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COMPLEMENTS IN
MODULAR AND SEMIMODULAR LATTICES

G.H. Bordalo and E. Rodrigues

Abstract: We study the relations between the complements of a and b when a is

covered by b on finite upper-semimodular lattices and when a < b on modular lattices. We

give some results that generalize the well known properties of complements in distibutive

lattices. From there, we derive a property of semisimple R-modules.

1 – Introduction

In this paper we will only consider lattices that have a least element, denoted

by 0, and a greatest element, denoted by 1. Given a lattice L and a ∈ L we say

that a′ ∈ L is a complement of a if a ∧ a′ = 0 and a ∨ a′ = 1, and we denote the

set of complements of a by Ca.

We write a ≺ b when b covers a. We recall that a lattice is upper-semimodular

if a ∧ b ≺ a ⇒ b ≺ a ∨ b, ∀ a, b ∈ L. Following M. Stern [4] we refer to these

lattices as semimodular.

Let L be a lattice. Consider a pair (a, b) ∈ L2 such that a < b, Ca 6= ∅ and

Cb 6= ∅. If L is distributive then Ca = {a
′}, Cb = {b

′} and a < b ⇔ b′ < a′. This

property can be generalized in a number of ways:

P1 : ∃ (a′, b′) ∈ Ca × Cb : b′ < a′ Q1 : ∃ (a′, b′) ∈ Ca × Cb : b′ ≤ a′

P2 : ∀ b′ ∈ Cb, ∃ a′ ∈ Ca : b′ < a′ Q2 : ∀ b′ ∈ Cb, ∃ a′ ∈ Ca : b′ ≤ a′

P3 : ∀ a′ ∈ Ca, ∃ b′ ∈ Cb : b′ < a′ Q3 : ∀ a′ ∈ Ca, ∃ b′ ∈ Cb : b′ ≤ a′

We say that a lattice L satisfies Pi, respectively Qi if every pair (a, b) ∈ L2

with a < b, Ca 6= ∅ and Cb 6= ∅ satisfies Pi, respectively Qi.
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If L is a finite modular lattice, we note that Q2 is a restriction of the well

known order between the ideals of a finite poset (see also P. Ribenboim [2]).

Given a pair (a, b) ∈ L2 such that a < b, Ca 6= ∅ and Cb 6= ∅, the implications

P2 ⇒ P1, P3 ⇒ P1, Q2 ⇒ Q1, Q3 ⇒ Q1 and Pi ⇒ Qi, i = 1, 2, 3 are valid, for

this pair. As they are valid for every pair, they are also valid for lattices. These

implications are ilustrated in the next picture.

Fig. 1

There are finite complemented lattices where not even Q1 is satisfied. Here is

an example:

Fig. 2

L1 is a complemented finite lattice and satisfies the Jordan–Dedekind chain

condition. We note that L1 is not semimodular.

Let us now consider the following lattice:

Fig. 3
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L2 is a finite, complemented lattice which is also semimodular. The pair (a, b)

satisfies neither Q3 nor P2. However, every pair satisfies Q2. We will prove that

finite semimodular complemented lattices, in particular partition lattices, satisfy

Q2, and that all modular lattices satisfy P2 and P3. We will also prove that

modular complemented lattices satisfy the following property:

P : ∀ a 6= b ∈ L, if Ca 6= ∅ and Cb 6= ∅ then Ca 6= Cb .

The lattice L2 does not satisfy P . In fact i 6= h and Ci = Ch = {e, c, a, b}.

It is easy to see that the properties Pi, Qi, i = 1, 2, 3, and P are preserved

under direct products, that is, if, ∀ i ∈ I, Li satisfies one of these properties, then
∏

i∈I Li also satisfies that property.

2 – Finite semimodular lattices

We start with more general results concerning semimodular lattices.

Lemma 1. Let L be a finite semimodular lattice, a, b ∈ L, a ≺ b, b′ ∈ Cb\Ca.

i) (a ∨ b′) ∧ b = a and a ∨ b′ is a co-atom.

ii) If there exists c ∈ L such that b′ ≺ c and a ∨ c = 1 then c ∈ Ca.

iii) If there exists an atom a1 ∈ L such that a1 ∨ (a∨ b′) = 1 then, a1 ∨ b′ is a

complement of a and b′ ≺ a1 ∨ b′.

Proof: Let L be a finite semimodular lattice and a, b ∈ L, a ≺ b, and let

b′ ∈ Cb\Ca.

i) We have a∧b′ = 0 and b′ /∈ Ca therefore a∨b′ < 1. Since (a∨b′)∨b = 1 we

have (a∨b′)∧b < b. From a ≤ (a∨b′)∧b < b and a ≺ b we conclude a = (a∨b′)∧b.

