PORTUGALIAE MATHEMATICA
Vol. 56 Fasc. 1 — 1999

EXISTENCE RESULTS FOR SOME QUASILINEAR ELLIPTIC
PROBLEMS WITH RIGHT HANDSIDE IN L!

N. GRENON and O.A. ISSELKOU

Abstract: We study the existence of unbounded renormalized solutions, for quasilin-
ear elliptic equations in a bounded domain. In a first part, we introduce the symmetrized
problem, and we get an existence result assuming the existence of a renormalized super-
solution of the symmetrized problem. Afterwards, we get a sub-super solution theorem
for an equation with a more general right handside.

1 — Introduction

Let Q be an open bounded set of RY with N > 1. We consider the following
problem:

(1.1) { —div A(z,u, Du) = F(z,u) in Q,

u=0 on 0.

We assume that:

(1.2) A(z, 5,€) is a Caratheodory function: Q x RN — RV |

(1.3) @“%&5%ﬂﬂ%&§%5—8>>0
. ae. x €€, VséER, vf,fIGRN, f?’éf,,

(1.4) alélP < (A(z,s,€),&) ae 2€Q, VseR, VE€ RN,

|A(x,5,6)| < B(ls]) ([P~ 4+ b(z)) ae 2€Q, ¥Vse R, VE€ RN
(1.5) where (3 is a function: [0,4o0[ — [0, 400 defined
everywhere and bounded on the bounded intervalls
and where b is a positive function of L¥ (Q)
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(1.6) F(z,s) is a Caratheodory function: Q x R — RT |
m
0< Fz,s) <) fila) x gi(s)
(1.7) =0

where m € N and fi(z) € L'(2), fi(x) >0, 0<i<m and,
for 0<i<m, g;: R — ]0,+o0][, continous, nondecreasing .

We shall denote by f*(s) the unidimensional decreasing rearrangement of f,
that is to say, the unique decreasing function such that |f > ¢| = |f* > ¢| for
every t. We shall denote by f () the spherical decreasing rearrangement of f,
that is to say f(z) = f*(wy|z|V) for every z in Q, where € is the ball of RV
centered at the origin, such that |Q| = |Q|, and where wy is the measure of the
unit ball in RY. For all the definitions and properties concerning symetrization
see [5].

Let us consider the symmetrized problem:

o b= @) gilu) i D,
=0

(1.8)
u=0 on 90,

where A,u = Div(|DulP~2Du). We shall use the following notations and defini-
tions:

We note:
k if u>k,
T.u=< u if —k<u<k,
-k if u< -k,

and LY(9), the space of measurable functions wich are finite a.e. in Q. Let us
recall the definition of [7]:

Definition 1.1. We call renormalized solution of (1.1) a function u such

that:
ue LY(Q),

Tiu € Wy P(Q), VkeR",
1

—/ |Du|Pdz — 0  when k — 400,
k Jk<iul<2k

/A(:r,u, Du) Duh’(u)wdw—l—/A(x,u, Du) Dw h(u) dx = /F(x,u) h(u)wdx |
Q Q Q

Ywe Wy P(Q)NL®(Q) and Yh e CH(R) or piecewise affine

and with compact support.
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In the same way, we define a renormalized supersolution:

Definition 1.2. We call renormalized supersolution of (1.1) a function
such that: 0
Ve LN(Q),
Ty € WHP(Q), Vke R,

10y € RT such that, VE€ RT, 0<¢ < Cy on 09,
1
k Je<yp<ok

[ A, 6. D%) Dyl () wd + [ Alw, b, D) Dwh(p) do > [ P, ) h(w)wdz
Q Q Q

Yw e Wol’p(Q) NL®(Q) and Vh € CY(R) or piecewise affine

|DyPdx — 0  when k — 400,

and with compact support.

The definition of a renormalized subsolution is obtained exchanging > by <.
Let us remark that if a renormalized solution u is in WO1 P(Q)NL>®(Q), then v is

an ordinary weak solution, that is to say u verifies:

/A(x,u,Du)Dgp :/F(m,u)cp VQDEW()l’p(Q).
Q Q

This is also true for sub and supersolutions. The main result of this work is the
following:

Theorem 1.1. We suppose that A satisfies (1.2), (1.3), (1.4), (1.5), and that
F verifies (1.6), (1.7). If there exists a supersolution v > 0 for the problem (1.8),
then there exists a renormalized nonnegative solution u for problem (1.1) such
that |u > t| < |[¢p > t|.

