PORTUGALIAE MATHEMATICA
Vol. 54 Fasc. 3 — 1997

A REMARK ON PARABOLIC EQUATIONS

ALAIN HARAUX

Abstract: If L = L* is a seif-adjoint linear operator generating a strongly continuous
semi-group on a real Hilbert space H and o € L (R™), any mild solution u of v’ =
Lu + «oft) u satisfies (1(0),u(t)) > 0 for all ¢ > 0. On the other hand for any A > 0 such
that (7/L)? < A < 4(w/L)?, there are solutions u of the one-dimensional semilinear heat
equation u; — Uzy +u3 — Au =0 in RT x (0,L), u(t,0) = u(t,L) = 0 on R* such that
Jou(0,2) u(t, z) dr < 0 for some ¢ > 0.

Résumé: Si L = L* est un opérateur auto-adjoint, generateur d'un semi-groupe
fortement continu sur un espace de Hilbert réel H et o € L*°(R™), toute solution u de
u' = Lu + o(t) u satisfait (u(0),u(t)) > 0 pour tout ¢t > 0. D’autre part pour tout A > 0
tel que (/L)% < A < 4(w/L)?, il existe des solutions u de ’équation de la chaleur & une
dimension us — tzp + u® — Au = 0 dans R* x (0, L), u(t,0) = u(t, L) = 0 sur R* telles
que [, u(0,z)u(t, z) dz < 0 pour un certain ¢ > 0.

1 — A simple positivity property

Let © be a bounded, open subset of RN with a Lipschitz continuous boundary
and let us consider the linear parabolic equation
(1.1) u—Au+a(t,r)u=0 nRT" xQ, wu=0 onR" x09Q,
where a € L®(RT x Q). For any ug € L>°(f2), there is a unique global solution
ue C([0,00); 2(2)) N C((0,00); H§ (%))

of (1.1) with initial datum «(0, ) = ug(z). It is well-known that (1.1) is positivity
preserving in the sense that if ug > 0, then u(¢,x) > 0 a.e. on RT x Q. For more

Received: April 22, 1996.



312 A. HARAUX

general initial data, when a = 0 we know that the inner product (uo,u(t,)) in
the sense of L?(£2) is nonnegative (in fact, even positive if ug # 0) since the heat
semi-group is the exponential of a self-adjoint operator. More generally we have
the following

Proposition 1.1. Let L = L* be a self-adjoint linear operator on a real
Hilbert space H, generating a strongly continuous semi-group on H and a €
L*®(R™). Then for any ug € H, the unique mild solution u € C([0,00); H) of
(1.2) v =Lu+a(t)u

such that u(0) = ug is such that (ug,u(t)) > 0 for all t > 0.

Proof: Denoting by A(t) the primitive of a(t) which vanishes at 0 we have
u(t) = exp(A(t))exp(tL)ug for all ¢ >0 .
The result follows immediately since exp(tL) = exp[(t/2)L|{exp[(t/2)L]}* > 0. u

Corollary 1.2. Ifa(t,z) = ai(t)+as(x) withay € L®°(R") and ay € L>(Q),
then for any ug € L*°(Q2), the unique global solution w of (1.1) with initial datum
u(0,x) = up(x) is such that u(0) = wg is such that (ug,u(t,-))g > 0 for all t > 0,
where (, )u denotes the inner product in H = L*(Q).

Proof: Just apply Proposition 1.2 with L = A — ag(z)] with Dirichlet
boundary conditions. n

2 — A counterexample

In the investigation of uniqueness of anti-periodic solutions to semi-linear
parabolic equations (cf. e.g. [2, 5, 7, 8]) the question naturally arises of whether
an equation such as (1.1) can have a non-trivial solution v with u(r, ) = —u(0,-)
for some 7 > 0. Such a possibilty would be excluded if we knew that Corollary 1.2
is valid for any potential a € L>®(R* x ). As we shall see now, it is not the
case. Consider the one-dimensional semilinear heat equation

(2.1) up — Ugg +cu® —Au=0 in RT x (0,L), u(t,0)=u(t,L)=0 on RT

with ¢ > 0, A > 0. All solutions of this problem are global and uniformly bounded
on R* x (0,L). For (m/L)? = \1(0,L) < A < X2(0, L) = 4(w/L)?, the stationary
“elliptic problem”

(2.2) o€ HYNO,L), —@putcg®—Ap=0



A REMARK ON PARABOLIC EQUATIONS 313

has exactly 3 solutions, namely 0, the positive solution ¢ and the negative solution
(—p). Setting 2 = (0, L), we shall establish

Theorem 2.1. For any ¢ > 0 and \; < A\ < Ay, there is ug € L*™(Q)
such that the unique global solution w of (2.1) with initial datum u(0,x) = uo(z)
satisfies

(2.3) /Q wo(z) u(t, z) de < 0

for some t > 0.

