(Eα) ∩ (Ker(u))c 6= ∅ ,

for every u ∈ M(E) and α ∈ I, and hence yield a uniquely defined map

(2.7) j ≡ lim
←−
α

tfα : M(E)→ lim
←−
α

M(Eα) ,

in such a manner that

(2.8) tfα = ρα ◦ j ,

for every α ∈ I, where ρα : lim
←−
α

M(Eα)→ M(Eα) stands for the canonical map.

The above map j, under the previous conditions (2.4) and (2.6), becomes a

homeomorphism of the respective topological spaces [8: p. 156, Theorem 3.1].

Remark 3.1. In this context, we also note that if the topological algebras

Eα, α ∈ I, have identity elements, hence E = lim
−→
α

Eα has one as well, both of the

above conditions (2.4) and (2.6) are satisfied [8].

Now considering the Gel’fand maps Gα, α ∈ I, of the topological algebras

considered, we first have the following relation

(2.9) G(x) = Gα(xα) ◦
tfα , α ∈ I ,

such that fα(xα) = x ∈ E, with G : E → E∧ the Gel’fand map of E. Furthermore,

the map t(tfβα) ≡ hβα preserves the Gel’fand transform algebras, so that the

family

(2.10)
(
E∧α ≡ Gα(Eα), hβα ≡

t(tfβα)
)

yields an inductive system of topological algebras with

(2.11) F = lim
−→
α

E∧α =
⋃

α∈I

f̂α(E
∧
α )

the corresponding inductive limit topological algebra, where f̂α stands for the

canonical map. Then, hα ≡
t(tfα) maps each E∧α , α ∈ I, into E∧ ≡ G(E), so that

one obtains a continuous algebra morphism onto

(2.12) h = lim
−→
α

hα : F = lim
−→
α

E∧α → G(E) ≡ E∧ ,

becoming 1− 1, when E is semi-simple [3: p. 481, Theorem 7.1].
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Now, the Šilov boundary ∂(E) of E is the least boundary set of E, that is the

smallest closed subset of M(E) on which every x̂, x ∈ E, attains its maximum

absolute value [8: p. 189, Definitions 2.1 and 2.2]. Its elements, Šilov points, are

characterized by the fact that, for every open neighbourhood V of f in M(E),

there exists x ∈ E, such that Mx̂ ⊆ V , with

(2.13) Mx̂ =
{
f ∈ M(E) : |x̂(f)| = sup

h∈M(E)
|x̂(h)| ≡ pM(E)(x̂)

}
,

being a closed subset of M(E), by the continuity of x̂, x ∈ E [8: p. 190, (2.4),

Lemma 2.1].

On the other hand, the smallest weak boundary set of E, that is, a non-closed

subset of M(E) with the property of a boundary set, is defined as the Bishop

boundary of E, denoted by B(E). A criterion for its existence is that (cf. also

(2.13))

(2.14) Mx̂ ∩Gδ(M(E)) 6= ∅, for every x ∈ E ,

in the context of a unital Urysohn algebra E with the respective Gel’fand trans-

form algebra E∧ σ-complete [4: Theorem 3.1]. In this respect, Gδ(M(E)) is the

set of Gδ points in M(E), while by an Urysohn algebra E we mean a topological

algebra E such that for every f ∈ M(E) and open neighbourhood V of f , there

exists x ∈ E with

(2.15) 0 ≤ x̂ ≤ 1 , x̂(f) = 1 and x̂ = 0|V c .

By the preceding, every Bishop point of a unital Urysohn algebra E is a

Gδ-point, while the converse holds true if E∧ is σ-complete [4: Corollary 3.2].

Furthermore, in the context of Urysohn algebras, if the Bishop boundary exists,

then it is dense in the spectrum of the given algebras (ibid.). The relation between

Bishop and Šilov boundaries of topological algebras is that whenever the Bishop

boundary exists it is dense in the Šilov boundary, since the boundary sets are the

closures of the weak boundary sets [4: Corollary 3.3].

On the other hand, the Choquet boundary of a topological algebra E, denoted

by Ch(E), consists of the continuous characters of E which are represented only

by the respective Dirac measures [5: (4.1)]. Moreover, in a unital topological

algebra E with compact spectrum M(E) and E∧ σ-complete an f ∈ M(E) is in

the Choquet boundary if, and only if, for every open neighbourhood U of f there

exists x ∈ E with f ∈Mx̂ ⊆ U (see [2: p. 208, Theorem 7.3]).
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Now, a spectral algebra is a topological algebra E whose spectrum M(E) is

a spectral set, in the sense that

(2.16) SpE(x) = x̂(M(E)) , x ∈ E ,

where SpE(x) stands for the spectrum of x ∈ E [2: p. 13, Definition 2.1],

[8: p. 47, Definitions 1.1, 1.2]. Every unital commutative advertibly complete

locally m-convex algebra is a spectral algebra [8: p. 104, Corollary 6.4].