Theorem 1.1 is a generalization of ([6]). In this paper the functions f; are
supposed to be in LI(Q) with ¢ > max(p/, N/p) and ¢ in L>°(Q) and of course
u is also in L®°(€2), moreover in [6], A is roughly independent of u. Notice that
q > max(p’, N/p) insure that the problem:

{—aApu:f(a:) in €,

1.9
(19) u=0 on 90,

has a solution in W, P(Q)NL®(Q) if fe LI(Q). Here, f is in L(Q), and then the
solution of (1.9) is no more in L°°(£2). Such problems with right handside in L'
have been studied in [1] and in [7] in which renormalized solutions are introduced.
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To prove this theorem, we shall first get a comparison result with the symmetrized
problem, and in a second time we shall prove a sub-super solution theorem.

2 — Comparison with the symmetrized problem

Let us consider the following problem:

m

—div A(z, u, Du) = Zfz(x) gi(u) in Q,

(2.1) =

u=0 on 00.

Theorem 2.1. We suppose that A satisfies (1.2), (1.3), (1.4), (1.5), and
that the functions f; and g; satisfy (1.7). If problem (1.8) has a renormalized
supersolution ¥ > 0, then problem (2.1) has a nonnegative renormalized solution
w such that |u > t| < |¢ > t|, for all t > 0.

Proof: Let n € N, we set, for 0 <i <m, f;,(z) = inf(f(x),n).

Let v € L*(2), we consider the problem:

—Div A(z,u, Du) = wa(:z:) gi(v) in
=0
u=0 on 00.

(2.2)

Recall that a weak subsolution of (2.2), is a function v € W1P(Q) N L% (£2) which
verifies:

/QA(JJ,U,DU) Dydr < /Qifm(x) gi(v)dee VYype€ Wol’p(Q)7

(2.3) =
v<0 on 99.

We prove the following lemma:

Lemma 2.1. We suppose that A satisfies (1.2), (1.3), (1.4), (1.5), and that
the functions f; and g; satisfy (1.7). Moreover we suppose that v > 0 verifies
(2.3), then there exists a nonnegative weak solution u € Wol’p(Q) N L>®(Q) of
(2.2) such that u > v.
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Let M > 0 such that: 0 < wv(x) < M. We set:
A(m M, Du(x )) if u(z)> M,
AM(QZ u(x), Du(x )) = A(m, Du(m)) if v(x) <wu(z) <M,
A(a: Du(x)) if u(z) <wv(z);

then the problem:

(2.4) —div A(z, u, Du) me gi( in Q,

u=0 on 00,

has at least one nonnegative weak solution u € I/VO1 P(Q) N L, such that:

12| , P . s, m . p'/p
]| oo S/o o PP NP wNp /Ns—p +p'/N </0 (Z Fim gi(v)> (o) da) ds
i=0
=C,

The existence comes from the theorem of [4, p. 180], moreover u is nonnegative
because the right handside is nonnegative, and L°° estimate can be proved by
symmetrization techniques (see for instance [5] and the demonstrations below).
Remark that C), is independent of M, and then we can choose M such that:

(2.5) M > C,

We are now going to prove that u > v. We take (v —u)™ as test function in
(2.3) and (2.2), then,

/Q(A(m,v,Dv) — AM(x,u,Du)) Dw—u)t <0

but on {x € Q, v > u} we have Ays(x,u, Du) = A(z,v, Du), then from (1.3), we
obtain:

and so,
(2.6) u>v.

From (2.5) and (2.6), we can deduce that A/ (x,u, Du) = A(x,u, Du) and so u
is in fact solution of (2.2). This proves Lemma 2.1.
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We are now going to construct a sequence (u,) in the following way:
we set
up =0

suppose that the sequence is defined until u,,_1 then u,, is a solution of:

—div A(z, up, Duy,) = Zgi(un—l) fim(2),
Un, Z Unp—1, =

un € Wy () N L2(Q) .

