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EXACT DISTRIBUTED CONTROLLABILITY FOR
THE SEMILINEAR WAVE EQUATION *

Wei-Jiu Liu

Abstract: In this paper we generalize the theorems of exact controllability for the

linear wave equation with a distributed control to the semilinear case, showing that,

given T large enough, for every initial state in a sufficiently small neighbourhood of the

origin in a certain function space, there exists a distributed control, supported on a part

of a domain, driving the system to rest. Also, if the control is allowed to support on the

entire domain, then we prove that the system is globally exactly controllable at any time

T .

1 – Introduction

The main purpose of this paper is to generalize the theorems of exact control-

lability for the linear wave equation to the following semilinear case















y′′−∆y + f(y) = h in Q,

y(x, 0) = y0, y′(x, 0) = y1 in Ω,

y = 0 on Σ .

(1.1)

In (1.1), Ω is a bounded domain (nonempty, open, and connected) in Rn with

suitably smooth boundary Γ = ∂Ω (say C2); Q = Ω×(0, T ) and Σ = Γ×(0, T )

for T > 0; the prime ′ denotes the time derivative, h = h(x, t) represents a dis-

tributed control and f(y) is a given function.

The exact controllability can be defined as follows.
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Definition 1.1. System (1.1) is said to be globally exactly controllable in a

suitable Hilbert space H if, for every initial state (y0, y1) ∈ H and every terminal

state (z0, z1) ∈ H, there exists a control h such that the solution of (1.1) satisfies

y(x, T ;h) = z0, y′(x, T ;h) = z1 in Ω .(1.2)

Let C be the set of all initial states (y0, y1) in a suitable Hilbert space H,

each of which can be steered to rest by a control h, that is, the solution of (1.1)

satisfies

y(x, T ;h) = 0, y′(x, T ;h) = 0 in Ω .(1.3)

The set C is called the set of null-controllability.

Definition 1.2. System (1.1) is said to be locally exactly null-controllable if

the set C of null-controllability contains an open neighborhood of 0 in the suitable

Hilbert space H.

Definition 1.2 follows the definition of local controllability for control processes

in Rn (see [11, p. 364]).

For the problem of local controllability for nonlinear distributed systems, the

earliest definitive results appears to be the paper [17] of Markus. Based on the

implicit function theorem, Markus [17] studied the local controllability problem

for nonlinear finite dimensional ordinary differential equations. Subsequently,

the implicit function type method was applied to nonlinear wave equations by

Fattorini [5], Chewning [3] and Russell [19] and nonlinear plate equations [16].

More recently, Lagnese [9] developed a method of contraction mapping prin-

ciple type to prove local controllability for nonlinear partial differential equations

governing the evolution of the von Karman plate. On the other hand, using

Schauder’s fixed point theorem, Zuazua [21, 22, 23] studied the problem of exact

boundary or distributed controllability for the semilinear wave equation







y′′−∆y + f(y) = 0 in Q,

y(x, 0) = y0, y′(x, 0) = y1 in Ω .
(1.4)

Under the globally Lipschitz hypothesis on the nonlinearity, Zuazua proved that

the semilinear wave equation is globally exactly controllable in Hs
0(Ω)×H

s−1(Ω)

with Dirichlet boundary controls φ ∈ Hs
0(0, T ;L

2(Γ)) for 0 < s < 1. The limit

case s = 0 was left as an open question due to the lack of compactness which

is required by Schauder fixied point theorem. Later, this open question was

affirmatively answered by Lasiecka and Triggiani [10], who considered the exact
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controllability for semilinear abstract systems by using a direct approach based

on the explicit construction of the controllability map, and then applied their

abstract results to boundary control problems for the semilinear wave equation.

Also, Zuazua proved that if the nonlinearity f is super-linear, that is, if f(y) ∈

W 1,∞
loc (R) with f(0) ≡ 0, and there exist constants k > 0 and p > 1 such that

|f ′(y)| ≤ k |y|p−1 , y ∈ R ,(1.5)

with

p ≤ 2 if n = 1 and p < 1 +
2

n
if n ≥ 2 ,(1.6)

then the semilinear wave equation is locally exactly null-controllable with bound-

ary controls and globally exactly controllable with internal controls and some

additional assumptions.