3 – Šilov boundary of an inductive limit topological algebra

Given an inductive system of unital topological algebras (Eα, fβα) relative to

a directed index set I, with E = lim
−→
α

Eα the corresponding inductive limit unital

topological algebra, we seek conditions guaranteeing that the restrictions of the

homeomorphism (2.7) to the respective Šilov boundaries ∂(Eα), α ∈ I, whenever

they exist, are also homeomorphisms.

In this respect, we first examine when the family (∂(Eα),
tfβα|∂(Eβ)) consti-

tutes a projective system of subsets of M(Eα); that is when

(3.1) tfβα(∂(Eβ)) ⊆ ∂(Eα) ,

for any α ≤ β in I. A sufficient condition is given in the following.

Lemma 3.1. Let (Eα, fβα) be an inductive system of unital topological

algebras with Šilov boundaries ∂(Eα), α ∈ I, such that the connecting maps fβα
and tfβα, with α ≤ β in I, are surjective. Then, the family (∂(Eα),

tfβα|∂(Eβ))

yields a projective system of topological spaces.

Proof: By taking uβ ∈ ∂(Eβ), then
tfβα(uβ) = uβ ◦ fβα ∈ M(Eα). If Uα is

an open neighbourhood of uβ ◦ fβα in M(Eα), we show that there exists xα ∈ Eα

such that (cf. (2.13) and the comments before)

(3.2) Mx̂α
⊆ Uα .

Indeed, by the continuity of tfβα there exists an open neighbourhood Uβ of uβ in

M(Eβ) such that tfβα(Uβ) ⊆ Uα, and since uβ ∈ ∂(Eβ), there is xβ ∈ Eβ with

Mx̂β
⊆ Uβ . Hence,

(3.3) tfβα(Mx̂β
) ⊆ tfβα(Uβ) ⊆ Uα ,
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where

(3.4) tfβα(Mx̂β
) = Mx̂β

◦ fβα =
{
uβ ◦ fβα : uβ ∈Mx̂β

}
.

Now by the hypothesis for fβα, there exists xα ∈ Eα such that xβ = fβα(xα).

Hence |x̂β(uβ)| = |uβ(xβ)| = |(uβ ◦ fβα)(xα)| = |x̂α(uβ ◦ fβα)| ≤ pM(Eα)(x̂α), so

that pM(Eβ)(x̂β) ≤ pM(Eα)(x̂α), while pM(Eα)(x̂α) ≤ pM(Eβ)(x̂β) follows from the

surjectivity of tfβα. Thus (cf. also (3.3) and (3.4)),

(3.5) Mx̂α
= Mx̂β

◦ fβα = tfβα(Mx̂β
) ⊆ Uα ,

proving (3.2), therefore tfβα(uβ) ∈ ∂(Eα), which implies the assertion.

The surjectivity of tfβα, α ≤ β in I, implies the surjectivity of the canonical

map ρα, α ∈ I [7: p. 210, Lemma 9], so that in view of (2.8) and the homeomor-

phism j, one obtains the surjectivity of

(3.6) tfα = ρα ◦ j ≈ ρα , α ∈ I .

Thus, we have the following result, useful in the sequel.

Lemma 3.2. Let (Eα, fβα) be an inductive system of unital topological

algebras and E = lim
−→
α

Eα the respective inductive limit unital topological algebra.

Moreover, suppose that the connecting maps tfβα, with α ≤ β in I, are onto.

Then, for every x ∈ E = lim
−→
α

Eα, with x = fα(xα) for some α ∈ I, one has

(3.7) ρα(Mx̂) ≈
tfα(Mx̂) = Mx̂ ◦ fα = Mx̂α

.

Proof: Let x ∈ E with x = fα(xα), for some α ∈ I and υ ∈ M(E).

Then, |x̂(υ)| = |υ(x)| = |(υ ◦ fα)(xα)| = |x̂α(
tfα(υ))| ≤ pM(Eα)(x̂α), hence

pM(E)(x̂) ≤ pM(Eα)(x̂α) and since, by hypothesis and (3.6), tfα is onto, pM(E)(x̂) =

pM(Eα)(x̂α), α ∈ I, implying (3.7) in view of (2.13).