Proof: We proceed by contradiction. Assume, instead of (2.3), that for all
ug € L*°(Q2) we have

(2.4) Vt>0, /Quo(x) u(t,z)dr >0 .

Since any solution w of (2.1) is well-known (cf. e.g. [4]) to converge at infinity
to one of the 3 solutions of (2.2), let us investigate first what happens if u(t, -)
converges to ¢ as t — oco. From (2.4) we deduce immediately, by passing to the
limit

(2.5) /Q wo(@) p(x) de >0 .

At this stage, changing if necessary u to (—u), we have obtained the following
properties:

— If u(t,-) converges to ¢ as t — oo, then [, ug(x) p(x)dx > 0.
— Similarly if u(t, -) converges to (—¢) as t — oo, then [, uo(z) ¢(x)dz <O0.
To derive a contradiction, we shall prove the following

Lemma 2.2. Assuming [, ug(x)p(x)dx > 0, we have u(t) — ¢ ast — oo,
and

(2.6) V>0, /Qu(t, ) p(z)dz >0 .

Proof: Since by the previous results u(t) cannot tend to (—¢) as t — oo, we
must have either u(t) — 0 or u(t) — ¢ as t — co. Now let u. be the solution of
equation (2.1) such that u.(0) = ug —ep with € > 0. For € > 0 small enough, we
have [ (uo(z) — ep(x)) p(x)dxz > 0, and the solution u. of equation (2.1) such
that u:(0) = ug — ey also tends either to 0 or ¢ at infinity while w:=u—u. > 0.
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Now if u(t) — 0 as t — oo, we also must have u.(t) as ¢ — oo, both convergences
being uniform on [0, L]. Since A > A\1(0,L) = (7/L)?, an immediate calculation
now shows that, as a consequence of the equation

Wi —Wep+c(u?+uus+u?)w = Aw in RTx(0,L), w(t,0)=w(L)=0 onR"

there exists T' > 0 and n > 0 for which

d
Ve>T, —/ w(t,z)Y(x)dr > 7]/ w(t,x) () de
dt Jao Q
with ¢ (z):=sin(n/L)z on [0,L]. Of course this implies that either w = 0 for
t > T, excluded by backward uniqueness (cf. e.g. [1, 3]) or w is unbounded as
t — 00, a contradiction. Consequently we must have u(t) — ¢ as t — oco. Then

(2.6) follows from the fact that for each 7 > 0, v(¢,-) = u(t + 7, -) is a solution of
(2.1) with v(t) > p ast — 0. u

Proof of Theorem 2.1 (continued): We now turn our attention to those
initial data ug orthogonal to ¢ in H, which means

(2.7) /Quo(:zj) o(z)dr =0 .
Considering v. be the solution of equation (2.1) such that v.(0) = ug + €p with
e > 0, we remark that as ¢ — 0, v.(¢,-) converges to u(t,-) uniformly for each
t > 0 fixed. By Lemma 2.2 we have

Vt>0, /Qvg(t,x) o(x)dr >0
and by letting € — 0, we deduce:

Vt>0, /Qu(t,x)gp(a:)dxzo.
Changing ug to (—uyp), from (2.7) we also deduce

Vt>0, /Qu(t,ac)gp(:c)dxg().

Hence finally (2.7) implies

(2.8) V>0, /Qu(t,m) o(w)dr =0 .
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The fact that (2.7) implies (2.8) is contradictory with direct properties of (2.1).
Since () is not constant, there is h(z) € L?(Q2) such that, for instance

(2.9) /Qh(x) () dz =0, /Qh(x) Pa)dz >0 .

Let h,(x) be a sequence of C*° functions with compact support converging to h
in L2(Q2). For n large we have

/th(ac) o(x) dx -
/QLpQ(x)dx -

while [ (hn(x) — ¢ p(2)) p(z) dz = 0 and [o(hn(z) — cn o(2)) ¢*(x) dz > 0 for n
large. Therefore we can find h(xz) € L>(2) (and even a C*° function) satisfying

cp — 0

(2.9). Picking ug = ah with o > 0 small enough, we now find

(2.10) /Quo(a:) p(r)de =0, /Qu()(x) () ((pQ(x) — u%(m)) dx >0 .
On the other hand for ¢ > 0 we have
i/ u(t,z) p(z)dr = / u(t,x) o(x) de = / {tgr — u® + M) pdz
dt Ja Q Q
:/{wm + Ap)udr — / wodr = / wo(p? —u?)de .
Q Q Q

By considering small values of ¢, we see that [, u(t,z) ¢(x)dx is increasing on a
small time interval [t',t"]. Since [, uo(x) p(x) dz = 0, this contradicts (2.8). The
proof of Theorem 2.1 is now complete. n

Corollary 2.3. The conclusion of Corollary 1.2 is not valid for a general
potential a € (RT x Q).

Proof: We choose Q = (0,L), up € L>(2) such that the unique global
solution u of (2.1) with initial datum (0, x) = wug(x) satisfies (2.3), and a(t, x) :=
cu? — . u
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