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EXPONENTIAL STABILITY OF POSITIVE SOLUTIONS
TO SOME NONLINEAR HEAT EQUATIONS

M.A. JENDOUBI

Presented by J.P. Dias

Abstract: Following a recent work of A. Haraux in which he proves exponential
stability of positive solutions of a heat equation with strictly convex nonlinearity, the
same property is shown for a suitable perturbation of the nonlinearity which can, in
particular, be non convex.

1 — Introduction and main results

Let Q be a bounded and connected open subset of RV with a Lipschitz con-
tinuous boundary and let us consider the semilinear heat equation

up — Au+ f(u) = k(t,x) in RT xQ,
(L.1) u(t,)=0 on RT x990,
u(0,-) = uo(-) in €,

and the elliptic equation
—Au+ f(u)=0 in Q,
(1.2)
u=0 on 90,

where f: R — R is a locally Lipschitz continuous function such that

(1.3) f(0)=0 and f(s) = 400 as s — +oo
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and k: Rt x Q — R satisfies the conditions
(1.4) ke L°(R" xQ) and k(t,z)>0 ae. onRT x Q.

By using standard techniques from the theory of evolution equations, cf. e.g. [5],
we know that for all ug € L>°(Q) with ug(z) > 0 a.e. on 2, there exists a unique
solution u € C((0, 4+00); HE (2) N L>*(22)) N C ([0, +00); L2(£2)) of (1.1) such that
u(0,-) = up(-). In addition we have

u(t,) >0 ae. on RT xQ.

As a consequence of (1.3) and the maximum principle, v is uniformly bounded
on  x R*. Then by the method of [11], it follows easily that

U{u(t, 3} is bounded in C'T*(Q) for every a € [0,1) .
t>1

In particular the curve ¢ — u(t, ) has a precompact range in H3(Q) N L>®(Q) for
t > 1 and it is natural to ask about the asymptotic behavior of u(t,-) as t — oo.

A. Haraux [8] has proved exponential convergence of nonnegative solutions of
(1.1) when f satisfies the additional hypotheses

(1.5) [ strictly convex on [0,4+00) and  f5(0) < —A;(—A)

where A;(—A) is the smallest eigenvalue of (—A) in H{ (). The proof of this
result is based on the uniqueness of positive solution of the equation (1.2) and
the fact that A\;(—A + f'(¢)) > 0 (¢ is the unique positive solution of (1.2)).

The typical example of nonlinearities which verifies these hypotheses is the
following

(1.6) f(s)=s"—=As, A>X\(-A), p>1.

The question which we study in this paper is the following: What happens if we
perturb the nonlinearity in such a way that convexity of f is lost? In the special
case of example (1.6) a question of interest is the following: Can we find ¢ > 0
such that the result of [8] persists for the new nonlinearity

h(s) =s? —As—est

with p, A asin (1.6) and 1 < ¢ < p?
We are able to give a positive answer to this question. We use the same
method as in [8]: At first we prove the uniqueness of positive solution of (1.2)
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with this new type of nonlinearity. We assume the following hypotheses: Let f
satisfying (1.3), (1.5), and let g: RT™ — R be a function of class C'! such that

g(0) =0, lim f(s) = Cg(s) = o0,

(1.7)
g(0)=0, g(s)>0 Vs>0,

with C > 0 and we consider the nonlinear heat equation

u — Au+ f(u) =eg(u) +k(t,z) in RT" xQ,
(1.8) u(t,) =0 on RT x990,
u(0,-) =up(-) in O

The main results of this paper are the following

Theorem 1.1. Let f, g satisfy the hypotheses (1.3), (1.5), (1.7). Then there
exists €1 > 0 such that for all € € [0,¢1) the equation

(1.9) UecHNQ), —AT+ () =cg(P),

has one and only one solution ¥ > 0 other than 0. In addition we have ¥ > (
everywhere in ) and

(1.10) M(=A+ (@) —cg(9)) >0 Vec[oe).

Theorem 1.2. Let f, g and k satisfy the hypotheses (1.3), (1.4), (1.5), (1.7).
Then if ug, vy € L> with ug(x) > 0 and vo(z) > 0 a.e. on 2, consider the solution
u, v of (1.1) with respective initial data u(0,z) = ug(z) and v(0,z) = vo(x).
Assuming either that both wg, v are not identically 0 or that k(t,z) > 0 on a
subset of positive measure of R™ x Q. Then there exists €9 > 0 such that for all
e € [0,e2), there is v > 0 independent of k and (ug,vo):

(L11) V=0 flult,) — vt < Cluo, vo, ) exp(—71)
The paper is organized as follows: in Section 2 we prove Theorem 1.1, in

Section 3 we establish Theorem 1.2 when k = 0. In Section 4, we establish
Theorem 1.2 in the general case. In each section some remarks are presented.
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2 — The stationnary problem

The object of this section is to prove Theorem 1.1.

