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A REMARK ON PARABOLIC EQUATIONS

Alain Haraux

Abstract: If L = L∗ is a seif-adjoint linear operator generating a strongly continuous

semi-group on a real Hilbert space H and α ∈ L∞(R+), any mild solution u of u′ =

Lu+ α(t)u satisfies (u(0), u(t)) ≥ 0 for all t ≥ 0. On the other hand for any λ > 0 such

that (π/L)2 < λ < 4(π/L)2, there are solutions u of the one-dimensional semilinear heat

equation ut − uxx + u3 − λu = 0 in R+ × (0, L), u(t, 0) = u(t, L) = 0 on R+ such that
∫

Ω
u(0, x)u(t, x) dx < 0 for some t > 0.

Résumé: Si L = L∗ est un opérateur auto-adjoint, generateur d’un semi-groupe

fortement continu sur un espace de Hilbert réel H et α ∈ L∞(R+), toute solution u de

u′ = Lu+ α(t)u satisfait (u(0), u(t)) ≥ 0 pour tout t ≥ 0. D’autre part pour tout λ > 0

tel que (π/L)2 < λ < 4(π/L)2, il existe des solutions u de l’équation de la chaleur à une

dimension ut − uxx + u3 − λu = 0 dans R+ × (0, L), u(t, 0) = u(t, L) = 0 sur R+ telles

que
∫

Ω
u(0, x)u(t, x) dx < 0 pour un certain t > 0.

1 – A simple positivity property

Let Ω be a bounded, open subset of RN with a Lipschitz continuous boundary

and let us consider the linear parabolic equation

(1.1) ut −∆u+ a(t, x)u = 0 in R+ × Ω , u = 0 on R+ × ∂Ω ,

where a ∈ L∞(R+ × Ω). For any u0 ∈ L
∞(Ω), there is a unique global solution

u ∈ C
(

[0,∞);L∞(Ω)
)

∩ C
(

(0,∞);H1
0 (Ω)

)

of (1.1) with initial datum u(0, x) = u0(x). It is well-known that (1.1) is positivity

preserving in the sense that if u0 ≥ 0, then u(t, x) ≥ 0 a.e. on R+ ×Ω. For more
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general initial data, when a = 0 we know that the inner product (u0, u(t, ·)) in

the sense of L2(Ω) is nonnegative (in fact, even positive if u0 6= 0) since the heat

semi-group is the exponential of a self-adjoint operator. More generally we have

the following

Proposition 1.1. Let L = L∗ be a self-adjoint linear operator on a real

Hilbert space H, generating a strongly continuous semi-group on H and α ∈

L∞(R+). Then for any u0 ∈ H, the unique mild solution u ∈ C([0,∞);H) of

(1.2) u′ = Lu+ α(t)u

such that u(0) = u0 is such that (u0, u(t)) ≥ 0 for all t ≥ 0.

Proof: Denoting by A(t) the primitive of α(t) which vanishes at 0 we have

u(t) = exp(A(t)) exp(tL)u0 for all t ≥ 0 .

The result follows immediately since exp(tL) = exp[(t/2)L]{exp[(t/2)L]}∗ ≥ 0.

Corollary 1.2. If a(t, x) = a1(t)+a2(x) with a1 ∈ L
∞(R+) and a2 ∈ L

∞(Ω),

then for any u0 ∈ L
∞(Ω), the unique global solution u of (1.1) with initial datum

u(0, x) = u0(x) is such that u(0) = u0 is such that (u0, u(t, ·))H ≥ 0 for all t ≥ 0,

where ( , )H denotes the inner product in H = L2(Ω).

Proof: Just apply Proposition 1.2 with L = ∆ − a2(x)I with Dirichlet

boundary conditions.

2 – A counterexample

In the investigation of uniqueness of anti-periodic solutions to semi-linear

parabolic equations (cf. e.g. [2, 5, 7, 8]) the question naturally arises of whether

an equation such as (1.1) can have a non-trivial solution u with u(τ, ·) = −u(0, ·)

for some τ > 0. Such a possibilty would be excluded if we knew that Corollary 1.2

is valid for any potential a ∈ L∞(R+ × Ω). As we shall see now, it is not the

case. Consider the one-dimensional semilinear heat equation

(2.1) ut − uxx + cu3 − λu = 0 in R+ × (0, L) , u(t, 0) = u(t, L) = 0 on R+ ,

with c > 0, λ > 0. All solutions of this problem are global and uniformly bounded

on R+ × (0, L). For (π/L)2 = λ1(0, L) < λ < λ2(0, L) = 4(π/L)2, the stationary

“elliptic problem”

(2.2) ϕ ∈ H1
0 (0, L) , −ϕxx + c ϕ3 − λϕ = 0
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has exactly 3 solutions, namely 0, the positive solution ϕ and the negative solution

(−ϕ). Setting Ω = (0, L), we shall establish

Theorem 2.1. For any c > 0 and λ1 < λ < λ2, there is u0 ∈ L∞(Ω)

such that the unique global solution u of (2.1) with initial datum u(0, x) = u0(x)

satisfies

(2.3)

∫

Ω

u0(x)u(t, x) dx < 0

for some t > 0.

Proof: We proceed by contradiction. Assume, instead of (2.3), that for all

u0 ∈ L
∞(Ω) we have

(2.4) ∀ t ≥ 0 ,

∫

Ω

u0(x)u(t, x) dx ≥ 0 .

Since any solution u of (2.1) is well-known (cf. e.g. [4]) to converge at infinity

to one of the 3 solutions of (2.2), let us investigate first what happens if u(t, ·)

converges to ϕ as t → ∞. From (2.4) we deduce immediately, by passing to the

limit

(2.5)

∫

Ω

u0(x)ϕ(x) dx ≥ 0 .

