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ON THE DIOPHANTINE FROBENIUS PROBLEM

Y.O. Hamidoune

Abstract: Let X ⊂ N be a finite subset such that gcd(X) = 1. The Frobenius

number of X (denoted by G(X)) is the greatest integer without an expression as a sum of

elements of X. We write f(n,M) = max{G(X); gcd(X) = 1, |X| = n & max(X) = M}.

We shall define a family Fn,M , which is the natural extension of the known families

having a large Frobenius number. Let A be a set with cardinality n and maximal element

M . Our main results imply that for A /∈ Fn,M , G(A) ≤ (M − n/2)2/n− 1. In particular

we obtain the value of f(n,M), for M ≥ n(n− 1) + 2. Moreover our methods lead to a

precise description for the sets A with G(A) = f(n,M).

The function f(n,M) has been calculated by Dixmier for M ≡ 0, 1, 2 modulo n− 1.

We obtain in this case the structure of sets A with G(A) = f(n,M). In particular, if

M ≡ 0 mod n−1, a result of Dixmier, conjectured by Lewin, states that G(A) ≤ G(N),

where N ={M/(n−1), 2M/(n−1), ..., M, M−1} . We show that for n≥6 and M≥3n−3,

G(A) < G(N), for A 6= N .

1 – Introduction

Concerning the history of the Frobenius problem, we quote from [4]:

“Given 0 < a1 < · · · < an with gcd(a1, ..., an) = 1. It is

well known that the equation N =
∑

1≤k≤n ak xk has solutions

in non negative integers provided N is large enough. Following

[Johnson, (1960)], we let G(a1, ..., an) the greatest integer for

which the above equation has no such solution.

The problem of determining G(a1, ..., an), or at least obtain-

ing non trivial estimates, was first raised by Frobenius and has

been the subject of numerous papers.”
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For A = {a1, ..., an}, we shall write G(A) = G(a1, ..., an). The case |A| = 2

was settled by Sylvester [20].

Erdös and Graham proved in [4] that G(A) ≤ 2(max(A))2/|A|. They conjec-

tured that for |A| ≥ 2, G(A) ≤ (max(A))2/(|A| − 1).

Later this conjecture was studied using addition theorems on cyclic groups.

To get an idea about the work done and the methods of finite addition theorems,

the reader may refer to the bibliography in particular: Vitek [21], Hofmeister

[12], Rödseth [18] and Dixmier [2].

The conjecture of Erdös–Graham was proved by Dixmier [2], by combining

Kneser’s addition theorem for finite abelian groups and some new arguments

carried over the integers.

Let us denote by Φ(A) the set of integers which have representations as sums

of elements from A. Let A ⊆ [1,M ], Dixmier obtained the following density

theorem [2]:

∣

∣

∣Φ(A) ∩
[

(k − 1)M + 1, kM
]∣

∣

∣ ≥ min
(

M, k|A| − k + 1)
)

.

As an application, Dixmier [2] obtained

G(A) ≤ (M − n/2 + 1) (M − n/2)/(n− 1)− 1 .

We shall use new addition theorems allowing to go beyond the conclusions of

Kneser’s Theorem to get a sharp upper bound for the Frobenius number.

Our method works almost entirely within congruences.

In the remaining of the introduction, A denotes a subset of N such that

gcd(A) = 1 and |A| ≥ 3. We put n = |A| and M = max(A).

We shall define in the appropriate section an exceptional family Fn,M very

close to arithmetic progressions. Our basic density theorem states that for A /∈

Fn,M ,
∣

∣

∣Φ(A) ∩
[

(k − 1)M + 1, kM
]
∣

∣

∣ ≥ min
(

M − 1, k|A|
)

.

As a corollary we show that for A /∈ Fn,M , G(A) ≤ (M − n/2)2/n− 1.

In particular we calculate the maximal value of G(A), denoted by f(n,M),

for M ≥ n(n− 1) + 2.

In the last part we study the uniqueness of the examples reaching the bounds.

There are three kind of examples of sets with large Frobenius number, cardinality

n and maximal element M : P = {M, M−1, ..., M−n+1}; N = {M/(n−1),

2M/(n−1), ..., M, M−1}, where M ≡ 0 modulo n− 1 and D = {(M−1)/(n−1),

2(M−1)/(n−1), ..., (M−1), M}, where M ≡ 1 modulo n− 1.
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Let A be a set with cardinality n and maximal element M . It was conjectured

by Lewin [14] and proved by Dixmier [2] that G(A) ≤ G(N) if M ≡ 0 modulo

n− 1. We show that for n ≥ 6 and M ≥ 3n− 3, G(A) < G(N), for A 6= N .

Another conjecture of Lewin [14] proved by Dixmier [2] states that G(A) ≤

G(D) if M ≡ 1 modulo n − 1. We show that for n ≥ 6 and M ≥ 3n − 3,

G(A) < G(D), for A 6= N except if M ≡ 0 or 1 modulo (M − 1)/(n − 1) + 1,

where one other example attaining the bound is present.

The last case where an attainable bound was known is the case M ≡ 2 mod

n − 1. We show in this case that P is the unique example reaching the bound,

except for M ≡ 0 or 1 modulo (M − 2)/(n − 1) + 1, where one other example

attaining the bound is present.

2 – Isoperimetric numbers

The isoperimetric method was first used to study some combinatorial problems

on Cayley diagrams in [7, 6]. We observed later that the results obtained imply

good estimations of the size of the sum of two sets, which is the object of Addition

theorems mentioned above. This interaction motivates more elaborate techniques

[8, 9, 10].

Let k be a positive integer and let G be a finite abelian group. Let B be a

subset of G such that 0 ∈ B and |B| ≥ 2.

Following the terminology of [10], we shall say that B is k-separable if there is

|X| ≥ k such that |X +B| ≤ |G|−k. Suppose B k-separable. The k-isoperimetric

number is defined in [10] as

κk(B) = min

{

|X +B| − |X|
∣

∣

∣ |X| ≥ k and |X +B| ≤ |G| − k

}

.(1)

The following isoperimetric inequality follows easily from the definition. Let

X ⊂ G be such that |X| ≥ k, Then:

|X +B| ≥ min
(

|G| − k + 1, |X|+ κk(B)
)

.(2)

It may happen that B generates a proper subgroup H. In that case one may

decompose X = X1 ∪ · · · ∪ Xs, where Xi is a nonempty intersection of some

H-coset with X. Now we may apply (2) to Xi−x, for some x ∈ Xi. We shall use

this decomposition only for k = 1. We obtain in this case the following special

case of a relation obtained in [9]:

∀X, |X +B| ≥ min
(

|X +H|, |X|+ κ1(H,B)
)

.(3)
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A subset X will be called a (k,B)-critical set if κk(B) = |X +B| − |X|, |X| ≥ k

and |X +B| ≤ |G| − k.

A (k,B)-critical set with minimal cardinality will be called a (k,B)-atom.

The reference to B will be omitted when the context is clear.

Let us formulate a special case of a result proved in [7] in the case of non

necessarily abelian groups.

Proposition 2.1 ([7]). Let B be a subset of G such that 0 ∈ B and |B| ≤

|G| − 1. Let H be a (1, B)-atom such that 0 ∈ H. Then H is a subgroup.