Proof of Theorem 1.1. First we prove the existence of a positive solution
for the equation (1.9). In fact, if ¢ = 0 then by a theorem of Berestycki [1]
(Theorem 4, page 14, cf. also [2], [3]), there exists a unique positive solution ¢ of
(1.2) which verifies

(2.1) M(=A+ f'(p)id) > 0.

Since g > 0 then ¢ is a subsolution of (1.9).
Now we assume that ¢ < C, then by (1.7) there exists M > 0 such that

(2.2) F(M) —eg(M)>0.

So M is a supersolution of (1.9). We claim that ||¢]|cc < M. Indeed, let zy € Q
such that ¢(zg) = [|¢|lec, we have Ap(xg) < 0. Now if ||¢|lcc > M then we
have f(M) < 0. Hence f(M)—eg(M) < 0, and this contradicts (2.2). Then
there exist a solution ¥ for (1.9) which verifies ¢ < ¥ < M. By using again the
maximum principle, we have for all £ positive solution of (1.9) £ < M. Then the
problem (1.9) has a “maximal” solution ¥ in the sense: any solution £ # ¥ of
(1.9) is less than W. (This solution can be constructed by a standard iterative
scheme.)
Now we have to use the following lemma due to Haraux [9, 10].

Lemma 2.1. Let f satisfy the hypotheses (1.3), (1.5) and let ¢ be the
positive solution of the equation

peCYNH(Q), —Ap+f(p)=0.
Let on the other hand £ > 0 be a solution of

EECONH(Q), —AL+f(€) 20 -
Then either £ =0 or £ > .

Proof of Theorem 1.1 (continued). Let & be a positive solution of (1.9),
then by using Lemma 2.1 we have

p<E<M.



SOME NONLINEAR HEAT EQUATIONS 405

Now we prove uniqueness. In fact we assume that we have a solution £ of (1.9)
other than the “maximal” solution ¥. Then we have:

(2.3) —A(Y = &) + f(¥) = f(§) =elg(¥) — g(&)] -
Multiplying (2.3) by (¥ — &) and integrating over  we find
(2.4) /Q|V(‘I’—€)|2+[f(‘1’)—f(€)] (U —§)de =
~ & [ o) = 9(9) (¥~ €) do
Since p <& < ¥ < M, then by using (1.5), (1.7) and (2.4) we find
@5  [IVE-oP+ @) v-¢Pdr<e [ Ci|v—¢ldo
with C; = sup{|¢/(s)|, s € [0, M]} > 0. So
(2.6) (At f(p) ] /Q U — ¢2de <0

Thank’s to (2.1) A1 (—A+ f'(¢) id) > 0. Now let £’ such that A\ (—A+ f'(p)id) =
¢’ C1 and &1 = inf(¢/, C), with C as in (1.7). Then for all € € [0,£1), we have

(2.7) M(=A+ f'(p)) —eC1 >0.

The uniqueness follows from (2.7), we note this solution by ¥. By using (1.5),
(1.7) and (2.7) we deduce

(2.8) M(=A+[f(0) —eg()]id) >0 Ve [,e) . n

3 — The autonomous case

The object of this section is to prove Theorem 1.2 in the case k = 0. We use
the method of [§].

Proof of Theorem 1.2. Let Z = {z € C(Q)NH(Y) / z > 0}. Subsequently
h=f—egwithe € [0,e1) and ¢; is as in Theorem 1.1.

The equation (1.1) generates a dynamical system {S(¢)}+>¢ which assigns to
each element z € Z the value v(t) = S(t) z where v is the solution of (1.8) such
that v(0) = z. Now let E be the functional defined by

1 u
VoeZ E(gp)za/Q\Vgolzdsc+/QH(go)dx where H(u)::/O h(s)ds .
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E is a strict Liapunov functional on Z relative to S(¢) and we refer to [9] for a
simple proof.

Let up € L>®(£2), ugp > 0, then by using the maximum principle (cf. for example
[5]) we have u(t,z) > 0 a.e. (t,2) € Rt x . By the standard invariance principle
(cf. [9]), we conclude that the solution u(t,-) asymptotes the set of nonnegative
solutions of (1.9) as ¢t — oco. We now show that if ug # 0, u(¢,-) cannot tend to
0 ast— oo.