We note that the case where p = (n+ 2)/n (n ≥ 2) is excluded in (1.6).

This case is critical as it results in the lack of compactness. Therefore, we here

consider such a critical exponential case. On one hand, we prove that (1.1)

is globally exactly controllable with controls supported on the whole domain.

On the other hand, we prove that (1.1) is locally exactly null-controllable with

controls supported on only a part of the domain.

Our results apply for more general open subset ω of Ω. Roughly speaking,

provided the linear wave equation is exactly controllable with controls supported

in ω, our methods allow to show that the semilinear wave equation is also locally

controllable. We refer to [2] for sharp geometric conditions on ω guaranteeing

the exact controllability of the wave equation.

Although we study only the null-controllability property, we can show that

any sufficiently small initial data may be driven to any sufficiently small final

state (not necessarily the zero one) by using the same arguments.

Our main results are presented in Section 2 and proved in Section 3. The tools

used in the proofs are the Hilbert uniqueness method, the multiplier method and

the Banach contraction fixed point theorem.

2 – Main Results

Throughout this paper, let Ω be a bounded domain (nonempty, open, and

connected) in Rn with suitably smooth boundary Γ= ∂Ω (the precise smoothness

will be specified later) and let ν be the unit normal of Γ directed towards the

exterior of Ω. Let T > 0 and set Q = Ω×(0, T ) and Σ = Γ×(0, T ).
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In the sequel,Hs(Ω) denotes the usual Sobolev space and ‖·‖s denotes its norm

for any s ∈ R (see [1, 13]). For s ≥ 0, Hs
0(Ω) denotes the completion of C∞

0 (Ω) in

Hs(Ω), where C∞
0 (Ω) denotes the space of all infinitely differentiable functions

on Ω which have compact support in Ω. Let X be a Banach space. We denote by

Ck([0, T ];X) the space of all k times continuously differentiable functions defined

on [0, T ] with values in X, and write C([0, T ];X) for C0([0, T ];X).

We further introduce some standard notation (see, e.g., [12]). Let x0 ∈ Rn

and set

m(x) = x− x0 = (xk − x
0
k) ,(2.1)

Γ(x0) =
{

x ∈ Γ: m(x) · ν(x) = mk(x) · νk(x) > 0
}

,(2.2)

Γ∗(x
0) = Γ− Γ(x0) =

{

x ∈ Γ: m(x) · ν(x) ≤ 0
}

,(2.3)

Σ(x0) = Γ(x0)× (0, T ) ,(2.4)

Σ∗(x
0) = Γ∗(x

0)× (0, T ) .(2.5)

For a subset G ⊂ Ω, we denote

R(x0, G) = max
x∈Ḡ

|m(x)| = max
x∈Ḡ

∣

∣

∣

∣

n
∑

k=1

(xk− x
0
k)

2

∣

∣

∣

∣

1/2

.(2.6)

We make the following assumption on f = f(y):

(H) Assume f ∈ W 1,∞
loc (R) and there exist constants k > 0 and p ≥ 1 such

that

|f ′(y)| ≤ k |y|p−1 , ∀ y ∈ R .(2.7)

Theorem 2.1. Let Ω be a bounded domain in Rn with a boundary Γ of class

C2 and let O be a neighborhood of Γ(x0) and ω = O∩Ω. Let T > 2R(x0,Ω/ω).

Assume (H) holds and f(0) = 0. Suppose that p satisfies

1 < p ≤ 2 if n = 1 and 1 < p ≤ 1 +
2

n
if n ≥ 2 .(2.8)

Then, system (1.1) is locally exactly null-controllable in L2(Ω)×H−1(Ω) with

controls h ∈ C([0, T ];H−1(Ω)) supported in ω.