We need the following special case of a result obtained in [6]. Notice that this

result generalises a theorem proved independently by Olson [16].

Corollary 2.2 ([6]). Let B be a generating proper subset of a finite abelian

group G such that 0 ∈ B. Then

κ1(G,B) ≥ |B|/2 .(4)

We need the following immediate consequence of a result in [8].

Proposition 2.3 ([8]). Let B be a 2-separable subset of a finite abelian

group G such that κ2(B) ≤ |B| − 1 ≤ |G|/2− 1. Then either B is an arithmetic

progression or there is a subgroup H such that |G| > |H +B| = |H|+ κ2(B).

The above three results will be proved entirely with 5 pages in [11] and applied

to Inverse Additive Theory.

3 – The Frobenius problem and congruences

Recall the following well known and easy lemma, stated usually with H = G:

Lemma 3.1 ([15]). Let H be a subgroup of a finite abelian group G. Let X

and Y be subsets of G such that |X +H| = |Y +H| = |H| and |X|+ |Y | > |H|.

Then |X + Y | = |H|.

Let A⊆N and setM=max(A). Following Dixmier [2], we put Φ(A)=
⋃

i≥1 iA

and Φk(A) = Φ(A) ∩ [(k − 1)M + 1, kM ].
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The reference to A will be omitted when the context is clear. In particular

we shall write Φ = Φ(A).

In this section, we fix the following notations. Let M be a natural number

and let ν be the canonical morphism from Z onto ZM .

For an integer m we shall write m = ν(m). Mainly we shall be interested in

the set Φk = ν(Φk).

We have clearly, Φk +Φ1 ⊆ Φk+1 ∪ Φk+1 −M . Reducing modulo M , we get:

Φk +Φ1 ⊆ Φk+1 .(5)

By iterating we obtain

kΦ1 ⊆ Φk .(6)

We shall need the following well known lemma used by Dixmier [2]. We shall

supply a short proof of this lemma based on Lemma 3.1.

Lemma 3.2 ([2]). Let M be a nonnegative integer and let A ⊆ [1,M ].

Suppose |A ∩ [1,M ]| > M/2. Then [M−1,∞[ ⊆ Φ(A).

Proof: We have clearly 2|A|=2|A|>M . By Lemma 3.1, A+A = A+A=ZM .

For all k ≥ 2, we have by (6), |Φk| ≥ |kΦ1| ≥ |2Φ1| ≥ |2A| = M . In particular

[M,∞[ ⊆ Φ(A). It remains to show that M−1 ∈ A ∪ (A+A). Suppose M−1 6∈

A+A. The above relations show that 2M−1 ∈ A+A, which forces M−1 ∈ A.

Let H be a subgroup of ZM . By a H-string, we shall mean a set R contained

in some H-coset satisfying one of the following conditions:

(G1) There is a generator q of H such that R = {z + q, ..., z + (|R|−1)q},

for some z.

(G2) R − y generates H for some y ∈ R and ∃R0 ⊆ N and t ∈ N such that

R0 = R and R0 ⊆ [t, t+ (M−1)/2].

Lemma 3.3. Let H be a subgroup of ZM and let R be a H-string. Then

∀X, |X +R| ≥ min
(

|X +H|, |X|+ |R| − 1
)

.(7)

Proof: We may assume |R| ≥ 2, since otherwise (7) holds trivially.

Let y ∈ R. Let us first prove that κ1(H,R−y) = |R|−1. Suppose the contrary

and let Q be a 1-atom of (H,R− y) such that 0 ∈ Q. By Proposition 2.1, Q is a

subgroup. By the definition of a 1-atom:

|Q+R| < min
(

|H|, |Q|+ |R| − 1
)

.
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Let t = |R+Q|/|Q|. We have t ≥ 2, since R− y generates H.

Consider first the case where (G1) is satisfied. Take s ∈ R. We have

|(Q + s) ∩ R| ≤ (|Q| + 1)/2, since otherwise ∃ s1, s2 ∈ R ∩ (Q + s), such that

s1 − s2 = q and hence Q = H, contradicting Q 6= H. Hence |R + Q| − |R| ≥

(|Q| − 1)t/2 ≥ |Q| − 1, a contradiction.

Assume now (G2) satisfied. Since R has a representative R0 contained in

an interval with length (M − 1)/2, we have also in this case |R + Q| − |R| ≥

(|Q| − 1)t/2 ≥ |Q| − 1.

Therefore |Q| − 1 ≤ |Q + R| − |R| < |Q| − 1, a contradiction. Now we may

apply (3) to obtain (7).

Let Q be a subgroup of ZM and let v ∈ A. Set Φk ∩ (j v + Q) = Q(v; k, j).

The reference to v will be omitted and we shall write Q(k, j) = Q(v; k, j).

By (5), we have Q(k, i) +Q(1, s) ⊆ Φk+1. It comes

Q(k, i) +Q(1, s) ⊆ Q(k + 1, i+ s) .(8)

We shall estimate Φk\(Φk−1 +Φ1), using the next lemma.

Lemma 3.4. Let A ⊆ [1,M ] such that gcd(A) = 1 and let Q be a subgroup

of ZM . Let v ∈ A such that v /∈ Q. Set V1 = Φ1 ∩ (Q + v). Assume V1 6= ∅ and

let r0 = M/|Q|. Let i ≤ r0 − 1.

If |Q(k, i)| = |Q|, then Q(k, i+ 1) contains a Q-string with size ≥ |V1| − 1.

Moreover we have the following relation:

If |Q(k, i)| ≥ |Q| − |V1|+ 2, then Q(k, i+ 1) 6= ∅ .(9)

Proof: Set M = q|Q|. Clearly Q is generated by q. Choose 0 ≤ wj ≤ q − 1,

such that wj ∈ Q+ j v, 0 ≤ j ≤ r0 − 1.

There is clearly a representative x1 of V1 such that 1 ≤ x1 ≤ w1+(|Q|−|V1|)q.

Set Y = (k − 1)M + wi + {0, q, ..., (|V1| − 2)q}. Assume |Q(k, i)| ≥ |Q|.

It follows that Y ⊆Φk. For every y∈Y , (k−1)M + 1 ≤ x1 + y ≤ (|Q|−|V1|)q +

w1 + (k − 1)M + wi + (|V1| − 2)q < (k − 1)M + |Q|q = kM .

It follows that the string x1 + Y ⊆ Φk ∩ (Q + (i + 1) v) = Q(k, i + 1).

This proves the first part.

Assume now |Q(k, i)| ≥ |Q| − |V1| + 2. There is clearly a representative z of

Q(k, i) such that (k − 1)M + 1 ≤ z ≤ wi + (|V1| − 2)q.

Clearly (k−1)M+1 ≤ x1+z ≤ (|Q|−|V1|)q+w1+(k−1)M+wi+(|V1|−2)q <

(k − 1)M + |Q|q = kM .
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Let H be a subgroup of ZM . For x ∈ ZM , we shall denote by ξH(x) the unique

r ∈ [0, M/|H|−1], verifying the condition r ∈ x +H. Let x1, x2 ∈ ZM be such

that x1−x2 /∈ H. Assume moreover x1+x2 ∈ H or 2(x1−x2) ∈ H, one may check

easily that there exists 1 ≤ i ≤ 2 such that

ξ(xi) < M/(2|H|) .(10)

Lemma 3.5. Let H be a subgroup of ZM and let y1, y2 ∈ Φ1 such that

y1 + y2 +H ⊆ (2Φ1 +H)\(Φ1 +H). Then

|Φ1 ∩ (y1 +H)|+ |Φ1 ∩ (y2 +H)| ≤ |H|+ (ξ(y1) + ξ(y2))|H|/M .(11)

Proof: Put M = q|H|.