Based on the previous two lemmas one obtains the next result.

Theorem 3.1. Consider the context of Lemma 3.1 and let E = lim
−→
α

Eα be

the corresponding inductive limit unital topological algebra, with Šilov boundary

∂(E). Then, one obtains

(3.8) ∂(E) = lim
←−
α

∂(Eα) ,
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within a homeomorphism of the topological spaces involved, provided by (2.7).

Proof: Considering the restriction of the homeomorphism (2.7) to ∂(E), one

gets a bicontinuous injection

(3.9) j′ ≡ lim
←−
α

tfα|∂(E) : ∂(E)→ lim
←−
α

∂(Eα) ,

since each one of tfα, α ∈ I, takes ∂(E) into ∂(Eα). Indeed, if u ∈ ∂(E), then
tfα(u) = u ◦ fα ≡ uα ∈ M(Eα) and by the continuity of tfα,

tf−1
α (Uα) is an

open neighbourhood of u in M(E), Uα being an open neighbourhood of uα in

M(Eα). Thus, there exists x ∈ E =
⋃

α∈I fα(Eα) such that Mx̂ ⊆
tf−1
α (Uα),

hence Mx̂ ◦ fα ≡
tfα(Mx̂) ⊆ Uα. Since x = fγ(xγ), for some γ ∈ I, there exists

β ∈ I, with β ≥ α, γ, such that x = fβ(fβγ(xγ)) = fβ(xβ) and by Lemma 3.2

Mx̂β
= tfβ(Mx̂), hence tfβα(Mx̂β

) = (tfβα ◦
tfβ)(Mx̂) = tfα(Mx̂) ⊆ Uα. By

hypothesis and (3.5) one gets Mx̂α
⊆ Uα, thus uα ∈ ∂(Eα), proving the assertion.

Now, we show that

(3.10) lim
←−
α

∂(Eα) ⊆ ∂(E) .

If u ∈ lim
←−
α

∂(Eα) and U is an open neighbourhood of u in lim
←−
α

∂(Eα), then it

contains a basic open neighbourhood ρ−1
α (Uα), for some α ∈ I, with Uα a basic

open neighbourhood of ρα(u) = uα = u◦fα in M(Eα) (cf. [8: p. 87, Lemma 3.1]).

Since uα ∈ ∂(Eα), there exists xα ∈ Eα such that Mx̂α
⊆ Uα, hence ρ

−1
α (Mx̂α

) ⊆

ρ−1
α (Uα) ⊆ U . Setting x = fα(xα) ∈ E = lim

−→
α

Eα, one obtains (Lemma 3.2)

Mx̂ ⊆ ρ−1
α (Mx̂α

) ⊆ U , hence u ∈ ∂(E), proving (3.10) and thus (3.8).

4 – Bishop boundary of an inductive limit topological algebra

We investigate the situation exhibited in Theorem 3.1 for the Bishop bound-

aries of the topological algebras considered. By the standard property of the

Bishop boundary to be dense in the spectrum of an Urysohn algebra, in the

context of the latter algebras one certainly has due to (2.7) the relation

(4.1) B(E) = M(E) ∼= lim
←−
α

M(Eα) = lim
←−
α

B(Eα) ,

taking into account that the inductive limit of Urysohn algebras is also an Urysohn

algebra, as the following result shows.
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Lemma 4.1. The inductive limit topological algebra E = lim
−→
α

Eα of an

inductive system of Urysohn algebras (Eα, fβα) is an Urysohn algebra.

Proof: Let u ∈ M(E) ∼= lim
←−
α

M(Eα) and U an open neighbourhood of u in

M(E). Then (cf. [8: p. 87, Lemma 3.1]), U contains a basic open neighbourhood

ρ−1
α (Uα), for some α ∈ I, with Uα a basic open neighbourhood of ρα(u) = uα =

u ◦ fα in M(Eα). By the hypothesis for Eα (cf. also (2.15)), there exists xα ∈ Eα

such that 0 ≤ x̂α ≤ 1, x̂α(uα) = 1 and x̂α = 0|Uc
α
. By setting x = fα(xα), one

gets (cf. (2.9)) 0 ≤ x̂ ≤ 1, x̂(u) = 1 and x̂ = 0|Uc , since U c ⊆ ρ−1
α (U c

α), proving

the assertion.