If the controls are allowed to support on the entire domain Ω, we have the

following global exact controllability theorems.
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Theorem 2.2. Let Ω be a bounded domain in Rn with a Lipschitz boundary

Γ and let T > 0. Assume (H) holds and the exponent p satisfies

1 ≤ p <∞ if n ≤ 2 and 1 ≤ p ≤
n

n−2
if n ≥ 3 .(2.9)

Then, system (1.1) is globally exactly controllable in H1
0 (Ω)×L

2(Ω). That is,

for every initial state (y0, y1) and every terminal state (z0, z1) in H1
0 (Ω)×L

2(Ω),

there exists a control h ∈ C([0, T ];L2(Ω)) such that the solution y = y(x, t;h) of

(1.1) satisfies (1.2).

If we wish to enlarge the control space H1
0 (Ω)×L

2(Ω), for example, to L2(Ω)×

H−1(Ω), we have to impose a stronger condition on p. In this case the non-

linearity f is required to map L2(Ω) into H−1(Ω) so that the problem (1.1)

is well posed. By the Sobolev imbedding theorem (see [1, p. 97]), we have

H1
0 (Ω) ↪→ L2n/(n−2)(Ω) and then L2n/(n+2)(Ω) ↪→ H−1(Ω). Therefore, we re-

quire that yp ∈ L2n/(n+2)(Ω) for y ∈ L2(Ω). In other words, p ≤ (n+2)/n.

Theorem 2.3. Let Ω be a bounded domain in Rn with a Lipschitz boundary

Γ and let T > 0. Assume (H) holds and the exponent p satisfies

1 ≤ p ≤ 2 if n = 1 and 1 ≤ p ≤ 1 +
2

n
if n ≥ 2 .(2.10)

Then, system (1.1) is globally exactly controllable in L2(Ω)×H−1(Ω) with con-

trols h ∈ C([0, T ];H−1(Ω)).

3 – Proofs

In this section we prove our main results by using the method of contraction

mapping principle type developed by Lagnese [9].

For completeness, we quote from [14, 15] an observability inequality for the

wave equation










u′′−∆u = 0 in Q,

u(0) = u0, u′(0) = u1 in Ω,

u = 0 on Σ .

(3.1)

We define the energy E(u, t) of (3.1) by

E(u, t) =
1

2

[

‖∇u(t)‖20 + ‖u
′(t)‖20

]

,(3.2)

where

‖∇u(t)‖20 =

∫

Ω
|∇u(t)|2 dx .(3.3)
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The following observability inequality was proved in [15] as a special case.

Lemma 3.1. Let Ω be a bounded domain in Rn with a boundary Γ of

class C2. Let O be a neighborhood of Γ(x0) and ω = O ∩ Ω. Assume that

T > 2R(x0,Ω/ω). Then there exist a nonnegative function ϕ ∈ C∞(Ω) with

ϕ(x) = 0 in Ω− ω and a positive constant c such that for all solutions of (3.1)

E(u, 0) ≤ c

∫ T

0

∫

ω
ϕ
(

|u|2 + |∇u|2
)

dx dt .(3.4)

We are now in the position to prove Theorem 2.1.

Proof of Theorem 2.1: Given initial conditions (u0, u1) ∈ H1
0 (Ω)×L

2(Ω),

we consider














u′′−∆u = 0 in Q,

u(0) = u0, u′(0) = u1 in Ω,

u = 0 on Σ .

(3.5)

It is well known that (3.5) has a unique solution u with

u ∈ C
(

[0, T ];H1
0 (Ω)

)

∩ C1
(

[0, T ];L2(Ω)
)

.(3.6)

Using the solution u of (3.5), we then consider the problem















y′′−∆y + f(y) = −ϕu+ div(ϕ∇u) in Q,

y(T ) = 0, y′(T ) = 0 in Ω,

y = 0 on Σ ,

(3.7)

where ϕ is the function function given in Lemma 3.1. The solution y of (3.7) can

be written as

y = w + z ,

where w and z are repectively the solutions of















w′′−∆w = −ϕu+ div(ϕ∇u) in Q,

w(T ) = 0, w′(T ) = 0 in Ω,

w = 0 on Σ ,

(3.8)















z′′−∆z + f(w + z) = 0 in Q,

z(T ) = 0, z′(T ) = 0 in Ω,

z = 0 on Σ .

