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BOUNDARIES IN INDUCTIVE LIMIT
TOPOLOGICAL ALGEBRAS

R.I. HADJIGEORGIOU

Abstract: We study several kinds of boundaries of an inductive limit topological

algebra in terms of those of the factor algebras.

1 — Introduction

When considering an inductive limit topological algebra, we know that the
spectrum of this algebra is homeomorphic to the projective limit of the spectra
of the factor algebras [8: p. 156, Theorem 3.1]. The aim of this paper is to
provide sufficient conditions, under which the aforementioned homeomorphism
is “boundary preserving”, in the sense that it preserves the Silov, Bishop and
Choquet boundaries. Thus, generalizing a result of G.M. Leibowitz [7: p. 214,
Theorem 11], we show that, if the connecting maps between the factor algebras
are onto, along with their transpose maps between the respective spectra, then
the family of the Silov boundaries constitutes a projective system of topological
spaces. In the same context, the corresponding projective limit of Silov bound-
aries is homeomorphic to the Silov boundary of the inductive limit topological
algebra concerned (Lemma 3.1, Theorem 3.1).

As far as the Bishop boundaries are concerned, these form a projective system
of topological spaces, in the context of an inductive system of suitable Urysohn
algebras (Lemma 4.2). Furthermore, the respective projective limit of them co-
incides, under the appropriate conditions, homeomorphically, with the Bishop
boundary of the inductive limit topological algebra involved (Theorem 4.1), due
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to the fact that the latter becomes an Urysohn algebra, when the factor algebras
are of this type (Lemma 4.1).

On the other hand, we observe that the family of the Choquet boundaries of
the factor algebras of the inductive system at issue, as before, always forms a
projective system of topological spaces (Lemma 5.1), in the corresponding (pro-
jective) limit of which the Choquet boundary of the inductive limit topological
algebra involved is imbedded, within a homeomorphism. This becomes surjective
under suitable conditions for the algebras concerned (Theorem 5.1).

2 — Preliminaries

In all that follows by a topological algebra we mean a C-algebra with (non-
empty) spectrum 9M(FE) endowed with the Gel’fand topology. The Gel’fand map
of E is given by

G:E—-COME): z—Gx)=z: ME) - C
e E(f)i=f(2)

The image of G, denoted by E”, is called the Gel’fand transform algebra of

FE and is topologized as a locally m-convex algebra by

(2.1)

(2.2) E" C C.(M(E))

where the algebra C(M(E)) carries the topology “c” of compact convergence [8:
p. 19, Example 3.1]. Now, given an inductive system of topological algebras
(Ew; f8a), with respect to a directed index set I, let

(2.3) E =1im(E,, f5o) = |J fa(Ea)
« acl

be the corresponding inductive limit topological algebra, where f, stands for the
canonical map [8: p. 113 ff]. Considering the spectra M(E,) of the topological
algebras involved, for any a < 3 in I, the transpose map fg, of fg, preserves
the respective spectra iff

(2.4) J8a(Eq) N (Ker(ug))® # 0 ,
for every ug € M(E3) [8: p. 155, (3.24)]. Thus, the family
(2.5) (W(Ea)y tfﬁa)

constitutes a projective system of topological spaces.
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On the other hand, the transpose maps 'f,,, a € I, of the canonical maps fa,
are well defined iff

(2.6) fa(Ea) N (Ker(u))® # 0,
for every u € M(F) and « € I, and hence yield a uniquely defined map

(2.7) j= l(iﬂltfai M(E) — lim M(Ea)

in such a manner that

(2.8) fa=raoj,

for every v € I, where p,: lm9(E,) — M(E,) stands for the canonical map.

«
The above map j, under the previous conditions (2.4) and (2.6), becomes a

homeomorphism of the respective topological spaces [8: p. 156, Theorem 3.1].

Remark 3.1. In this context, we also note that if the topological algebras
FE,., a € I, have identity elements, hence E = lim F,, has one as well, both of the

above conditions (2.4) and (2.6) are satisfied [8].