(2.7)

We have to show that the sequence (u,) is well defined:
For n =0,
—div A(ﬂj, 0, 0) =0 S Z f@l(l‘) gi(O),

i=0
up=0<0 on 09,

(2.8)

that is to say, ug is a subsolution of problem corresponding to w;, and so from
Lemma 2.1, uq exists. Suppose that the sequence is defined until u,,_1, then:

m

—div A(z, up—1, Dup—1) = Zgi(un_g) fin—1(xz) in Q
i=0

and
Up—1 = Up—2 ;

then, as for 0<¢<m, g; is nondecreasing,
m
—div A(x, up—1, Dup—1) < Zgi(un_l) fin(x) in Q
i=0

and then wu,, exists from Lemma 2.1. On another hand we construct a sequence
(vp), in the following way:
we set

Vo = 0

and v, € Wol’p(ﬁ) N L>(£) is a solution of:

—aAyv, = Zgi(vn_l) fm(x) in Q.
i=0

We are going to prove that the sequence (v,,) has the following property:

Up—1Svp, <Y Vn2>1.
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Recall that we suppose that 1 is a renormalized supersolution of problem
(1.8). For n = 0, we have v; > vg = 0. In the inequation satisfied by v, we take
w = (v — )T which is in Wy ?(Q) N L*®(Q) and for h a function h € C'(R) such
that h(s) = 1 if s < ||v1]|oo, and Rh(s) =0 if s > ||v1|lec+1. Then h(¢)w = w.
In the equation satisfied by v; we take (v; — )™ as test fuction. This leads to:

o [ (1D~ Do = DU~ Do) D(wr — 0)* <

< (S0 ) = ) ) (- )* < 0

and thus,
v <Y

Suppose by induction that:
Up—2 SUp_1 S

Similarly, in the inequation satisfied by 1, we take w = (v,, — )" which is in
W, P (€2)N L>®(€2) and for h a function h € C*(R) such that h(s)=1if 5 < [|vn]lo,
and h(s)=0if s > ||vn|lco+1. In the equation satisfied by v,, we take (v, — )"
as test function. As g; is nondecreasing, we obtain:

/Q(IDun\p—2 Du,, — |Dyp|P~2 D¢,) D(v — )* <

<[ (g‘agml)ﬁn(m - ggxw)ﬁm) (0n—0)* < 0.

Now if we take (v,_1— v,)" as test function in the equations satisfied by v, _1
and vy, after substraction, we obtain:

/Q(\Dvn_llp_2 Duv,_1 — ]Dvn|p_2 Dvn) D(vp—1 — vn)+ <

</ (f% 0i(0ns) Finr () — f;)gi<vn_1> Fn(®)) (vt = )"

g; is nondecreasing, and by induction v,,_s < v,_1, thus:
/ (\Dvn_l\p_Q Duv,_1 — ]Dvn]p_Q Dvn) D(vp—1 —vp)T <0
Q

and thus,
Up—1 < Up -
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For all s in R, we note s~ = —inf(s,0). Let 7 be a function of Wol’p(fl) such
that 0 < 7 < 1, then, (v, — k1)~ € Wy P(Q) N L=®(Q) and ||(vy — k7) " ||oe < k.
We take —(v, — k7)™ as test function in the equation satisfied by v,,, and we note
C},r different constant which depend on k and T,

a/ | Doy |P dx <
{vn<kt}

<k Do P~ | D7| da — / S gi(tn1) Fin(@) (vn — k7)™
{vn<kT} {on<kt} ;)

then,

p—

1
a/ |Dvp P dz < Cy (/ | Dvy, [P d:L‘) P dr + Cy ~
{on<kt} {on<kt}

and thus,
/ |Dvp [P dx < Ci »
{vn<kt}

a fortiori,

(2.9) / \DTonl? de < Cir .
{r=1}

We now specify the choice of 7, we take 7 =T} ((¢ — Cy — 1)T), then w =1
on {7 <1}, and w =0 on {3 > Cy+2}. In the equation satisfied by v,,, we take
w v, which is in WyP(Q) N L(), as test function, and we obtain