(3.9)
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Since −ϕu+ div(ϕ∇u) ∈ H−1(Ω), problem (3.8) has a weak solution with

w ∈ C
(

[0, T ];L2(Ω)
)

∩ C1
(

[0, T ];H−1(Ω)
)

.(3.10)

Moreover, there exists a constant c such that

‖w‖L∞(0,T ;L2(Ω)) + ‖w
′‖L∞(0,T ;L2H−1(Ω)) ≤ c ‖∇u‖L1(0,T ;L2(Ω))

≤ c
[

‖u0‖1 + ‖u
1‖0

]

.(3.11)

On the other hand, by Lemma 3.3 below, there exists some positive constant

r such that, for every

(u0, u1) ∈ Br(0) =
{

(u0, u1) ∈ H1
0 (Ω)×L

2(Ω): ‖u0‖1 + ‖u
1‖0 ≤ r

}

,(3.12)

problem (3.9) has a unique solution z with

z ∈ C
(

[0, T ];Hs
0(Ω)

)

∩ C
(

[0, T ];Hs−1(Ω)
)

(3.13)

for some 0 ≤ s < 1. Moreover, there exists some constant c > 0, independent of

(u0, u1), such that for all t ∈ [0, T ]

‖z(t)‖s + ‖z
′(t)‖s−1 ≤ c

[

‖u0‖1 + ‖u
1‖0

]p
.(3.14)

We now define the nonlinear operator W by

W (u0, u1) =
(

y′(0),−y(0)
)

=
(

w′(0),−w(0)
)

+
(

z′(0),−z(0)
)

= Λ(u0, u1) +K(u0, u1) ,(3.15)

where

Λ(u0, u1) =
(

w′(0),−w(0)
)

, K(u0, u1) =
(

z′(0),−z(0)
)

.(3.16)

By Lemma 3.1, the “controllability operator” Λ associated with the linear wave

equation is an isomorphism from H1
0 (Ω)×L

2(Ω) onto H−1(Ω)×L2(Ω).

We look at the problem

W (u0, u1) = (y1,−y0) ,(3.17)

for (y0, y1) ∈ L2(Ω)×H−1(Ω). Once we have shown that there exists a neigh-

bourhood ϑ of (0, 0) in L2(Ω)×H−1(Ω) such that for any (y0, y1) ∈ ϑ prob-

lem (3.17) has a solution, the problem of controllability is solved with control

h = −ϕu+ div(ϕ∇u) ∈ C([0, T ];H−1(Ω)) supported in ω.
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We apply Banach contraction fixed point theorem to solve (3.17). Since the

operator Λ is an isomorphism from H1
0 (Ω)×L

2(Ω) onto H−1(Ω)×L2(Ω), problem

(3.17) is equivalent to the following fixed point problem

(u0, u1) = −Λ−1K(u0, u1) + Λ−1(y1,−y0)

= G(u0, u1) .(3.18)

For ξ1=(u01, u
1
1), ξ2=(u02, u

1
2) ∈ Br(0), by Lemma 3.4 below, we have

‖G(ξ1)−G(ξ2)‖H1

0
(Ω)×L2(Ω) =

= ‖Λ−1K(ξ2)− Λ−1K(ξ1)‖H1

0
(Ω)×L2(Ω)

≤ c ‖K(ξ2)−K(ξ1)‖H−1(Ω)×L2(Ω)

≤ c ‖K(ξ2)−K(ξ1)‖Hs−1(Ω)×Hs
0
(Ω)

≤ c (r + rp)(p−1)/2 exp
[

c
(

1 + (r + rp)p−1
)]

‖ξ1 − ξ2‖H1

0
(Ω)×L2(Ω) ,(3.19)

where the constant c is independent of r. Therefore, there exists r0 > 0 such that

if r ≤ r0, then G is a strict contraction on Br(0).