For 1 ≤ i ≤ 2, set Mi = (yi +H)∩Φ1 and mi = min{m : m ∈ Φ1 & m ∈Mi}

and put ri = ξ(yi).

We have clearly, for 1 ≤ i ≤ 2,

|Mi| ≤ 1 + (M − q + ri −mi)/q .

Since m1 + m2 /∈ Φ1, M < m1 + m2 ≤ M + r1 − q|M1| + M + r2 − q|M2| ≤

2M+r1+r2−q(|M1|+|M2|). Therefore |M1|+|M2| < |H|+(ξ(y1)+ξ(y2))|H|/M .

This shows (11).

4 – The density of the Frobenius semigroup

We shall use the following lemma:

Lemma 4.1. Let G be a finite abelian group. Let X be a generating subset

of G such that 0 ∈ X, |X| = 3 and |2X| = 6. Then

∀ j ≥ 1, |jX| ≥ min
(

|G|, 3j − 1
)

.(12)

Proof: Consider first the case |G| ≤ 7. By our hypothesis |2X| = 6. By

Lemma 3.1, 3X = G. Hence (12) holds. Assume now |G| ≥ 8. Since |2X| = 6,

X is 2-separable. Clearly X is not an arithmetic progression since otherwise

|2X| = 5.

We have for every proper subgroupQ ⊆ G, |Q+X|−|Q| > min(|G|−|Q|−1, 2).

Since otherwise, we have necessarily, |Q| = 2 and |Q+X| = 2|Q|. It follows that

X = Q ∪ {x}. Hence |2X| = 2|Q|+ 1 = 5, a contradiction.
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By Proposition 2.3, κ2(G,X) ≥ 3.

It follows by iterating (3) that

∀ j ≥ 1, |jX| ≥ min
(

|G| − 1, 3j
)

.(13)

Suppose |jX| ≤ |G| − 1. By Lemma 3.1, |(j − 1)X| + |X| ≤ |G|. By (13)

|(j − 1)X| ≥ 3(j − 1). By (4), κ1(X) ≥ 2. By (2), |jX| ≥ 3(j − 1) + 2 = 3j − 2.

This proves (12).

The following result implies a very restrictive structure when the Frobenius

semigroup has a small density.

Theorem 4.2. Let A ⊆ N such that gcd(A) = 1 and set M = max(A).

Then one of the following conditions holds:

(i) |Φk| ≥ min
(

M − 1, k|Φ(A) ∩ [1,M ]|
)

.

(ii) Φ1 is an arithmetic progression.

(iii) Φ1 = H ∪T , where H is a subgroup and T is contained in some H-coset.

(iv) There is r < M/2 such that Φ1 = {r, 2r, M/2, r+M/2, M}.

Proof: Condition (i) of Theorem 4.2 holds by Lemma 3.1 if |Φ1| > M/2.

Therefore we may assume:

|Φ1| ≤M/2 .(14)

Assume that Φ1 is not an arithmetic progression. In particular |Φ1| ≥ 2.

Condition (i) of Theorem 4.2 holds by (6), if |kΦ1| ≥ min(M−1, k|Φ1|). Suppose

the contrary, it follows that k ≥ 2. Now we must have for some 1 ≤ j ≤ k − 1,

|j Φ1 +Φ1| < min(M−1, |jΦ1|+ |Φ1|).

It follows that (ZM ,Φ1) is 2-separable and that

κ2(ZM ,Φ1) ≤ |Φ1| − 1 .

Since Φ1 is not an arithmetic progression and by Proposition 2.3 there is a

proper subgroup H of ZM with the following property:

min
(

M − |H| − 2, |Φ1| − 1
)

≥ κ2(Φ1) ≥ |Φ1 +H| − |H| .(15)

We shall now choose H to be with maximal cardinality satisfying (15). Put

r0 = M/|H|.

Set H+Φ1 = {z0+H, ..., zβ+H}, where |(z1+H)∩Φ1| ≥ · · · ≥ |(zβ+H)∩Φ1|

and z0 = 0. Clearly |H +Φ1| = (β + 1) |H|. Set T =
⋃

i6=β zi +H.
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For i ≤ β, put Ai = Φ1 ∩ (zi +H).

(15) implies immediately

min
(

M − |H| − 2, |A0|+ · · ·+ |Aβ| − 1
)

≥ κ2(Φ1) ≥ β|H| .(16)

By (14) and (16), M/2 ≥
∑

0≤i≤β |Ai| ≥ β|H| + 1. Since |H| divides M , we

have

M ≥ (2β + 1) |H| .(17)

Assume first

|Aβ| = 1 .

By (16), |Ai| = |H|, for all i 6= β. We have zi+zj+H ⊆ Φ1+H, for all i, j 6= 1,

since otherwise by (11), 2|H| ≤ |H|+ (2M/|H| − 2)|H|/M = |H|+ 2− 2|H|/M .

In particular

T + T ⊆ T ∪ zβ +H .(18)

Consider first the case where T generates a proper subgroup. Since T ∪zβ+H

generates ZM , we have T + T ⊆ T . Therefore T is a subgroup. In this case (iii)

holds. We may then assume that T generates ZM .

By (4) and (17), |2T | ≥ min(M, 3β|H|/2) = 3β|H|/2. By (18), 3β|H|/2 ≤

|2T | ≤ (β + 1) |H|.

Hence β ≤ 2. Clearly (iii) holds if β = 1. Assume β = 2. Since T is

not a subgroup, we have necessarily by (18), 2z1 +H = z2 +H. There is clearly

r′ < M/|H| such that r′ ∈ A1. Since (3z1+H)∩(A0∪A1∪A2) = ∅, (observe that

M ≥ 5|H|), we have necessarily 3r′ > M . It follows that M < 3r′ < 3M/|H| and

hence |H| = 2. In this case we have clearly Φ1 = {M, M/2}∪{r, M/2+r}∪{2r},

for some r < M/2 and Condition (iv) holds in this case.

We may therefore assume

|Aβ| ≥ 2 .(19)

The case β ≥ 3.

Let us show that T generates ZM . Suppose the contrary. It follows easily that

zi+H+zβ+H ⊆ (2Φ1+H)\(Φ1+H), for 1 ≤ i ≤ 2. By (11), |Aβ|+|Ai| ≤ |H|+1.

It follows by (16) that |Aβ | + |Ai| = |H| + 1, for all 1 ≤ i ≤ 2. By (16),

|H|−1 ≥ (β+1) |H|−|A0|−· · ·−|Aβ| ≥ 3|H|−|A1|−|A2|−|Aβ| = |H|+ |Aβ|−2.

Hence |Aβ| ≤ 1, contradicting (19).