a/ | Dvy, |Pw dx + a/ |Dvn|p72 Duv,, Dw v, dx :/ Zgz'(vn—ﬁ fi,n(a:)wun dx
Q Q 0=
then,
a/ |Dvn|pdﬂc+a/ | Doy |P w dx <
{w=1} {w<1}
< o/ Do [P~ | Duw| dz + C
Q
< c/ Doy P! |Dw| dz + c/ \Do, P! |Dw| dz + C
{w=1} {w<1}
but, {z € Q, w(x) < 1} C {z € Q, 7(x) = 1}, then from (2.9),

a/ | Do, [P dx < C/ |Dv,|P |[Dw| dx + C
{w=1} {w=1}
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and thus,
a/ |Du, [P dx < C
{w=1}

but, {z € Q, 7(x) < 1} C {z € Q, w(x) < 1}, then,

(2.10) a/ | Doy |Pdz < C';
{w=1}

from (2.9) and (2.10) we deduce that:
(2.11) Txv, is bounded in Wy (1) .

We are now going to show that @, <v, a.e. in .
For n=0, ug=0=wy.

We set:
0 if s<t,

1
o(s) = ﬁ(s—t) if t<s<t+h,
1 it s>t+h.

We can take ¢(u,) as test function in the equation satisfied by w,,, that leads to:

1 1 U
- A(z, tup, Duy) Duy, de = —/ Zgi(un,l) fin(x) (up—t) dz
hJ{t<un<t+h} h Jit<un<t+n} =5
+/ Gi\Un— fi,n x)dx .
ey 20001 fin)
From (1.4), and because 0 < “5=t <1 on {t < up, < h+ 1}, we get:

Q m

N Dunpg/ i\ Un— in(T)dx

h /{t<1m<t+h} | | {t<un<t+h} ;g (tn—1) fin(@)

i /{ > gi(un—1) fin(z)de ;

t+h<un} ;7

from Holder,

P

1 P r1 Y
] )
h Jit<u,<t+h} h Jit<u,<t+h}

< S giltn 1) fin(x) da + /{ S giltn 1) fin(x) dz

{t<un<t+h} ;2 t+h<un} ; 7,
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We note v(t) = |u, > t|. Let h tend to zero.

d putY fﬂ,
OZ(_E/{KW}’ un’) (_ /{t<un}zgl = 1 fln )

From the definition of the perimeter of De Giorgi, and the isoperimetric
inequality, we have:

d

- Duy| > NNy 1-UN
dt/{mn}' |2 NV ue)

then,

a NP BNy (PPN (—)/ (1) TV < Z 9i(tn—1) fin(z) do

t<un

but, from the extension of Hardy—Littlewood theorem, which is proved in [6],

- mou(t)
;/t<ugi(un—l)fi,n($) dr < ;)/0 (9i(un—1))*(0) fin(0) do .

As g; is nondecreasing, we obtain:

= v(t) m
Zg‘)/ﬁ@gi(“ﬂl)ﬁm@) o< | D 6:(16,1)(7) fin(o) do

thus,
1 . N —
< Lt oo [ ;
< N Nuey TN (< Zg (o) do
and thus,
! —p'/N ’ v(t) m p'/p
1<a—p/pr NP ()P +p/N V( (/ Zgl ur ;) ()da)

then, we integrate between 0 and u(s) — € with € > 0. We know that:

up > un(s) — e‘ <

‘un > up(s) — 6’ = uy > ufl(s)‘ <s

then,

| , r m »'/p
I [TS gt ) 0) fraoydo )
0

uy(s)—e < oz_p//pN_p/CX,p//N/
=0

S
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As it is true for every € > 0, we obtain:

’ - //N |2 ' IN r M p//p
ur(s) <a™P /P NP CNP / P/ (/ E gi(ur_1)(o) fz‘*,n(‘f) da) dr .
s 0 i=0

We suppose by induction that,

no1(0) <vp_q(0)

'/p

/ A |Q / / r p
ut(s) < a? /p NP o /N/ P’ +p' /N (/0 Zgi(U;_l)(U) (o) dcr) dr
i=0

s

= vr(s) .