On the other hand, we prove that there exists τ ∈ (0, r0] such that G maps

Bτ (0) into Bτ (0). In fact, by (3.14) we deduce, for some constant c > 0,

‖G(u0, u1)‖H1

0
(Ω)×L2(Ω) ≤ ‖− Λ−1K(u0, u1)‖H1

0
(Ω)×L2(Ω)

+ ‖Λ−1(y1,−y0)‖H1

0
(Ω)×L2(Ω)

≤ c τp + ‖Λ−1(y1,−y0)‖H1

0
(Ω)×L2(Ω) ,(3.20)

for any (u0, u1) ∈ Bτ (0). Thus, it is enough to choose τ ∈ (0, r0] such that

c τp + ‖Λ−1(y1,−y0)‖H1

0
(Ω)×L2(Ω) ≤ τ .

This is possible if we take

‖Λ−1(y1,−y0)‖H1

0
(Ω)×L2(Ω) ≤ min

{

1

(c p)
1

p−1

(

1−
1

p

)

, |r0 − c r
p
0|

}

.(3.21)

By Banach contraction fixed point theorem, G has a fixed point for (y0, y1) ∈

L2(Ω)×H−1(Ω) satisfying (3.21). Consequently, equation (3.17) has a solution.

Thus, the proof of Theorem 2.1 is complete provided we can prove the following

lemmas.
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Let us introduce the operator A = −∆: D(A) ⊂ L2(Ω)→ L2(Ω) with domain

D(A) = H2(Ω)∩H1
0 (Ω). It is well known that A is a strictly positive self-adjoint

operator on L2(Ω).

Since problems (3.8) and (3.9) are time-reversible, we may consider the fol-

lowing problems instead of (3.8) and (3.9):











w′′−∆w = −ϕu+ div(ϕ∇u) in Q,

w(0) = 0, w′(0) = 0 in Ω,

w = 0 on Σ ,

(3.22)











z′′−∆z + f(w + z) = 0 in Q,

z(0) = 0, z′(0) = 0 in Ω,

z = 0 on Σ .

(3.23)

Lemma 3.2. Suppose assumption (H) in Section 2 holds and p satisfies

(2.10). Set

s = 1−
n (p−1)

2
≤ 1 .(3.24)

Then f(y) : L2(Ω)→ Hs−1(Ω) is locally Lipschitz continuous in y, that is, for

every constant c ≥ 0 there is a constant l(c) such that

‖f(y1)− f(y2)‖s−1 ≤ l(c) ‖y1 − y2‖0 ,(3.25)

for all y1, y2 ∈ L
2(Ω) with ‖y1‖0 ≤ c, ‖y2‖0 ≤ c.

Proof: If p = 1, it is clear that f : L2(Ω)→ L2(Ω) is globally Lipschitz.

Thus, we now assume that p > 1. For any y1, y2 ∈ L
2(Ω), it follows from Hölder’s

inequality and assumption (H) that

‖f(y1)− f(y2)‖0, 2
p
≤ k

∥

∥

∥|y1|
p−1 + |y2|

p−1
∥

∥

∥

0, 2

p−1

‖y1 − y2‖0

≤ k
(

‖y1‖
p−1
0 + ‖y2‖

p−1
0

)

‖y1 − y2‖0 .(3.26)

On the other hand, by Sobolev’s embedding theorem (see [1, p. 218]), we have

H1−s
0 (Ω) ↪→ Lq(Ω) with q =

2n

n− 2(1−s)
.(3.27)

Therefore we have

Lr(Ω) ↪→ Hs−1(Ω) ,(3.28)

where r > 0 and 1
r + 1

q = 1. By (3.24), we obtain that r = 2/p. Hence, L
2

p (Ω) is

continuously embeded into Hs−1(Ω). Thus (3.25) follows from (3.26).
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Lemma 3.3. Suppose that (H) holds and f(0) = 0. Assume that p satisfies