By (3), (4) and (17), |Φ1 + H + T | ≥ min(M, |Φ1 + H + κ1(T )) ≥

|Φ1 +H|+ β|H|/2 ≥ |Φ1 +H|+ 3|H|/2. In particular there are i, j /∈ {β}, such

that zi + zj +H ⊆ (2Φ1 +H) \ (Φ1 +H).
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By (11), |Ai| + |Aj | ≤ |H| + 1. It follows that 2|Aβ−1| ≤ |H| + 1 and hence

2|Aβ | ≤ |H|+ 1. By (16),

|Aβ| = |Aβ−1| = (|H|+ 1)/2 .

It follows that |H| ≥ 3.

By (16), |H| = |Ai|, for all 1 ≤ i ≤ β − 2.

Now we must have β = 3, since otherwise by (16), |2Φ1 + H| − |Φ1 + H| ≥

min(M, 4|H|) = 4|H|.

It follows that there are s, t ∈ {1, β}, such that zs+ zt ∈ (2Φ1 +H)\ (Φ1 +H)

and (s, t) /∈ {(β, β), (β, β−1), (β−1, β−1)}. Hence |As|+|At| ≥ |H|+(|H|+1)/2 ≥

|H|+ 2, contradicting (11).

Observe that zi + z1 + H ⊆ Φ1 + H, for all i, since otherwise by (11) and

(19), 2 + |H| ≤ |Ai| + |A1| ≤ |H| + 1, a contradiction. It follows that z1 +H +

Φ1 + H = Φ1 + H. Let Q be the subgroup generated by H ∪ z1 + H. Clearly

Q + Φ1 + H = Φ1 + H. Hence |Q| divides 4|H|. Since Φ1 generates ZM and

by (17), we have Q 6= ZM . We have necessarily |Q| = 2|H|. In particular

Q = H ∪ z1 + H and 2z1 + H = H. It follows also that z3 + H = z2 + H and

hence z3 +Q = z2 +Q. Therefore |Q + Φ1| = 2|Q| = 4|H|. By the definition of

κ2 and (17), |Q+Φ1| ≥ min(M−1, |Q|+ 3|H|) = 5|H|, a contradiction.

Therefore we may assume β ≤ 2.

The case β = 2.

Assume first

2z1 +H 6= z2 +H and 2z2 +H 6= z1 +H .

Let us show that

∀ i ≥ 1, 2zi +H 6= H .(20)

Suppose the contrary. It follows that Q = H ∪ zi +H is a subgroup. Now we

have by the maximality of H, |Q + Φ1| > min(M − 1, |Q| + 2|H|) = 2|Q|. But

|Q+Φ1| ≤ 2|Q|, since H ⊆ Q, a contradiction.

Let us show that 2z1+H 6= 2z2+H and z1+z2+H 6= H. Suppose the contrary.

By (10), ∃ 1 ≤ i ≤ 2 such that ξ(zi) < M/(2|H|). By (20) and our hypothesis,

2zi +H ⊆ (2Φ1 +H) \ (Φ1 +H). By (11), 2|Ai| ≤ |H|+ 2ξ(zi)|H|/M < |H|+ 1.

Therefore 2|A2| ≤ 2|Ai| ≤ |H|.

By (19), our hypothesis and (11), 2|A1| ≤ |H| + 2ξ(z1)|H|/M < |H| + 2.

By adding we get |A1|+ |A2| ≤ |H|+ 1/2, contradicting (16).
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Therefore the cosets H, z1+H, z2+H, 2z1+H, 2z2+H, z1+z2+H are all

distinct. In particular

|2(H +Φ1)| = 6|H| .

We have clearly (2Φ1 + H) \ (Φ1 + H) = {2z1 + H, 2z2 + H, z1 + z2 + H}.

By ( 11) and by (16), we have necessarily |A1| = |A2| = (|H|+1)/2 and by (16),

A0 = H. By Lemma 3.1, 2Φ1 = 2Φ1 +H. It follows that

∀ j ≥ 2, jΦ1 +H = jΦ1 .

By (12)

∀ j ≥ 2, |jΦ1| = j|H|
(

|Φ1 +H|/|H|
)

≥ min
(

M, 3j|H| − |H|
)

.

It follows that

∀ j ≥ 2, |jΦ1| ≥ min
(

M, j(2|H|+ 1)
)

= min
(

M, j|Φ1|
)

.

In particular (i) holds.

We may assume now

2z1 +H = 2z2 +H or 2z2 +H = z1 +H .

There is x ∈ ZM such that

Φ1 +H = H ∪ x+H ∪ 2x+H .

Put Φ1 ∩ (ix+H) = Vi, 1 ≤ i ≤ 2.

By (16), |A0|+ |V1|+V2| ≥ 2|H|+1. By (17), Vi+H +V2 +H ⊆ (2Φ1 +H) \

(Φ1 +H), 1 ≤ i ≤ 2. By (11), |Vi|+ |V2| ≤ |H|+ 1, 1 ≤ i ≤ 2.

The above relations force

|V1| ≥ |V2| & A0 = H & |V1|+ |V2| = |H|+ 1 .

Since the unique requirement was |A1| ≥ |A2|, we may assume V1 = A1 and

V2 = A2. The above relation takes the following form:

|A0| = |A1|+ |A2| − 1 = |H| .(21)

Let us show that A1 and A2 are H-strings. Set M = |H|q. We have q ∈ A0.

Choose the smallest represantive wi of Ai. Necessarily Ai must have {wi, wi+q,

..., wi+M} ∩ [1,M ] as a representative set. This follows since qN + wi ⊆ Φ.
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By (19) and the relation |A1| + |A2| = |H| + 1 obtained above, we have

|H| ≥ 3. We must have |H| ≥ 4, since otherwise necessarily there is r such

that Φ1 = {M, M/3, 2M/3, r +M/3, r + 2M/3, 2r +M/3, 2r + 2M/3}. Since

2r + 2M/3 < M , r < M/6. Now 3r ∈ Φ1. It follows that 3r ∈ H and hence

(observing that r+H generates ZM/H) 3|H| ≥M , contradicting (17). We may

now assume |H| ≥ 4.

Choose v to be representative A1. In the remaining of this proof, by H(i, j)

will mean H(v; i, j).

Since H∪v+H∪2v+H generates ZM , v+H generates ZM/H. In particular

tv /∈ H, for all 1 ≤ t ≤ r0 − 1.

By (8), for all j,

H(k − 1, j) +As ⊆ H(k, j + s) .(22)

Let α be the smallest integer t such that |Φt| ≥ M − 1. We shall denote by

θ(k) the greatest integer j ≤ r0 − 1, such that |H(k, i)| = |H| for all i ≤ j − 1

and |H(k, j)| ≥ 1.

We shall prove by induction the following:

For every 2 ≤ k ≤ α− 1,

∑

0≤i≤θ(k)

|H(k, i)| ≥ k|Φ1| .(23)

For k = 2, by (22), (21) and Lemma 3.1 we have |H(2, 0)| = |H(2, 1)| =

|H(2, 2)| = |H(2, 3)| = |H| and |H(2, 4)| ≥ 2|A2|−1 ≥ 3. It follows that θ(2) ≥ 4

and that
∑

0≤i≤θ(2) |H(k, i)| ≥ 4|H| + 3 > 2|Φ1|. Hence (23) holds for k = 2.

Suppose (23) proved for k − 1. Assume k ≤ α− 1.