In our attempt to eliminate the closure in (4.1), we first note that the family

(B(Eα),
tfβα) constitutes a projective system of topological spaces under suitable

conditions exhibited in [4: Theorem 4.2]. Namely, we have.

Lemma 4.2. Let (Eα, fβα) be an inductive system of unital spectral Urysohn

algebras such that for every α ≤ β in I, Eβ has non-empty Bishop boundary and

the Gel’fand transform algebras of Eα, E
∧
α , are σ-complete. Moreover, let the

connecting maps fβα be “spectral radii preserving” in the sense that for every

α ≤ β in I,

(4.2) rEα
(xα) = rEβ

(fβα(xα)) , xα ∈ Eα ,

while the respective transpose maps tfβα are open injections. Then, the Bishop

boundaries of Eα, α ≤ β, exist and the family (B(Eα),
tfβα) constitutes a projec-

tive system of topological spaces.

Proof: According to (2.14) the existence of B(Eα), α ≤ β in I, is accom-

plished by proving that

(4.3) Mx̂α
∩Gδ(M(Eα)) 6= ∅ , xα ∈ Eα .

Since for every α ≤ β in I, B(Eβ) exists, one obtains an analogous relation to

(4.3) for M(Eβ) and every xβ ∈ Eβ , hence for fβα(xα), xα ∈ E; namely one has

(cf. also (2.13))

(4.4)
(
Mfβα(xα) = Mx̂α◦tfβα

)
∩Gδ(M(Eβ)) 6= ∅ , xα ∈ Eα .

By the hypothesis for tfβα one gets

(4.5) tfβα

(
Gδ(M(Eβ))

)
⊆ Gδ(M(Eα)) ,
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while, for every υ ∈ Mfβα(xα), (4.2) implies that |x̂α(
tfβα(υ))| = |fβα(xα)(υ)| =

supu∈M(Eβ) |fβα(xα)(u)| = rEβ
(fβα(xα)) = rEα

(xα) = supu∈M(Eα) |x̂α(u)|, hence

(4.6) tfβα(Mfαβ(xα)) ≡Mfβα(xα) ◦ fβα ⊆Mx̂α
,

for every xα ∈ Eα. Now, by applying tfβα to (4.4), one obtains (4.3) in view also

of (4.5) and (4.6), therefore B(Eα), α ≤ β, exists.

Concerning the last assertion, we have to prove that

(4.7) tfβα(B(Eβ)) ⊆ B(Eα) , α ≤ β .

Indeed, if υ ∈ B(Eβ), then υ is a Gδ point in M(Eβ), and by (4.5) tfβα(υ) ∈

Gδ(M(Eα)). The σ-completeness of Eα, for every α ≤ β in I, implies that
tfβα(υ) ∈ B(Eα) (cf. comments following (2.15)), so that (4.7) holds true.

Scholium 4.1. In the previous lemma, by assuming that all the Bishop

boundaries of the topological algebras considered exist, we can avoid our as-

sumption that Eα, α ∈ I, are spectral and also our assumption (4.2).

On the basis of the Lemma 4.2, we get the following.

Theorem 4.1. Suppose we have the context of Lemma 4.2. Moreover, let

E = lim
−→
α

Eα be the corresponding inductive limit unital topological algebra with

Gel’fand transform algebra E∧ σ-complete and Bishop boundary B(E). Then,

one gets

(4.8) B(E) = lim
←−
α

B(Eα)

within a homeomorphism of the topological spaces involved, provided by (2.7).

Proof: The restriction of the homeomorphism (2.7) to B(E) yields a bicon-

tinuous injection

(4.9) j1 ≡ lim
←−
α

tfα|B(E) : B(E)→ lim
←−
α

B(Eα) ,

since each one of tfα, α ∈ I, takes B(E) into B(Eα): Indeed, if u ∈ B(E) ⊆

M(E) ∼= lim
←−
α

M(Eα), then u = (uα)α∈I is a Gδ point in M(E), hence its pro-

jections uα, α ∈ I, are Gδ points in the corresponding M(Eα) (cf. e.g. [3: p. 6,

Proposition 5.1]). Thus, by the σ-completeness of E∧α , α ∈ I, tfα(u) = u ◦ fα ≡

uα ∈ B(Eα) (cf. also (3.6)), proving the assertion.
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On the other hand, by taking u = (uα) ∈ lim
←−
α

B(Eα), ρα(u) = uα ∈ B(Eα) is

a Gδ point in M(Eα), α ∈ I. Then, ρ−1
α (uα) = u is Gδ in M(E), hence, by the

σ-completeness of E∧, u ∈ B(E), implying that

(4.10) lim
←−
α

B(Eα) ⊆ B(E) ,

and this completes the proof.