Now considering the Gel’fand maps G,, o € I, of the topological algebras
considered, we first have the following relation
(29) g(ZC) = ga(xa) o tfaa aecl 3

such that fu (7o) =z € E, with G: E — E” the Gel’fand map of E. Furthermore,
the map "(*fgo) = hpa preserves the Gel'fand transform algebras, so that the
family

(2.10) (B = GalBa), hpa = "(F50))

yields an inductive system of topological algebras with

(2.11) F=lMmE) = fu(EL)
7 acl

the corresponding inductive limit topological algebra, where fa stands for the
canonical map. Then, h, = (*f,) maps each E/, a € I, into E" = G(F), so that
one obtains a continuous algebra morphism onto

(2.12) h:h_rr)lha:leinEQHg(E)EE/\,
6 (0%

becoming 1 — 1, when E is semi-simple [3: p. 481, Theorem 7.1].
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Now, the Silov boundary O(E) of E is the least boundary set of F, that is the
smallest closed subset of 9 (F) on which every Z, x € E, attains its maximum
absolute value [8: p. 189, Definitions 2.1 and 2.2]. Its elements, Silov points, are
characterized by the fact that, for every open neighbourhood V' of f in 9(F),
there exists x € E, such that M~ C V', with

(213) My ={feME): [#() = suwp [2(h)| = pomp)(@)] ,
heM(E)

being a closed subset of M(E), by the continuity of Z, z € E [8: p. 190, (2.4),
Lemma 2.1].

On the other hand, the smallest weak boundary set of E, that is, a non-closed
subset of MM (FE) with the property of a boundary set, is defined as the Bishop

boundary of E, denoted by B(E). A criterion for its existence is that (cf. also
(2.13))

(2.14) M-NGs(M(E)) #0, forevery z € E

in the context of a unital Urysohn algebra E with the respective Gel’fand trans-
form algebra E” o-complete [4: Theorem 3.1]. In this respect, Gs(9M(F)) is the
set of G points in M(FE), while by an Urysohn algebra E we mean a topological
algebra E such that for every f € 9M(FE) and open neighbourhood V' of f, there
exists x € E with

(2.15) 0<z<1, 2(f)=1 and Z=0y-.

By the preceding, every Bishop point of a unital Urysohn algebra E is a
Gs-point, while the converse holds true if E” is o-complete [4: Corollary 3.2].
Furthermore, in the context of Urysohn algebras, if the Bishop boundary exists,
then it is dense in the spectrum of the given algebras (ibid.). The relation between
Bishop and Silov boundaries of topological algebras is that whenever the Bishop
boundary exists it is dense in the Silov boundary, since the boundary sets are the
closures of the weak boundary sets [4: Corollary 3.3].

On the other hand, the Choquet boundary of a topological algebra F, denoted
by Ch(E), consists of the continuous characters of E which are represented only
by the respective Dirac measures [5: (4.1)]. Moreover, in a unital topological
algebra E with compact spectrum M (E) and E™ o-complete an f € M(F) is in
the Choquet boundary if, and only if, for every open neighbourhood U of f there
exists x € I with f € Mz C U (see [2: p. 208, Theorem 7.3]).



BOUNDARIES IN LIMIT ALGEBRAS 119

Now, a spectral algebra is a topological algebra E whose spectrum 9 (E) is
a spectral set, in the sense that

(2.16) Spe(x) =Z2(M(E)), =xz€kF,

where Spp(z) stands for the spectrum of x € E [2: p. 13, Definition 2.1],
[8: p. 47, Definitions 1.1, 1.2]. Every unital commutative advertibly complete
locally m-convex algebra is a spectral algebra [8: p. 104, Corollary 6.4].

3 — Silov boundary of an inductive limit topological algebra

Given an inductive system of unital topological algebras (E,, fzq) relative to
a directed index set I, with E = lim F,, the corresponding inductive limit unital

topological algebra, we seek condi?ions guaranteeing that the restrictions of the
homeomorphism (2.7) to the respective Silov boundaries d(E,), o € I, whenever
they exist, are also homeomorphisms.

In this respect, we first examine when the family (9(Ea), 'fsalo(e,)) consti-
tutes a projective system of subsets of MM(FE,,); that is when

(3.1) f5a(0(Ep)) € O(Ea)
for any o < G in I. A sufficient condition is given in the following.

Lemma 3.1. Let (E,, fsa) be an inductive system of unital topological
algebras with Silov boundaries O(E,), a € I, such that the connecting maps f8a
and fpa, with a < 8 in I, are surjective. Then, the family (0(Ea), ‘falo(s,))
yields a projective system of topological spaces.

Proof: By taking ug € 9(Eg), then “fg,(ug) = ugo faa € M(E,). If Uy is
an open neighbourhood of ugo fg, in M(E, ), we show that there exists z, € E,
such that (cf. (2.13) and the comments before)

(3.2) M; CU,.