Set J = θ(k− 1). We have by (22) and (21), H(k, i) ⊇ H(k− 1, i− 2)+A2 =

A2 +H, for i = J, J+1. Hence

∀ i ≤ J + 1, |H(k, i)| = |H| .(24)

We have by (7) and (22),

|H(k, J + 2)| ≥ |H(k, J) +A2| ≥ min
(

|H|, |H(k − 1, J)|+ |A2| − 1
)

.

It follows that θ(k) ≤ J +2 ≤ r0−1. Now
∑

0≤i≤J+2 |H(k, i)| ≥ (k−1) |Φ1|+

|H| − |H(k− 1, J)|+ |H|+min(|H|, |H(k− 1, J)|+ |A2| − 1). Now (23) holds for

k unless |H(k− 1, J)| = |H|. In this case we have necessarily J + 2 < r0 − 1. By

Lemma 3.4, |H(k, J+3)| ≥ |A1|−1 ≥ (|H|−1)/2 > 0. It follows that θ(k) ≥ J+3.

Now we have
∑

0≤i≤J+3 |H(k, i)| ≥ (k − 1) |Φ1|+ |H|+ |H|+ 1 = k|Φ1|.
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The case β ≤ 1.

Since Φ1 generates ZM , Φ1\H 6= ∅ and hence β = 1. Choose v to be a minimal

representative of elements of A1.

Since H ∪v+H generates ZM , v+H generates ZM/H. In particular tv /∈ H,

for all 1 ≤ t ≤ r0 − 1.

We have also

2v > M .(25)

Otherwise 2v ∈ Φ1 which would lead to 2v +H = H. In particular M = 2|H|,

contradicting (17).

Let H0 be the subgroup generated by A1 − v. By (25), A1 is a H0-string.

In the remaining of this proof, by Q(i, j) will mean Q(v; i, j), for any subgroup

Q.

We have clearly A0 = H(v; 1, 0) and A1 = H0(v; 1, 1).

Let α be the smallest integer t such that |Φt| ≥M − 1. Assuming that (iii) is

not satisfied, we have

|A0| ≤ |H| − 1 .(26)

Let k ≤ α − 1. We shall denote by γ(k) the greatest integer j ≤ r0 − 1 such

that ∀ i ≤ j − 1, |H0(k, i)| ≥ min(|A0|, |H0|) and H0(k, j) contains a H0-string

with size ≥ |A1| − 1.

Clearly for all k ≥ 1, γ(k) ≥ 2.

Using (8) we have for 0 ≤ s ≤ 1,

H(k − 1, i) +As ⊆ H(k, i+ s) .(27)

Similarly we have easily,

H0(k − 1, i) +A1 ⊆ H0(k, i+ 1) .(28)

Set j = γ(k − 1).

∀ i ≤ j − 1, |H(k, i)| = |H| .(29)

We shall use in the sequel the relations

|A0|+ |A1| ≥ |H|+ 1 and |H0 +A0| = |H| .(30)

The first relation is a direct consequence of (16). The second follows by Lemma

3.1, since we have using (19) and (25), |H0| ≥ 2|A1| − 1 ≥ |A1|+ 1.

Now (29) follows by (27) and by Lemma 3.1.
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Set δ(k) = 1, if |H(k−1, j−1)| = |H| and δ(k) = 0 otherwise. We will use the

obvious inequality: |H| − |H(k−1, j−1)| ≥ 1− δ(k), without reference. We shall

prove the following relation:

|H(k, j)| ≥ |H| − 1 + δ(k) .(31)

By (7) and since H(k−1, j) contains a H0-string with size ≥ |A1|−1, we have

by (27), (3) and (30) |H(k, j)| ≥ |A0 +H(k− 1, j)| ≥ min(|H|, |A0|+ |A1| − 2) =

|H| − 1.

Hence (31) follows for δ(k) = 0. Assume δ(k) = 1. It follows that

|H(k − 1, j − 1)| = |H|. By (28), |H(k, j)| = |H|. It follows that γ(k) ≥ j + 1.

Assuming one of the following conditions:

(W1) γ(k − 1) ≤ r0 − 2 and |H0| ≥ |H0(k − 1, j)|+ |A1| − 1.

(W2) γ(k − 1) ≤ r0 − 3.

We shall prove by induction the following relation:

∑

0≤i≤γ(k)−1

|H(k, i)|+ |H0(k, γ(k))| ≥ k|Φ1| .(32)

Notice that the validity of (W1) (resp. (W2)) implies its validity for k − 1

replacing k.

Condition (32) holds clearly if k = 1. Consider first the case where (W1) is

satisfied.

By (28) and by (7), |H0(k, j + 1)| ≥ |H0(k − 1, j) + A1| ≥ min(|H0|,

|H0(k − 1, j)|+ |A1| − 1). Therefore by (W1)

|H0(k, j + 1)| ≥ |H0(k − 1, j)|+ |A1| − 1 .

We have clearly using (26) and (31), |H0(k, j +1)|+ |H(k, j) \H0(k− 1, j)|+

|H(k, j − 1) \ H(k − 1, j − 1)| ≥ |H0(k − 1, j)| + |A1| − 1 + |H| + δ(k) − 1 −

|H0(k− 1, j)|+ 1− δ(k) = |H|+ |A1| − 1 ≥ |Φ1|. By adding this relation to (32),

applied with k − 1 replacing k, we get the validity of (32) for k.

Consider now the case where (W2) is satisfied and (W1) is not satisfied.

By (28) and by (7),

|H0(k, j + 1)| = |H0| .

Notice that |H0(k − 1, j)| = |H0| implies |H(k, j)| = |H|. This follows by

(30) and (27). In particular γ(k) ≥ J + 2. By Lemma 3.4, H0(k, j + 2) contains
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a H0-string with size ≥ |A1| − 1. We have now using (31), (26) and the above

observations

|H0(k, j+2)|+ |H0(k, j+1)|+ |H(k, j) \H0(k, j)| ≥

≥ |A1| − 1 + |H0|+ |H| − |H0(k, j)|

≥ |A1| − 1 + |H|

≥ |Φ1| .

By adding this relation to (32) applied with k − 1 replacing k, we get (32).

We shall now prove the following formula:

∑

0≤i≤r0−1

|H(k, i)| ≥ k|Φ1| .(33)

(33) follows immediately by (32) if one of the conditions (W1) or (W2) is

satisfied. Assume the contrary. As before we put j = γ(k − 1).

We have by (31), |H(k, j)| ≥ |H|−1. Therefore j ≤ r0−2, since otherwise, we

have |Φk| ≥
∑

0≤i≤r0−1 |H(k, i)| ≥ (r0 − 2) |H|+ |H| − 1 = M − 1, contradicting

k ≤ α− 1.

Since (W1) and (W2) are not satisfied we have necessarily j = r0 − 2 and

|H0(k − 1, j)|+ |A1| − 2 ≥ |H0| .(34)

It follows that |H0(k, j + 1)| ≥ min(|H0|, |H0(k−1, j)| + |A1| − 1) = |H0|.

We must have

H 6= H0 .

Since otherwise, we have by (29),

|Φk| ≥
∑

0≤i≤r0−1

|H(k, i)| ≥ (r0 − 2) |H|+ |H| − 1 = M − 1,

contradicting k ≤ α− 1.