The last step consists in proving that (u,,) converges to a renormalized solution
of (2.1). First we take Tju,, as test function in the equation satisfied by w,,

/A(m’unaDun)DTkundx < /Zgz(un—l)fz,n(x)Tkundma
L 2320

this implies from (1.4) that (we note Cj, different constants independent of n, but
which depend on k)

a/ | DT kcuy P dz < / > gi(un-1) fin(e) un dx
Q un<k i—0

+k Zgi(unfl) fin(x)dz .

unzk ;—

We know that if u,(z) < k then u,_;(z) < k, then on {u, < k}, we have
gi(up—1) < Ck and fin(z) < fi(x). Moreover in the second term of the right
handside of the previous inequality, we can use the extension of the Hardy—
Littlewood theorem which is given in [6], and we obtain:

DTxcunl’dz < Cp [ 3" fi@)do+ kY [ gilins) fonlw)da
o [, IPTicwpde < Co [ S f@d k3 [ i) finla)da

We can add > i~ f{ﬁn<k} 9i(tn—1) fin(z) tp(x) dr which is nonnegative in the
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right handside, and so,

o [ 1DTkupds < G [ D fiw)dr+ kY [ i) finw) da

{ain>k}
+> /  giltin—1) fin(@) din(z) da
i—0 un<k}

_ ¢ /Q S fiw)de + Y /Q Giiin_1) fin (@) Tiitn(x) dz .
i=0 i=0
We have seen that, Vn € N, @, < v, <1 a.e. in €, then,

06/ | DTk un [P do < Ck/ > filx) d$+Zf 9i(Vn—1) fin(x) Ty, da
Q 220 i=0 /<

m
= C’k/ Zfl(ac) d;z:—l—/~ |DTyv,|P dx
Q= Q
< Ck
because of (2.11), so we have proved that,
(2.12) | DTgun|lp, < Ck -

As the sequence (u,) is nondecreasing, p.p. z € Q, up,(z) tends to infinity or
converges to a finite limit, we note u(z). Let A = {z € Q, u,(x) — 400}, and let
By ={x € Q, up(x) >k}, then VE > 0,

+oo
AC U Bn,k:

n=0
and
+oo
|U Bug| = Jim [Busl V>0
n=0
because (u,) is nondecreasing. But,
o € un(@) > kY| < [{o €D, va(2) > kY| < [{w €@, v(@) > K}

then,
Al < [{z € 2, v(@) > k)

., VYkeN

and consequently
Al < lim |[{z €@, g(z) >k} =0
k——+o0
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then,
up(z) — u(x) ae xeQ.

We are now going to show that (u,) converges to a renormalized solution of

(2.1).

From (2.12), we can deduce that DTju,, — DTju in LP(Q2) weak. We are now
going to show that DTyu,, — DTpu in LP(Q2) strong. We take Tiu,, — Tru as test

function in the equation satisfied by u,,, then,

/A (z, Uy, Duy) D(Tyu, — Tpu) de = / Zgz (un—1) fin(x) (Thu, — Tpu) d
=0

thus,

/ (A(x, U, Duy) — Az, uy, DTku)> D(Tyuy, — Tyu) dox +
Q

+ / A(z, up, DTpu) D(Tyu, — Tyu) de =
0

= / igi(un_ﬁ fin(x) (Thun — Tiu) dx
20

As up(z) < u(z), Tpup— Tru = 0 on {x € Q, up(x) > k}. Then the previous

inequality becomes:
/ @@mwﬁﬂw@—m%ﬂ%pnmﬁxmm—ﬂwm+
{un<k}

(2.13) +/ Az, Tytn, DTit) DTy — Tyt) d =
{un<k}

_/ Zgz Up—1 fzn( )(Tkun—Tku)dx
un<k}

Let n tend to +o0, by Lebesgue theorem, we can see that:

/ Zgz Un—1 fzn )(Tkun—TkU)d$ — 0
{un<h} 2

and
Az, Tyun, DTiu) &gy, <iy — A, Tiu, DTpu) §y<py  in LP () strong
D(Tyu, — Tiu) — 0 in LP(Q) weak
then,
/ Az, Tyun, DTyu) D(Tpuy, — Ty)dz — 0 .
{un<k}
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We can now use the following lemma which is proved in [2].