5 – Choquet boundary of an inductive limit topological algebra

In this section we examine whether the situation considered in Theorem 3.1

holds true for the Choquet boundaries of the topological algebras involved.

Namely, if the map (2.7) maps homeomorphically the Choquet boundary of an in-

ductive limit unital topological algebra onto the projective system of the Choquet

boundaries of the factor algebras.

We first have the following, as a consequence of a relevant result in [6: Theo-

rem 3.4, (3.12)] exhibiting that a continuous algebra morphism between topolog-

ical algebras preserves the Choquet boundaries.

Lemma 5.1. Let (Eα, fβα) be an inductive system of unital topological

algebras and Ch(Eα), α ∈ I, the corresponding Choquet boundaries. Then, the

family (Ch(Eα),
tfβα|Ch(Eβ)) constitutes a projective system of topological spaces.

Proof: It suffices to prove that

(5.1) tfβα(Ch(Eβ)) ⊆ Ch(Eα) .

If uβ ∈ Ch(Eβ), then by definition, there exists µβ ∈ M
+
c (M(Eβ)) such that

µβ = δuβ . Considering tfβα(uβ) = uβ ◦ fβα ∈ M(Eα), one obtains µα = µβ ◦
t(tfβα) ∈ M

+
c (M(Eα)), with supp(µα) ⊆

tfβα(supp(µβ)), such that µα(hα) =

µβ(hα ◦
tfβα) = δuβ (hα ◦

tfβα) = hα(
tfβα(uβ)) = δtfβα(uβ)(hα), for every hα ∈

C(M(Eα)). Hence, tfβα(uβ) ∈ Ch(Eα), proving the desired relation (5.1).

Theorem 5.1. Consider the context of Lemma 5.1 and let E = lim
−→
α

Eα be the

corresponding inductive limit unital topological algebra with Choquet boundary

Ch(E). Then, one gets the relation

(5.2) Ch(E) ⊂
→

homeo

lim
←−
α

Ch(Eα) ,

within a homeomorphism of the respective topological spaces provided by (2.7).

In particular, if the connecting maps tfβα, α ≤ β in I, are onto, E∧ and E∧α ,
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α ∈ I, are σ-complete and M(Eα) compact, then

(5.3) Ch(E) = lim
←−
α

Ch(Eα) ,

within a homeomorphism of the topological spaces concerned.

Proof: By applying a similar argument to that in the proof of Lemma 5.1,

one has that the maps tfα : M(E) → M(Eα), α ∈ I, preserve the respective

Choquet boundaries. Thus, tfα(u) ∈ Ch(Eα), for every u ∈ Ch(E), and by the

next commutative diagram

(5.4)

one obtains a bicontinuous injection j|Ch(E) : Ch(E)→ lim
←−
α

Ch(Eα), that is

(5.5) Ch(E) ⊂
→

homeo

lim
←−
α

Ch(Eα) .

Conversely, let u = (uα)α∈I ∈ lim
←−
α

Ch(Eα) and U an open neighbourhood of u

in lim
←−
α

Ch(Eα). Then, U contains a basic open neighbourhood of ρα(u) = uα =

u ◦ fα in M(Eα) (cf. [8: p. 87, Lemma 3.1]). Since uα ∈ Ch(Eα), there exists

xα ∈ Eα, such that uα ∈ Mx̂α
⊆ Uα (see Preliminaries). Setting x = fα(xα) ∈

E = lim
−→
α

Eα, one obtains (cf. Lemma 3.2) u ∈ Mx̂ ⊆ ρ−1
α (Mx̂α

) ⊆ ρ−1
α (Uα) ⊆ U .

Thus, u ∈ Ch(E), according to the hypothesis for E∧ and the compactness of

M(E) = lim
←−
α

M(Eα), M(Eα) being compact. Hence

(5.6) lim
←−
α

Ch(Eα) ⊆ Ch(E) ,

which in connection with (5.5) proves (5.3).
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Note (added in proof). The characterization of a Choquet point, that has

been applied in Theorem 5.1, holds true, more generally, when the spectra of

the topological algebras concerned ae just Q-spaces. (See R.I. Hadjigeorgiou,

Boundaries and peak points of topological algebras (to appear), in conjunction

with L. Gillman, M. Jerison, Rings of Continuous Functions, Springer-Verlag,

1976, and Jun-Iti Nagata, Modern General Topology , North-Holland, 1968).
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