We have using (34), |H0| ≤ |H0(k−1, j)|+|A1|−2. By (9), H0(k−1, j+1) 6= ∅.

It follows using (8) that |H(k, j + 1)| ≥ |A0 +H(k − 1, j + 1)| ≥ |A0|.

By (25), |A1| ≤ (|H0|+1)/2. It follows by (16) and (34), (|H0|+1)/2+ |A0| ≥

|A1|+ |A0| = |Φ1| ≥ |H|+ 1 ≥ 2|H0|+ 1 and hence |A0| ≥ (3|H0| − 1)/2.

Now we have using (29),

|H(k, j + 1)|+ |H(k, j) \H0(k, j)| ≥ |A0|+ |H| − |H0| .
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Therefore we have by (25),

|H(k, j + 1)|+ |H(k, j) \H0(k, j)| ≥ |H|+ (|H0| − 1)/2

≥ |H|+ |A1| − 1

≥ |Φ1| .

By adding this relation to (33) applied with k − 1 replacing k, we get (33).

Condition (i) of Theorem 4.2 follows from (33), since {H(k, i); i ≤ r0 − 1},

form a partition of some subset of Φk.

We shall use the result of Dixmier mentioned in the introduction. We shall

deduce it from Theorem 4.2. A direct relatively simple proof can be obtained in

2 or 3 pages using the ideas of the last case of the proof of Theorem 4.2. Notice

that for this bound we do not require the delicate Proposition 2.3, but only the

easy Proposition 2.1.

Corollary 4.3 ([2]). Let A ⊆ [1,M ] such that gcd(A) = 1. Then

∣

∣

∣Φ(A) ∩
[

(k − 1)M + 1, kM
]
∣

∣

∣ ≥ min
(

M, 1 + k(|A| − 1)
)

.(35)

Proof: The result holds obviously by Theorem 4.2 except possibly if Con-

dition (iii) is satisfied. Set M = q|H|. Since H ⊆ Φ1, one may see easily that

Φ(A)∩ [1,M ] = {q, 2q, ...,M}∪{M−q+r,M−2q+r, ..., (M− (|A|−|H|)q)+r}.

The reader may check easily the validity of of (35) in this case.

5 – The main density theorem

Recall the following result due to Sylvester [20]. Let a1, a2 ∈ N be such that

gcd(a1, a2) = 1. Then

G(a1, a2) = (a1 − 1) (a2 − 1)− 1 .(36)

Let us introduce few notations in order to state the main result in a concise

way.

Let M be a nonnegative integer and let 3 ≤ n ≤ M . By r, d, q will denote

nonnegative integers.

We are going to define the exceptional sets with cardinality n and greatest

element M having a small density.

The first member of this family is the arithmetic progression.
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Set Pn,M,d = {M, M − d, ..., M − (n − 1)d}. By a result of Roberts [17],

G(Pn,M,d) = [(M − 2)/(n− 1)] (M − (n− 1) d)− d. In this case we have clearly

G(Pn,M,d) ≤ [(M − 2)/(n− 1)] (M − n+ 1)− 1 .(37)

Moreover equality holds only if d = 1.

We set En,M,0 = {Pn,M,d | 1 ≤ d < M/2 and gcd(d,M) = 1}.

Let 2 ≤ q < M be a divisor M and r ≤ q − 1 be such that gcd(q, r) = 1.

We put Nn,M,q,r = {q, 2q, ...,M} ∪ {M − q+ r, M − 2q+ r, ..., 2M − qn+ r}.

Since gcd(q, r) = 1 and G(Nn,M,q,r) = G(q, 2M − qn+ r), we have by (36)

G(Nn,M,q,r) = (q − 1) (2M − 1− n q + r)− 1 ≤

≤ (q − 1) (2M − 2− (n− 1) q)− 1 .
(38)

We set En,M,1 = {Nn,M,q,r | 1 ≤ r ≤ q − 1 and gcd(q, r) = 1}.

We shall denote by η(d,M) the unique integer in the interval [0, d − 1] such

that η(d,M) ≡M modulo d.

Let d < M/2 be such that gcd(M,d) = 1. We put

Dn,M,d =
{

M, M − d, ..., M − (n− [M/d]− 1) d
}

∪
{

d, ..., [M/d] d
}

,

for some d < M/2 which is coprime to M .

By (36) and since G(Dn,M,d) = G(d, M − (n− 1− [M/d]) d),

G(Dn,M,d) =
(

2M − η(d,M)− (n− 1) d− 1
)

(d− 1)− 1 .(39)

We set En,M,2 = {Dn,M,d | 1 ≤ d < M/2 and gcd(d,M) = 1}.

It remains one exceptional family with cardinality 5.

Let r < M/2 and assume M even. Put E5,M (r) = {r, 2r, M/2, r+M/2, M}.

Clearly G(E5,M (r)) ≤ (M − 2) (M − 4)/4− 1. We put

EM,5,3 =
{

E5(r) | 1 ≤ r ≤M/2− 1 and gcd(M, r) = 1
}

.

We set:
Fn,M = En,M,0 ∪ En,M,1 ∪ En,M,2 , n 6= 5 ;

F5,M = E5,M,0 ∪ E5,M,1 ∪ E5,M,2 ∪ E5,M,3 .

We use the convention max(∅) = 0. For 0 ≤ i ≤ 3, put

fi(n,M) = max
{

G(A); A ∈ En,M,i

}

.
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By (37),

f0(n,M) = [(M − 2)/(n− 1)] (M − n+ 1)− 1 .(40)

By (38),

f1(n,M) = max
{

(q−1) (2M−2−q(n−1))−1 ; q divides properlyM
}

.(41)

By (39),

f2(n,M) = max
{(

M +d[M/d]− (n−1) d−1
)

(d−1)−1 ; (M,d) = 1
}

.(42)

Observe that f0, f1, f2, f3 can be easily evaluted.

Our basic density result is the following one:

Theorem 5.1. Let A ⊂ [1,M ] be such that gcd(A) = 1, |A| = n ≥ 3 and

M = max(A). If A /∈ Fn,M , then

∣

∣

∣Φ(A) ∩
[

(k − 1)M + 1, kM
]∣

∣

∣ ≥ min
(

M − 1, k|A|
)

.(43)

Proof: Assume first Φ(A)∩[1,M ] 6= A. By (35), |Φ(A)∩[(k−1)M+1, kM ]| ≥

min(M, k|A|+ 1). In this case (43) holds. We may then assume

Φ(A) ∩ [1,M ] = A .

(43) holds clearly if Condition (i) of Theorem 4.2 is satisfied. Suppose the

contrary. In particular 1 /∈ A. By Theorem 4.2, we have one of the following

possibilities:

(P1). A is an arithmetic progression of ZM . Let d ∈ N be such that d < M/2

and d is a difference of the progression. Observe that such a d exists, since we

may reverse the progression. On the other side gcd(M,d) = 1, since d generates

ZM and hence d 6= M/2. Let m ∈ A be such that m is the first element of the

progression.

Put M = M ′d + r1, where [M/d] = M ′. Since d generates ZM , we have

gcd(M,d) = 1. Let T0 = A ∩ [1, d−1] and T = {d} ∪ T0. We shall denote the

canonical morphism from Z onto Zd by φ. Let us show that

φ(T ) + φ(T ) ⊆ φ(T ) ∪ {φ(m)} .(44)

Since φ(d) = 0, it would be enough to prove φ(T0) + φ(T0) ⊆ φ(T ) ∪ {φ(m)}.