Lemma 2.2. Suppose that A verifies (1.2), (1.3), (1.4), (1.5), if (z,) is a
sequence such that:

e 2, is bounded in L*(Q),

o 2z, — z in WyP(Q) weak and a.e. in €,

e lim (A(x, Zn, Dzyn) — A(z, 2n, Dz)) D(z, — z) =0;
n—0 /O

then, z, — z in Wy™*(Q) strong.
We can apply this lemma, to Tk u,, and deduce that: Txu, — Tku in VVO1 P(Q)

strong. Let w € Wol’p(Q) N L*>®(Q) and h € C'(R) or piecewise affine, and with
compact support, and let k such that h =0 on |— oo, —k[ U |k, +00[

/ A(, Uy, Duy) W (up) w dx —I—/ A(z, up, Duy) h(uy,) Dw dz =
Q Q
= [ Y 0itn) fin@) ) w do
“i=0

that is to say, from the choice of k,

/ A(, Tyttn, DTyun) B (Tyun) w dz + / A, Tytin, DTytun) h(Tyn) Dw dz =
Q Q

(2.14) - /Qigi(Tkun—l) Fin(@) M(Tyun) w da

A(x, Tyupn, DTkuy) — Az, Tyu, DTpu)  a.e. in €, moreover from (1.5),

A, Ty, DTicun)|” < ARY (| DT + b(2))” .

The right handside converges in L' () strong, consequently | A(z, Tjttn, DTyuy,)|”’
is equiintegrable, and then from Vitali’s lemma |A(z, Tpun, DTjun)P —
|A(z, Tyu, DTyu)|P . Finally, A(z, Thun, DTyuy) — Az, Tyu, DTju) in LV (Q)
strong and we can pass to the limit in (2.14), and we obtain

/A(IL‘,TkU, DTyu) b (Tpu) w do + /A(:L‘,Tku, DTyu) h(Tyu) Dw dx =
Q Q

= / igi(Tku) fi(x) h(Tu) w dx
©izo
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that is to say,

/A(x,u, Du) b/ (u) w dz —|—/A(:v,u, Du) h(u) Dw dx =
Q Q

= / Zgl(u) fi(z)h(u)w dz .
20

3 — A sub-supersolution theorem

Theorem 3.1. We suppose that A satisfies (1.2), (1.3), (1.4), (1.5), and that
F satisfies (1.6), (1.7), if there exists a nonnegative renormalized supersolution
¥ of (1.1), then there exists a nonnegative renormalized solution u of (1.1), such
that u < v a.e. in €.

Proof: We can remark that ¢ = 0 is a subsolution of (1.1) (we could remark
that the hypothesis F'(z,s) > 0 could be replaced by: there exists a weak subso-
lution ¢ € WHP(Q) N L>=(Q2) such that ¢ < ).

Let n > 1, we consider the problem:

(3.1) —div A(z,u, Du) = F,(z,u(x)) in Q,
' u=0 on 00,
F
where Fy,(x,s) = 1(#’5)
1+~ F(x,s)

Lemma 3.1. Under the hypotheses of Theorem 3.1, we suppose that there
exists a weak subsolution v € L*°(Q) of problem (3.1), such that 0 <wv < 1),
then there exists a solution u € Wol’p(Q) N L>(Q) of problem (3.1) such that
v < u <.

Proof of the Lemma: Let M such that ||v]o < M. We set:

A(ar Ty (x (:c)) if w(x) > Ty(x),
Ay (:c u(zx), Du(zx ) A(m, u(x ) it v(z) <wu(z) < Tyy(z),
A(m,v u(x ) if u(z) <wov(z),
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_ F(x,u(x)
Fulo,u(z) = — 4@
1+ F(z,u(x))
Then, — div Aps(z,u(z), Du(x)) — F,(z,u(z)) verifies the hypotheses of the the-
orem of [4, p.180], and the problem:

(3.2) { —div Ay (2, u(x), Du(z)) = Fy(a, u(x),
u=0 on 00,

has at least one solution u in Wol P(Q) N L>(Q) such that:
1

-+ 5+E+1

/ ! !
lufl oo < QPR P NP = D,

In the following we shall suppose that M > D,. We are going to show that
moreover, u < 1. We take (u — )T as test function in (3.2), and in the in-
equation satisfied by 1, we take w = (u — )t € WyP(Q) N L®(Q), and a
function h € C'(R) such that h(s) = 1if s < M and h(s) = 0 if s > M+1.
As in the previous section, that leads to:

< [ (Fuleu@) = Fla,w(@) (w=v)* do = 0

thus,
/g)(AM (2. u(x), Du(z)) — A(z, ¥(x), Dw(a:))) D(u— )" dz < 0

and we deduce that (u — )t =0 a.e. in Q.