In fact assuming that lim; .o ||u(t,)|lcc = 0, then for each o > 0, there is
T'(«) such that

Vt>T(a) h(u(t,z)) < {h;(0)+a}u(t,z) on Q.

Choosing a > 0 small enough such that —h/,(0) —a — X1 (Q2) > 0, multiplying the
equation by the positive eigenfunction ¢ corresponding to the first eigenvalue
A (=A) of —A in H(9) and integrating over Q) we find

d
—/u(t,x)gpldaczo Vt>T(a) .
dt Jo

Since the function t — [, u(t, z) ¢1 dz is nondecreasing on [T'(«v), oo} and tends to
0 as t — o0, it must vanish identically on [T'(«), o0]. Because ¢ is positive in €2,
this imply that u(¢,-) = 0 V¢ > T'(«). Then a classical connectedness argument
shows that ug = 0. Therefore if ug # 0, the w-limit set of ug under S(t) is reduced
to a single point: w(ug) = {¥}. Since u(t,-) remain bounded in C(£) for all
t > 1 we deduce that

Tim fut,) = ¥() 1 = 0.

For the end of the proof, we just need to use (2.8).

Remark 3.1. It is clear that lim; .o [|u(t,-) — ¥()|[1,00 exp(ct) = O,
Ve < M(—A 4+ R (¢)id). In [19], Wiegner has proved that in such a case the
difference of two solutions tend to 0 as exp(—cy t) with ¢; = A\ (—A + W/ (¥) id).
For related works in the asymptotic of autonomous parabolic equation we refer
to [7-9, 12-19).

4 — The nonautonomous case
The object of this section is to prove Theorem 1.2 in the general case. Subse-

quently € € [0,£1) and € as in Theorem 1.1. In the proof we can use the following
lemmas from [8] which are also valid for the modified equation (1.8):
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Lemma 4.1. Let 1) be the unique positive solution of (1.9) and let us consider
the solution z of (1.8) with initial condition z(0) = v. Then we have:

Vt>0 z(t,z) >(z) on Q.
Lemma 4.2. Let up € L>®(2) with ug(z) > 0 a.e. on §2 and consider the
solution u of (1.8) with initial datum u(0,x) = ug(z). Assuming either that wug

is not identically 0 or that k(t,x) > 0 on a subset of positive measure of R* x (2,
we have

(3.1) lim H (ult, ) - ¢(.))_Hw =0.

t—o00

Proof of Theorem 1.2: Obviously, it is sufficient to prove the result when
vo = 1. Then v(t) = z(t) and

Vt>0 2dt /\utw t:z)\zda:):
— [Vt de = [ (1) = f)] (w2 dete [ o) = g(z)] (u—2)da

Q

By convexity of f, since z(t) > 1 for all ¢, we have f(z)/z > f(v)/v. Moreover
from (3.1) it follows in particular that fixing some nonempty open set w contained
in a compact subset of 2, we have for ¢ > T depending on the solution u that

(3.2) Vt>T u(t,z) >
Now from (3.2) we deduce easily the inequality
1 d 9

Vt>T §d_/’ut$ tm)\da:):

= /Q|V(u—z)\2d:c—/Qc(:):)\u—zpdx—i-s/g[g(u)—g(z)] (u—z)dz

with
M outside w,
c(z) = v
A ICTE) R
(G
Let

6:inf{/9(\Vw]2+c(:c)w2) dx, wEH&(Q),/Q dele}.
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We can prove as in [8] that § > 0. In the other hand, there exists C; > 0 such
that

Lot =g (=) dw < 1 [ Ju—sd.

Set ¢ = C% and let ey = inf(e1,€”), then we obtain for all ¢ > T

d
S lutta) =20 dr) < =G -0 [ fu- e
The end of the proof is the same as in [8].

Remark 4.3. It is instructive to compare the result of Theorem 1.2 with
the result of Chen and Matano [6], recently completed with a simple proof by
Brunovsky et al. [4]. The result of [4, 6] are proved for any nonlinearity but
only in one space dimension and for time-periodic forcing terms. On the other
hand Theorem 1.2 is valid for any space dimension, but it is restricted to positive
solution and a special type of nonlinearities.

Remark 4.4. This result can be viewed as a “structural stability” property
for the result of [8]. However our method of proof is constructive since given
M(=A + f'(1)id) = v > 0, we can specify explicitely 1 and €2 in terms of the
function g.
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