As L is semimodular a = (a ∨ b′) ∧ b ≺ b implies a ∨ b′ ≺ a ∨ b′ ∨ b = 1.

ii) If a ∧ c > 0 then there is a1 such that 0 ≺ a1 ≤ a ∧ c. Also a1 ≤ a < b so

a1 ∧ b′ = 0 and as 0 ≺ a1 then b′ ≺ a1 ∨ b′. On the other hand a1 < c and b′ ≺ c

imply a1∨ b′ ≤ c so c = a1∨ b′. We conclude a∨ b′ = (a∨a1)∨ b′ = a∨ (a1∨ b′) =

a ∨ c = 1. But from a < b and b ∧ b′ = 0 we get a ∧ b′ = 0 so b′ ∈ Ca, which is a

contradiction.

iii) We have a ∧ b′ = 0 and b′ /∈ Ca so a ∨ b′ < 1. From a1 ∨ (a ∨ b′) = 1 we

have a1 6≤ a ∨ b′, and so a1 ∧ (a ∨ b′) = 0. This implies a1 ∧ b′ = 0 so, by the

semimodular property, b′ ≺ a1 ∨ b′. Now by using ii) we conclude a1 ∨ b′ ∈ Ca.
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Theorem 2. Let L be a finite semimodular lattice, a, b ∈ L such that a ≺ b

and Cb 6= ∅. If Ca 6⊆ Cb then ∀ b′ ∈ Cb\Ca, ∃ c ∈ Ca : b′ ≺ c.

Proof: Let L be as stated, and let a, b ∈ L, a ≺ b and a′ ∈ Ca\Cb. Let

b′ ∈ Cb\Ca. We have a′ ∨ b = 1 and a′ /∈ Cb so 0 < a′ ∧ b. Let a1 be an atom

such that a1 ≤ a′ ∧ b. From a ∧ a′ = 0 and a1 ≤ a′ we have a ∧ a1 = 0, and, as

0 ≺ a1 and L is semimodular we conclude a ≺ a ∨ a1. Since a < b and a1 ≤ b we

get a ∨ a1 ≤ b, and, as a ≺ b, we have a ∨ a1 = b.

Let c := a1 ∨ b′. Then a∨ c = a∨ (a1 ∨ b′) = (a∨ a1)∨ b′ = b∨ b′ = 1. By the

third part of Lemma 1, we conclude c ∈ Ca.

Corollary 3. Let L be a finite semimodular lattice. If a, b ∈ L are such that

a ≺ b, Cb 6= ∅ and Ca 6⊆ Cb then (a, b) satisfies Q2.

Proof: Let L, a, b ∈ L be as stated. Let b′ ∈ Cb. If b′ ∈ Cb\Ca then by the

theorem ∃ a′ ∈ Ca : b′ ≺ a′ in particular b′ ≤ a′. If b′ ∈ Ca then take a′ = b′.

Corollary 4.

i) Finite complemented semimodular lattices satisfy Q2.

ii) Let L be a finite semimodular lattice, a, b ∈ L such that Ca 6= ∅, Cb 6= ∅

and a ≺ b. Then (a, b) satisfies Q1.

Proof: i) Let L be a finite complemented semimodular lattice and (a, b) ∈ L2.

First we note that on a finite complemented lattice if we show that Q2 holds when

a ≺ b then this property is also valid when a < b. Let a ≺ b. The property holds

when b′ ∈ Ca. Supose b′ ∈ Cb\Ca. By the first part of Lemma 1, the element

a∨ b′ is a co-atom. It is easy to see that there is a complement, a1, of a∨ b′ which

is an atom. So, by Lemma 1, iii), b′ ≺ b′ ∨ a1 and Q2 is satisfied.

ii) Let L and a, b ∈ L be as stated. If Ca 6⊆ Cb then, by Corollary 3, (a, b)

satisfies Q2 and therefore satisfies Q1. If Ca ⊆ Cb then choose a′ ∈ Ca and

consider the pair (a′, a′) ∈ Ca × Cb.

There are finite semimodular lattices which do not satisfy Q2. Here is an

example:
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Fig. 4

3 – The case of modular lattices

Note that, given a modular lattice L, and a, b ∈ L, if Ca 6= ∅ and Cb 6= ∅ then

Ca and Cb are antichains. The next theorem tells us how they are related.

Theorem 5. Modular lattices satisfy P2 and P3.