Let x1, x2 ∈ T0. We have x1 + x2 ∈ Φ1, since d < M/2. It follows that either

x1 + x2 ∈ T ∪ {m} or x1 + x2 − d ∈ T . It follows that φ(x1 + x2) ∈ φ(T ∪ {m}).
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Let us prove that |T0| 6= 1. Suppose on the contrary T0 = {r2}. The ordering

induced by the arithmetic progression modulo M , on [1,M ] is the following:

..., r1, r1 + d, ..., M − d, M, d, ..., M ′d, d− r1, ...

It follows that r2 ∈ {r1, d−r1}. In both cases gcd(r2, d) = 1, since gcd(A) = 1.

Now we must have 2r2 > d, since otherwise 2r2 ∈ T0, contradicting the

hypothesis |T0| = 1. It follows since 2r2 − d 6= r2, that 2 r2 is the first element in

the progression. We can not have 2r2 + d > M since otherwise 2r2 + d−M = r2,

contradicting d < M/2. It follows that M ≥ 2r2 + d > 3r2. Now 2r2 /∈ {3r2 − d,

3r2 − 2d}. It follows that r2 ∈ {3r2 − d, 3r2 − 2d}, contradicting gcd(d, r2) = 1

and r2 6= 1.

Assume first T0 6= ∅. We have |T | ≥ 3. If M is not the end of the progression,

its next d− r1 ∈ T . But this element generates Zd. If M is the end of the

progression and since |T | > 1, we must have M −M ′d = r1 ∈ T . In both cases

φ(T ) contains a generator of Zd. By (44), the subgroup generated by φ(T ) is

contained in φ(T ) ∪ {φ(m)}.

Therefore Zd ⊆ φ(T ) ∪ {φ(m)}.

It follows that 1 ∈ T ∪ {m − d}, and since 1 /∈ A, m = d + 1. On the other

side 2, 3, ..., d−1 ∈ T . Unless d = 3, we have G(A) = 1 and (43) holds clearly.

Therefore we may assume d = 3, m = 4 and T0 = {2}. For a ≤ 5, the result is

obvious. In the other case we have 6 ∈ A and hence 3 ∈ A. Now {2, 3} ⊆ A.

Hence G(A) = 1. Clearly (43) holds in this case.

We may now assume T0 = ∅. Clearly A ⊇ {M,M− d, ...,M− jd}, for some

0 ≤ j.

If d∈A, we must have since Φ1=A, A = {M− jd, M− (j−1)d, ..., M−d, M,

d, 2d, ..., M ′d}. It follows that A = Dn,M,d.

If d /∈ A, we must have

A =
{

M, M − d, ..., M − (n− 1) d
}

= Pn,M,d .

(P2). Condition (iii) of Theorem 4.2 holds. Clearly there exists a proper

divisor q of M and r ≤ q − 1 such that

{q, 2q, ..., M} ⊆ A ⊆ {q, 2q, ..., M} ∪ {M − q + r, M − 2q + r, ..., r} .

Since A = Φ1 and q ∈ A, we must have q+x ∈ A, for all x ∈ A∩ [1,M− q]. This

condition forces the following equality:

A = {q, 2q, ..., M} ∪ {M − q + r, M − 2q + r, ..., 2M − qn+ r} = Nn,M,q,r .



444 Y.O. HAMIDOUNE

(P3) Condition (iv) of Theorem 4.2 holds. In particular A = {r, M/2, 2r,

M/2 + r, M} = E5,M,3.

6 – The Frobenius number

Let us introduce the following notations.

Sn,M =
{

A : |A| = n & max(A) ≤M & gcd(A) = 1
}

.

Tn,M =
{

A : |A| = n & max(A) = M & gcd(A) = 1
}

.

The best possible bound for G(A), assuming A ∈ Sn,M is measured by the

extremal function g(n,M), defined by Erdös and Graham as:

g(n,M) = max
{

G(A) : A ∈ Sn,M
}

.

We shall study the related function:

f(n,M) = max
{

G(A) : A ∈ Tn,M
}

.

Clearly f(n,M) determines g(n,M). We will consider only f(n,M), in order

to limit the size of the present paper. The reader may certainly deduce the

corresponding results for g(n,M).

We shall denote by ζ(n,M) the unique integer t ∈ [1, n] such that M + t ≡ 0

modulo n.

Theorem 6.1. Let A ⊂ [1,M ] be such that gcd(A) = 1 and 6 ≤ 2|A| ≤

max(A). Set n = |A|, M = max(A). If A /∈ Fn,M , then

G(A) ≤
(

(M + ζ(n,M))/n− 1
) (

M − ζ(n,M)
)

− 1 .(45)

In particular

G(A) ≤ (M − n/2)2/n− 1 .(46)

Proof: Put ζ(n,M) = t and set M + t = sn. Set Φ = Φ(A) and Φi = Φi(A).

Suppose A /∈ Fn,M . By (43), for all i ≤ s− 1, |Φi| ≥ in.

Therefore |Φ∩ [1,M(s−1)]| ≥
∑

1≤i≤s−1 in = s(s−1)n/2 = (s−1)(M + t)/2.

It follows that
∣

∣

∣Φ ∩
[

1, M(s− 1)− t(s− 1) + 1
]∣

∣

∣ ≥ (s− 1)(M + t)/2− (s− 1) t+ 1 .
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It follows by Lemma 3.2 that G(A) ≤ (s− 1) (M − t)− 1 = ((M + t)/n− 1) ·

(M − t)− 1.

Theorem 6.1 allows to get in the major case best possible bounds for G(A)

and even the uniqueness of the examples reaching the bound. We shall study

quickly the question omitting some of the details.

Assuming that M − 2 has a not big residue modulo n− 1 compared to M/n,

one obtain the following sharp estimate for G(A).

Theorem 6.2. Set M − 2 = s(n − 1) + r, where 0 ≤ r ≤ n − 2. Suppose

r ≤ s− 2. Then G(A) < f0(n,M) for all A ∈ Tn,M\Fn,M .

In particular f(n,M) = max{fi(n,M); 0 ≤ i ≤ 3}.

Proof: Take A ∈ Tn,M\Fn,M .

Assume first s− r − 2 = 0. We have M + n = (s+ 1)n.

By (45), we have

f0(n,M)−G(A) ≥ s (M − n+ 1)− s (M − n) > 0 .

Assume 1 ≤ s− r − 2. Set s− r − 2 = jn+ t′, where 1 ≤ t′ ≤ n.

We have ζ = t′. Clearly M + t′ = (s− j)n.

By (45), we have

f0(n,M)−G(A) ≥ s (M − n+ 1)− (s− j − 1) (M − t′) > 0 .

Corollary 6.3. Suppose M ≥ n(n− 1) + 2. Then f(n,M) = max{fi(n,M);

0 ≤ i ≤ 3}. Moreover G(A) < f(n,M) for all A ∈ Tn,M\Fn,M .

Proof: Take A ∈ Tn,M\Fn,M .