At this stage, changing if necessary u to (−u), we have obtained the following

properties:

– If u(t, ·) converges to ϕ as t→∞, then
∫

Ω
u0(x)ϕ(x) dx ≥ 0.

– Similarly if u(t, ·) converges to (−ϕ) as t→∞, then
∫

Ω
u0(x)ϕ(x) dx ≤ 0.

To derive a contradiction, we shall prove the following

Lemma 2.2. Assuming
∫

Ω
u0(x)ϕ(x) dx > 0, we have u(t) → ϕ as t → ∞,

and

(2.6) ∀ t ≥ 0 ,

∫

Ω

u(t, x)ϕ(x) dx ≥ 0 .

Proof: Since by the previous results u(t) cannot tend to (−ϕ) as t→∞, we

must have either u(t)→ 0 or u(t)→ ϕ as t→∞. Now let uε be the solution of

equation (2.1) such that uε(0) = u0− εϕ with ε > 0. For ε > 0 small enough, we

have
∫

Ω
(u0(x) − εϕ(x))ϕ(x) dx > 0, and the solution uε of equation (2.1) such

that uε(0) = u0− εϕ also tends either to 0 or ϕ at infinity while w :=u−uε ≥ 0.
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Now if u(t)→ 0 as t→∞, we also must have uε(t) as t→∞, both convergences

being uniform on [0, L]. Since λ > λ1(0, L) = (π/L)2, an immediate calculation

now shows that, as a consequence of the equation

wt−wxx+c(u
2+uuε+u

2
ε)w = λw in R+×(0, L) , w(t, 0) = w(t, L) = 0 on R+

there exists T > 0 and η > 0 for which

∀ t ≥ T ,
d

dt

∫

Ω

w(t, x)ψ(x) dx ≥ η

∫

Ω

w(t, x)ψ(x) dx

with ψ(x) := sin(π/L)x on [0, L]. Of course this implies that either w = 0 for

t ≥ T , excluded by backward uniqueness (cf. e.g. [1, 3]) or w is unbounded as

t → ∞, a contradiction. Consequently we must have u(t) → ϕ as t → ∞. Then

(2.6) follows from the fact that for each τ > 0, v(t, ·) = u(t+ τ, ·) is a solution of

(2.1) with v(t)→ ϕ as t→∞.

Proof of Theorem 2.1 (continued): We now turn our attention to those

initial data u0 orthogonal to ϕ in H, which means

(2.7)

∫

Ω

u0(x)ϕ(x) dx = 0 .

Considering vε be the solution of equation (2.1) such that vε(0) = u0 + εϕ with

ε > 0, we remark that as ε → 0, vε(t, ·) converges to u(t, ·) uniformly for each

t ≥ 0 fixed. By Lemma 2.2 we have

∀ t ≥ 0 ,

∫

Ω

vε(t, x)ϕ(x) dx ≥ 0

and by letting ε→ 0, we deduce:

∀ t ≥ 0 ,

∫

Ω

u(t, x)ϕ(x) dx ≥ 0 .

Changing u0 to (−u0), from (2.7) we also deduce

∀ t ≥ 0 ,

∫

Ω

u(t, x)ϕ(x) dx ≤ 0 .

Hence finally (2.7) implies

(2.8) ∀ t ≥ 0 ,

∫

Ω

u(t, x)ϕ(x) dx = 0 .
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The fact that (2.7) implies (2.8) is contradictory with direct properties of (2.1).

Since ϕ(x) is not constant, there is h(x) ∈ L2(Ω) such that, for instance

(2.9)

∫

Ω

h(x)ϕ(x) dx = 0 ,

∫

Ω

h(x)ϕ3(x) dx > 0 .

Let hn(x) be a sequence of C∞ functions with compact support converging to h

in L2(Ω). For n large we have
∫

Ω

hn(x)ϕ(x) dx
∫

Ω

ϕ2(x) dx
= cn → 0

while
∫

Ω
(hn(x)− cn ϕ(x))ϕ(x) dx = 0 and

∫

Ω
(hn(x)− cn ϕ(x))ϕ

3(x) dx > 0 for n

large. Therefore we can find h(x) ∈ L∞(Ω) (and even a C∞ function) satisfying

(2.9). Picking u0 = αh with α > 0 small enough, we now find

(2.10)

∫

Ω

u0(x)ϕ(x) dx = 0 ,

∫

Ω

u0(x)ϕ(x)
(

ϕ2(x)− u20(x)
)

dx > 0 .

On the other hand for t > 0 we have

d

dt

∫

Ω

u(t, x)ϕ(x) dx =

∫

Ω

ut(t, x)ϕ(x) dx =

∫

Ω

{uxx − u
3 + λu)ϕdx

=

∫

Ω

{ϕxx + λϕ)u dx−

∫

Ω

u3 ϕdx =

∫

Ω

uϕ(ϕ2 − u2) dx .

By considering small values of t, we see that
∫

Ω
u(t, x)ϕ(x) dx is increasing on a

small time interval [t′, t′′]. Since
∫

Ω
u0(x)ϕ(x) dx = 0, this contradicts (2.8). The

proof of Theorem 2.1 is now complete.

Corollary 2.3. The conclusion of Corollary 1.2 is not valid for a general

potential a ∈ (R+ × Ω).

Proof: We choose Ω = (0, L), u0 ∈ L∞(Ω) such that the unique global

solution u of (2.1) with initial datum u(0, x) = u0(x) satisfies (2.3), and a(t, x) :=

cu2 − λ.
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d’évolution non linéaires, Portugaliae Mathematica, 49(4) (1992).



316 A. HARAUX

[3] Ghidaglia, J.M. – Some backward uniqueness results, J. Nonlinear Anal, T.M.A.
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