We take now (v —u)T as test function in (3.2) and in the inequation satisfied
by v, and we can show like previously that u > v. Finally, we have shown that u
is a solution of (3.1), and proved the lemma.

We construct a sequence (u,,), such that:

upg = 0 5
up € Wy () N L=(Q) ,
—div A(z, up, Duy) = Fp(z, un(z)) ,

Up—1 < Uy <.
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Using the previous lemma, we can show by induction that we can construct this
sequence, if we remark that

—div A(z,up—1, Dup—1) = Fp—1(z,up—1(x)) < Fp(z, up—1(z))

that is to say, u,—1 is a subsolution of the equation satisfied by wu,.

To prove that Tju, is bounded in WO1 P(2), we use the same method as in
the previous section to prove (2.11). Let 7 be a function of VVO1 P(Q) such that
0 <7 <1, then, (u, — k7)™ € WyP(Q)NL®(Q) and |(up — k1) [loe < k.
We take —(u, — k7)™ as test function in the equation satisfied by w,, and we
note C},  different constant which depend on k and 7,

/ A(z, tup, Duyp) D(uy, — k1) dr = —/ Fo(z,up) (up, — 7k)™ dx
{un<kt} Q
then, from (1.4) and (1.5),

a/ | Duy, [P dz < C;“/ (\Dun\p_l + b(ac)) Drdx + Cy »
{un<kt} {un<kt}

then,
p=1
a/ |Dup|P dx < Cy (/ | Dy, [P dx) Pode + Cyr
{un<kt} {un<kt}

and then,

/ |Duy|P de < Cy

{un<kr
a fortiori,
(3.3) /{ DT de < O

T=1

We now specify the choice of 7, we take 7 = T} ((¢ — Cy — 1)T), then w =1
on {7 <1} and w = 0 on {¢p > Cy + 2}. In the equation satisfied by u,,, we take
w u,, which is in W (Q) N L®(Q) as test function.

/A(x,un,Dun) Du,, w dx —I—/A(:n,un,Dun)Dwun dr = /Fn(x,un)wun dx
Q Q Q
then,

a/ | Dup|P dx + a/ | Duy |Pw de <
{w=1} {w<1}

IA

0/ (1DwaP~ + () | Du| dw + €
Q

IN

C’/ \Dun P~ [Duw| dz + c/ \Dun P~ [Dw|dz + C
{w=1} {w<1}
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but, {z € Q, w(x) < 1} C {z € Q, 7(x) = 1}, then from (3.3),
a/ | Duy, [P dz < C/ |Duy | [Dw| dz 4+ C
{w=1} {w=1}

and thus,
a/ |Duy|P de < C
{w=1}

but, {z € Q,7(z) <1} C {z € Q, w(x) <1}, then,

(3.4) a/ \DunPdz < C
{w=1}

from (3.3) and (3.4) we deduce that Txu, is bounded in Wy?(€2). On another
hand, as (u,) is nondecreasing and u,, < 1, u, converges almost everywhere in
Q to a function w. This implies that DTxu, — DTgu in LP(2) weak. In the
same way, with slight modifications, we can prove as in the previous section that
Tru, — Tru in I/VO1 P(Q) strong, and that u is a renormalized solution of (1.1).
This proves Theorem 3.1.

We can now prove Theorem 1.1: suppose that there exists a renormalized
supersolution ¥ > 0 for problem (1.8), then problem (2.1) has a renormalized
solution @ such that |a > t| < |[¢p > t|, V¢ > 0. But, u is also a renormal-
ized supersolution of (1.1), and then by Theorem 3.1, there exists a nonnegative
renormalized solution u of problem (1.1), such that v < @ a.e. in €2, and thus
such that |u > t| < |y > t|.
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