Set M − 2 = s(n − 1) + r, where 0 ≤ r ≤ n − 2. We have r ≤ s − 2, since

otherwise M − 2 ≤ (n − 1)2 + n − 2, a contradiction. By Theorem 6.2, we have

f0(n,M) < G(A).

The above corollary could hold for all values of n and M . In order to prove

such a result one needs to examine the fatorisation of M , in order to be able to

use f1 and f2.

A conjecture of Lewin [14], proved by Dixmier in [2] states that for every

A ∈ Tn,t(n−1), G(A) ≤ G(Nn,t(n−1),t,t−1). We obtain the following result:
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Theorem 6.4. Let n ≥ 6 and let 3 ≤ t. Put M = t(n − 1). Then for every

A ∈ Tn,M\Nn,M,t,t−1, G(A) < G(Nn,M,t,t−1).

Proof: By (38), G(Nn,M,t,t−1) = (t− 1) (M − 2)− 1. Consider the following

cases:

Case 1. A ∈ En,M,0. By (37), G(A) ≤ f0(n,M) = [(M − 2)/(n− 1)] ·

(M − n+ 1)− 1 ≤ (t− 1) (M − n+ 1)− 1 < G(Nn,M,t,t−1).

Case 2. A /∈ Fn,M . Assume first t ≤ n. We have ζ(n,M) = t. Since t ≥ 3

and by (45), G(A) ≤ (t− 1) (M − t)− 1 < G(Nn,M,t,t−1). We may now suppose

t ≥ n + 1. In particular M ≥ (n − 1) (n + 1) ≥ n(n − 1) + 2. By Corollary 6.3,

G(A) < f0(n,M) < G(Nn,M,t,t−1), using Case 1.

Case 3. A ∈ En,M,1, say A = Nn,M,q,r, where q 6= t is a proper divisor of

M . By (41), G(A) ≤ (q − 1) (2M − 2 − q(n − 1)) − 1. However the quadratic

expression achieves its maximal value G(Nn,M,t,t−1) with q integer uniquely at

q = t. Now G(A) < G(Nn,M,t,t−1), since A 6= Nn,M,t,t−1.

Case 4. A ∈ En,M,2, say A = Dn,M,d, where gcd(d,M) = 1. By (39),

G(A) ≤ (d−1) (2M−1−η(d,M)−d(n−1))−1 ≤ (d−1) (2M−2−d(n−1))−1,

for some d 6= t. However the quadratic expression can not achieve its maximal

value G(Nn,M,t,t−1) with d integer for d 6= t. Since gcd(t,M) 6= 1, we have

G(A) < G(Nn,M,t,t−1).

A similar argument shows that there is exactly one A 6= N5,M,t,t−1 with

G(A) = G(N5,M,t,t−1), namely A = {2t− 1, 2t, 4t− 2, 4t− 1, 4t}, where n = 5.

Let t be an integer with 2 ≤ t. A conjecture of Lewin [14], proved by Dixmier

in [2] states that for every A ∈ Tn,t(n−1)+1, G(A) ≤ G(Dn,t(n−1)+1,t). We obtain

the following result:

Theorem 6.5. Let n ≥ 6 and let 3 ≤ t. Put M = 1 + t(n − 1). Then for

every A ∈ Tn,M\Dn,M,t, one of the following conditions holds:

(i) G(A) < G(Dn,M,t).

(ii) M ≡ 0 mod t+ 1 and A = Nn,M,(t+1),t.

(iii) M ≡ 1 mod t+ 1 and A = Dn,M,(t+1),t.

Proof: By (39), G(Dn,M,t) = (t − 1) (M − 1) − 1. Consider the following

cases:
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Case 1. A ∈ En,M,0. By (37), G(A) ≤ f0(n,M) = [(M − 2)/(n− 1)] ·

(M − n+ 1)− 1 ≤ (t− 1) (M − n+ 1)− 1 < G(Dn,M,t).

Case 2. A /∈ Fn,M . Assume first t ≤ n + 1. We have ζ(n,M) = t − 1.

By (45), G(A) ≤ (t− 1) (M − t)− 1 ≤ (t− 1) (M − t+ 1)− 1 < G(Dn,M,t). We

may now suppose t ≥ n+2. In particular M ≥ (n−1) (n+2)+1 ≥ n(n−1)+2.

By Corollary 6.3, G(A) < f0(n,M) < G(Dn,M,t), using Case 1.

Case 3. A ∈ En,M,1, say A = Nn,M,q,r, where q is a proper divisor of M .

By (41), G(A) ≤ (q−1) (2M−2−q(n−1))−1. However the quadratic expression

achieves its maximal value G(Dn,M,t) with q integer, for q = t or q = t+1. But t

is coprime with M . It follows that G(A) < G(Dn,M,t), except for A = Nn,M,t+1,t,

when t+ 1 ≡ 0 modulo M .

Case 4. A ∈ En,M,2, say A = Dn,M,d, where gcd(d,M) = 1. By (39),

G(A) ≤ (d− 1) (2M − 1− η(d,M)− d(n− 1))− 1(d− 1) (2M − 2− d(n− 1))− 1,

for some d 6= t. However the expression achieves its maximal value G(Dn,M,t)

with d integer, for d = t or d = t+ 1. The first value corresponds to A = Dn,M,t.

Consider the possibility d = t + 1. It follows that that d + 1 is coprime with M

and η(d+1,M) = 1. It follows that G(A) < G(Dn,M,t), except for A = Dn,M,t+1,

where M ≡ 1 modulo t+ 1.

Dixmier proved in [2] that for every A ∈ Tn,t(n−1)+2, G(A) ≤ G(Pn,M,1).

We obtain the following result.

Theorem 6.6. Let n ≥ 6 and let 2 ≤ t. Put M = 2 + t(n − 1). Then for

every A ∈ Tn,M\Pn,M,1, one of the following conditions holds.

(i) G(A) < G(Pn,M,1).

(ii) M ≡ 0 mod 1 + t and A = Nn,M,(t+1),t.

(iii) M ≡ 1 mod 1 + t and A = Dn,M,t+1.

Proof: By (37), G(Pn,M,1) = (M−2)(M−n+1)/(n−1)−1 = t(M−n+1)−1.

Consider the following cases:

Case 1. A /∈ Fn,M . By Theorem 6.2, G(A) < G(Pn,M,1) = t(M − n+ 1)− 1.

Case 2. A ∈ En,M,0\Pn,M,1. By (37), G(A) < G(Pn,M,1).

Case 3. A ∈ En,M,1, say A = Nn,M,q,r, where q is a proper divisor of M . By

(41), G(A) ≤ (q − 1) (2M − 2− q(n− 1))− 1. However the quadratic expression

achieves its maximal value for an integer q at q = t+ 1. It follows that G(A) <

G(Pn,M,1), unless q = t+ 1 and r = t, which leads to A = Nn,M,t+1,t.
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Case 4. A ∈ En,M,2, say A = Dn,M,d, where gcd(d,M) = 1. By (39),

G(A) ≤ (d−1) (2M−η(d,M)−1−d(n−1))−1 ≤ (d−1) (2M−2−d(n−1))−1.

However the above expression achieves its maximal value for an integer d unless

d = t + 1. It follows that G(A) < G(Pn,M,1), unless A = Dn,M,t+1 and M ≡ 1

mod t+ 1.
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