Indeed, by the continuity of *f3, there exists an open neighbourhood Up of ug in
IM(E3) such that *f3,(Ug) C Uy, and since ug € d(Eg), there is x5 € Eg with
Mgﬁ C Ug. Hence,

(33) tfﬂa(Mgﬁ) c tfﬁa(Uﬁ) c Ua )
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where
(3.4) You(Ms,) = Mg, o faa = {ugo faa: ug € Mg } .

Now by the hypothesis for fg,, there exists o € E, such that xg = fga(za).
Hence [Zg(ug)| = |ug(zg)| = |(ug © fga)(@a)| = [Zalus © fa)| < pon(p.)(Ta), s0
that pon(g,)(T6) < Pov(E,)(Ta), while po(p,)(Za) < pon(e,) (Zp) follows from the
surjectivity of ®fg,. Thus (cf. also (3.3) and (3.4)),

(3.5) My, = Mg o fao ="fpa(Mz,) € Ua ,

Ta
proving (3.2), therefore *f3,(ug) € O(E,), which implies the assertion. m

The surjectivity of ®fg,, @ < (8 in I, implies the surjectivity of the canonical
map pqa, @ € I [7: p. 210, Lemma 9], so that in view of (2.8) and the homeomor-
phism j, one obtains the surjectivity of

(3.6) o= paoipa, acl.
Thus, we have the following result, useful in the sequel.

Lemma 3.2. Let (E,, fsa) be an inductive system of unital topological
algebras and E = lim E,, the respective inductive limit unital topological algebra.

e
Moreover, suppose that the connecting maps “fg,, with o < 8 in I, are onto.

Then, for every x € E = lim E,, with x = f,(z,) for some « € I, one has

[0}

(3'7) pa(MfE) ~ tfa(MfE) = Mgo Ja = Mga .

Proof: Let © € E with z = f,(z,), for some a € I and v € M(E).
Then, [2(v)] = [o(@)] = |(v 0 fo)(@a)l = [Za(fal))] < pors,)(Fa), hence
Pon(E) (%) < Pon(E,) (Ta) and since, by hypothesis and (3.6), tf, is onto, pov(e) (%) =
Po(E.) (Ta), a € I, implying (3.7) in view of (2.13). m

Based on the previous two lemmas one obtains the next result.

Theorem 3.1. Consider the context of Lemma 3.1 and let E = lim E,, be
[0
the corresponding inductive limit unital topological algebra, with Silov boundary

O(E). Then, one obtains

(33) O(F) = limd(E.)

[0}
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within a homeomorphism of the topological spaces involved, provided by (2.7).

Proof: Considering the restriction of the homeomorphism (2.7) to 9(F), one
gets a bicontinuous injection

(3.9) § = m alogsy : O(E) — imd(E,) |

since each one of *f,, o € I, takes O(F) into O(E,). Indeed, if u € O(F), then
Uou) = uo fo = uoa € M(E,) and by the continuity of *f,, 'f71(U,) is an
open neighbourhood of u in 9M(FE), U, being an open neighbourhood of u, in
OM(E,). Thus, there exists + € E = Uyes fa(Ea) such that My C *f71(U,),
hence M- o fo = %o (M) C U,. Since x = fy(z,), for some v € I, there exists
B € I, with 3 > «a,~, such that « = fg(fsy(z4)) = fs(rs) and by Lemma 3.2
M, = "fp(M), hence faa(M; ) = (Yfga o 'fs)(Mz) = “fa(M;) C Us. By
hypothesis and (3.5) one gets Mz C Uy, thus us € 9(Fy), proving the assertion.
Now, we show that

(3.10) limd(Eq) € O(E) .

[0}

If w € lim9d(E,) and U is an open neighbourhood of u in lim d(E,), then it

« e}
contains a basic open neighbourhood p;!(U,), for some a € I, with U, a basic
open neighbourhood of po(u) = uq = uo f, in M(E,) (cf. [8: p. 87, Lemma 3.1]).
Since uq € O(Eq), there exists x4 € Eq such that My C Uy, hence p;l(M;a) C
pal(Uy) C U. Setting x = fo(r,) € E = lim E,, one obtains (Lemma 3.2)
-

M C p,' (M ) C U, hence u € d(E), proving (3.10) and thus (3.8).