Proof: It is enough to show P2 because this implies P3 by duality. Let L be

a modular lattice. Consider a, b ∈ L such that a < b, Ca 6= ∅ and Cb 6= ∅. For all

b′ ∈ Cb choose a′ ∈ Ca. We will prove that a′′ := (a′∧ b)∨ b′ is a complement of a

greater than b′. In fact, a∨a′′ = (a∨ (a′ ∧ b))∨ b′ = ((a∨a′)∧ b)∨ b′ = b∨ b′ = 1.

Also, a∧((a′∧b)∨b′) = a∧(((a′∧b)∨b′)∧b) = a∧((a′∧b)∨(b′∧b)) = a∧a′∧b = 0.

We have b′ ≤ a′′ and if b′ = a′′ then we would have a < b, a ∧ b′ = b ∧ b′ = 0 and

a ∨ b′ = b ∨ b′ = 1, which contradicts the modularity of L.

Corollary 6. In a complemented modular lattice, for each ascending chain

0 < a1 < · · · < an < · · · < 1

there exists a descending chain

1 > a′1 > · · · > a′n > · · · > 0

such that a′i is a complement of ai in L.

The following example shows that modular lattices do not have to satisfy P .
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Fig. 5

In fact, we have a 6= b and Ca = Cb 6= ∅. We note that a ∨ b does not have

a complement. We will see that, in a modular lattice, if a ∨ b and a ∧ b have

complements, then P holds.

Theorem 7. In a modular lattice L, if the set of complemented elements

forms a sublattice, then L satisfies P .

Proof: Let L be a modular lattice, and let a 6= b ∈ L. Supose a and b have

complements. If a < b then, let b′ ∈ Cb. We know, by Theorem 5, that there is

a′ ∈ Ca such that b′ < a′. Therefore a′ /∈ Cb. Supose that {a, b} is an antichain.

We will show that, if a ∨ b and a ∧ b have complements, then Ca 6= Cb.

Let c and d be complements of a ∨ b and a ∧ b, respectively, such that c < d.

We have:

c ∧ (a ∨ b) = 0; c ∨ (a ∨ b) = 1; d ∧ (a ∧ b) = 0; d ∨ (a ∧ b) = 1 .

We will show that (b ∧ d) ∨ c ∈ Ca\Cb:

(b∧d)∨c∨a =
(

(a∧b)∨(b∧d)
)

∨c∨a =

(

(

(a∧b)∨d
)

∧b

)

∨c∨a = b∨c∨a = 1 ;

(

(b∧d)∨c
)

∧a =

(

(

(b∧d)∨c
)

∧(a∨b)

)

∧a =

(

(b∧d)∨
(

c∧(a∨b)
)

)

∧a = b∧d∧a = 0 ;

(b∧ d)∨ c∨ b =
(

(a∧ b)∨ (b∧ d)
)

∨ c∨ b =

(

(

(a∧ b)∨ d
)

∧ b

)

∨ c∨ b = b∨ c < 1 ,

because L is modular.

As an immediate consequence we have the following theorem:

Corollary 8. Modular complemented lattices satisfy the property P .

Corollary 9. In a modular lattice, if two elements a and b are such that

a ∨ b and a ∧ b are complemented, then a and b also are complemented.
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Proof: The case of a and b being comparable, is trivial. If a and b are

not comparable, let c and d be complements of a ∨ b and a ∧ b, respectively,

such that c < d. From the proof of Theorem 7 we get (b ∧ d) ∨ c ∈ Ca\Cb and

(a ∧ d) ∨ c ∈ Cb\Ca.

We conclude with an application of Corollary 6 to the theory of R-modules

over a ring:

Corollary 10. In a semisimple R-module, M , there exists an infinite as-

cending chain

{0} ⊂ M1 ⊂ · · · ⊂ Mn ⊂ · · ·

if and only if there exists an infinite descending chain

M ⊃ M ′
1 ⊃ · · · ⊃ M ′

n ⊃ · · ·

such that M is the direct sum of M ′
i and Mi.

Proof: Note that the lattice of submodules of a semisimple R-module is

modular and complemented. If we have an infinite ascending chain {0} ⊂ M1 ⊂

M2 ⊂ · · · ⊂ Mn ⊂ · · · of submodules of M then, by Corollary 6, we can build an

infinite descending chain M ⊃ M ′
1 ⊃ M ′

2 ⊃ · · · ⊃ M ′
n ⊃ · · ·, therefore M is not

artinian.

The proof of the other implication is analogous, using the dual of Corollary 6.

From this corollary, it follows the well known result that a semisimple

R-module, M , is noetherian if and only if it is artinian.
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