4 — Bishop boundary of an inductive limit topological algebra

We investigate the situation exhibited in Theorem 3.1 for the Bishop bound-
aries of the topological algebras considered. By the standard property of the
Bishop boundary to be dense in the spectrum of an Urysohn algebra, in the
context of the latter algebras one certainly has due to (2.7) the relation

(4.1) B(E) = M(E) = lim M(E,) = lim B(E,) .

taking into account that the inductive limit of Urysohn algebras is also an Urysohn
algebra, as the following result shows.
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Lemma 4.1. The inductive limit topological algebra E = lim E, of an
(0%
inductive system of Urysohn algebras (E,, fza) is an Urysohn algebra.
Proof: Let u € M(E) = lim9M(E,) and U an open neighbourhood of u in

OMM(E). Then (cf. [8: p. 87, Lem?na 3.1]), U contains a basic open neighbourhood
pa 1 (Uy), for some o € I, with U, a basic open neighbourhood of p, (1) = ug =
uo fo in M(E,). By the hypothesis for E, (cf. also (2.15)), there exists z, € Eqy
such that 0 < Zo, < 1, Ta(uq) = 1 and T, = Olye. By setting 2 = fu(2), one
gets (cf. (2.9)) 0 <7 <1, Z(u) = 1 and Z = 0|ye, since U¢ C p; H(US), proving
the assertion. m

In our attempt to eliminate the closure in (4.1), we first note that the family
(B(Eq), fga) constitutes a projective system of topological spaces under suitable
conditions exhibited in [4: Theorem 4.2]. Namely, we have.

Lemma 4.2. Let (Eq, fgo) be an inductive system of unital spectral Urysohn
algebras such that for every o < 3 in I, Eg has non-empty Bishop boundary and
the Gel’fand transform algebras of E,, E., are o-complete. Moreover, let the
connecting maps fgo be “spectral radii preserving” in the sense that for every
a<finl,

(42) TEq (xa) =TEg (fﬁa(xa)) ) To € Eq

while the respective transpose maps ‘'fs, are open injections. Then, the Bishop
boundaries of E,, o < (3, exist and the family (B(E,),"fsa) constitutes a projec-
tive system of topological spaces.

Proof: According to (2.14) the existence of B(E,), a < § in I, is accom-
plished by proving that

(4.3) M; N Gs(M(E,)) #0, x4€E, .

Since for every o < 8 in I, B(Epg) exists, one obtains an analogous relation to
(4.3) for M(E3) and every xg € Eg, hence for fgo(za), To € E; namely one has
(cf. also (2.13))

(4.4) (M w0) = M vy, ) N Go(MU(Eg)) #0, w0 € Ea .

By the hypothesis for tfg, one gets

(4.5) o0 (Gs(M(E))) € Gs(M(Ea)) .
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while, for every v € My, (z.), (4.2) implies that |Zo(*fga(v))| = |fpa(za)(v)| =
SUPycan(Ep) [ foa(Ta) ()] = 785 (foa(a)) = 7B, (Ta) = SUDyeo(E,) [Ta(u)], hence

(4.6) Foa(My,s(00)) = Mg (@) © fa © M,

for every z, € E,. Now, by applying /3, to (4.4), one obtains (4.3) in view also
of (4.5) and (4.6), therefore B(E,), a < [3, exists.
Concerning the last assertion, we have to prove that

(4.7) ‘foa(B(Ep)) € B(Ea), a<f.

Indeed, if v € B(Eg), then v is a Gy point in M(Eg), and by (4.5) *fga(v) €
Gs(MM(Ey)). The o-completeness of E,, for every a < 3 in I, implies that
fa(v) € B(E,) (cf. comments following (2.15)), so that (4.7) holds true. m

Scholium 4.1. In the previous lemma, by assuming that all the Bishop
boundaries of the topological algebras considered exist, we can avoid our as-
sumption that E,, o € I, are spectral and also our assumption (4.2).

On the basis of the Lemma 4.2, we get the following.

Theorem 4.1. Suppose we have the context of Lemma 4.2. Moreover, let
E =1lim E,, be the corresponding inductive limit unital topological algebra with

«
Gel'fand transform algebra E™ o-complete and Bishop boundary B(E). Then,
one gets

(4.8) B(E) = lim B(E.)
within a homeomorphism of the topological spaces involved, provided by (2.7).

Proof: The restriction of the homeomorphism (2.7) to B(E) yields a bicon-
tinuous injection

(4.9) j1 = im Yalsm): B(E) — lim B(E,) .

since each one of *f,, a € I, takes B(E) into B(E,): Indeed, if u € B(E) C
M(E) = UmM(E,), then u = (uq)acr is a Gs point in M(E), hence its pro-

[e7

jections uy, a € I, are G points in the corresponding IMM(E,,) (cf. e.g. [3: p. 6,
Proposition 5.1]). Thus, by the o-completeness of EX, a € I, f,(u) = uo fo =
U € B(E,) (cf. also (3.6)), proving the assertion.
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On the other hand, by taking u = (uq) € imB(E,), pa(u) = ua € B(E,) is

(0%
a G point in M(E,), a € I. Then, p;l(uy) = u is Gs in M(E), hence, by the
o-completeness of E", v € B(E), implying that

(4.10) lim B(E,) C B(E) ,

«

and this completes the proof. n

5 — Choquet boundary of an inductive limit topological algebra

In this section we examine whether the situation considered in Theorem 3.1
holds true for the Choquet boundaries of the topological algebras involved.
Namely, if the map (2.7) maps homeomorphically the Choquet boundary of an in-
ductive limit unital topological algebra onto the projective system of the Choquet
boundaries of the factor algebras.

We first have the following, as a consequence of a relevant result in [6: Theo-
rem 3.4, (3.12)] exhibiting that a continuous algebra morphism between topolog-
ical algebras preserves the Choquet boundaries.

Lemma 5.1. Let (E,, fsa) be an inductive system of unital topological
algebras and Ch(FE,), a € I, the corresponding Choquet boundaries. Then, the
family (Ch(Ey), tfga|Ch(Eﬁ)) constitutes a projective system of topological spaces.

Proof: It suffices to prove that
(5.1) Y50 (Ch(Eg)) € Ch(E,) .

If ug € Ch(Egs), then by definition, there exists ug € M7 (9M(E3)) such that
3 = Oy, Considering *fga(ug) = ug o fga € M(Ey), one obtains pg = pg o
(fsa) € MEM(E,)), with supp(pia) © Yaa(supp(is)), such that g (ha) =
13(ha © *f8a) = Ous(ha © *fsa) = ha(*faa(ug)) = Otf 50 (ug) (ha), for every hq €
C(M(E,)). Hence, *fgq(ug) € Ch(E,), proving the desired relation (5.1). m

Theorem 5.1. Consider the context of Lemma 5.1 and let E = lim E,, be the

(03
corresponding inductive limit unital topological algebra with Choquet boundary
Ch(E). Then, one gets the relation

(5.2) Ch(E) C limCh(E,)
homeo ©

within a homeomorphism of the respective topological spaces provided by (2.7).
In particular, if the connecting maps *fgo, a < (3 in I, are onto, E" and EJ,
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«a € I, are o-complete and M(E,) compact, then

(5.3) Ch(E) = lim Ch(E,) ,

[0}

within a homeomorphism of the topological spaces concerned.

Proof: By applying a similar argument to that in the proof of Lemma 5.1,
one has that the maps *f, : IMM(E) — M(E,), o € I, preserve the respective
Choquet boundaries. Thus, 'f,(u) € Ch(E,), for every u € Ch(E), and by the
next commutative diagram

Ch(E)—i—s9m(E)

Heww [/ falowmy ‘f,

(54) Ch(E,)——M(E,)

o ()

11‘? Ch(E,) - ]g_n M(E,)

limi,
%Ila

one obtains a bicontinuous injection j|cp(gy: Ch(E) — lim Ch(E,), that is

«

(5.5) Ch(E) C limCh(E,) .
homeo @

Conversely, let u = (tq)aer € lim Ch(E,) and U an open neighbourhood of u
«
in lim Ch(E,). Then, U contains a basic open neighbourhood of p,(u) = uy =

(03
uo fo in M(E,) (cf. [8: p. 87, Lemma 3.1]). Since u, € Ch(E,), there exists
T € Eq, such that uq, € My C U, (see Preliminaries). Setting x = fo(za) €
E = lim E,, one obtains (cf. Lemma 3.2) u € M5 C p (M5 ) € p,'(Ua) C U.

Thus, u € Ch(F), according to the hypothesis for E” and the compactness of
M(E) = imM(E,), M(E,) being compact. Hence
(5.6) lim Ch(E.) C Ch(E) ,

«

which in connection with (5.5) proves (5.3). u
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Note (added in proof). The characterization of a Choquet point, that has
been applied in Theorem 5.1, holds true, more generally, when the spectra of
the topological algebras concerned ae just @Q-spaces. (See R.I. Hadjigeorgiou,
Boundaries and peak points of topological algebras (to appear), in conjunction
with L. Gillman, M. Jerison, Rings of Continuous Functions, Springer-Verlag,
1976, and Jun-Iti Nagata, Modern General Topology, North-Holland, 1968).
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