(2.10). Then there exists a positive constant r such that for every

(u0, u1) ∈ Br(0) =
{

(u0, u1) ∈ H1
0 (Ω)×L

2(Ω): ‖u0‖1 + ‖u
1‖0 ≤ r

}

,(3.29)

problem (3.23) has a unique weak solution z with

z ∈ C
(

[0, T ];Hs
0(Ω)

)

∩ C1
(

[0, T ];Hs−1(Ω)
)

,(3.30)

where s is given by (3.24). Moreover, there exists a constant c > 0, independent

of (u0, u1), such that for all t ∈ [0, T ]

‖z(t)‖s + ‖z
′(t)‖s−1 ≤ c

[

‖u0‖1 + ‖u
1‖0

]p
.(3.31)

Proof: Since w ∈ C([0, T ];L2(Ω)), it follows from Lemma 3.2 that f(w + ·)

maps L2(Ω) intoHs−1(Ω). It then follows from the standard theory of semigroups

(see [18]) that for each (u0, u1) ∈ H1
0 (Ω)×L

2(Ω) there exists some tmax depending

on (u0, u1) such that problem (3.23) has a unique solution with

z ∈ C
(

[0, tmax);H
s
0(Ω)

)

∩ C
(

[0, tmax);H
s−1(Ω)

)

.(3.32)

Moreover, by Theorem 1.4 of [18, p. 185], we deduce the following alternative

holds: either tmax > T and (3.30) holds, or tmax ≤ T and

lim
t→tmax

‖z(t)‖s + ‖z
′(t)‖s−1 = +∞ .(3.33)

We are going to prove that tmax > T for (u0, u1) small enough. As a consequence

of this, (3.30) and (3.31) will hold immediately.

Set

E(z, t) =
1

2

∫

Ω

[

|As/2 z(t)|2 + |A(s−1)/2 z′(t)|2
]

dx .(3.34)

Multiplying (3.23) by As−1z′ and integrating over Qt = Ω×(0, t), it follows that

(the following c’s denoting various constants)

E(z, t) = −

∫

Qt

f
(

w(t) + z(t)
)

As−1z′(t) dx dt

≤ c

∫ t

0

∥

∥

∥f
(

w(t) + z(t)
)
∥

∥

∥

s−1
‖A(s−1)/2 z′(t)‖0 dt

≤ c

∫ t

0

∥

∥

∥f
(

w(t) + z(t)
)
∥

∥

∥

0,2/p
‖A(s−1)/2 z′(t)‖0 dt ≤

(use (2.7) and f(0) = 0)
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≤ c

∫ t

0
‖w(t) + z(t)‖p0 ‖A

(s−1)/2 z′(t)‖0 dt

≤ c ‖w‖2pL∞(0,T ;L2(Ω)) + c

∫ t

0

(

E(z, t) + ‖z(t)‖p0 ‖A
(s−1)/2 z′(t)‖0

)

dt

(use (3.11))

≤ c ‖(u0, u1)‖2p
H1

0
(Ω)×L2(Ω)

+ c

∫ t

0

[

E(z, t) + E(p+1)/2(z, t)
]

dt

= d + c

∫ t

0

[

E(z, t) + E(p+1)/2(z, t)
]

dt ,(3.35)

where

d = c ‖(u0, u1)‖2p
H1

0
(Ω)×L2(Ω)

.(3.36)

On the other hand, the solution of the initial value problem

{

ψ′ = c(ψ + ψ(p+1)/2),

ψ(0) = d ,
(3.37)

is

ψ =
d ect

[

1 + d(p−1)/2 − d(p−1)/2 exp
(

1
2 c(p−1) t

)]2/(p−1)
.(3.38)

It therefore follows from Corollary 6.5 of [6, p. 35] that

E(z, t) ≤
d ect

[

1 + d(p−1)/2 − d(p−1)/2 exp
(

1
2 c(p−1)t

)]2/(p−1)

≤ 2 d ect ,(3.39)

for 0 ≤ t ≤ T if

[

1 + d(p−1)/2 − d(p−1)/2 exp

(

1

2
c(p−1)T

)]2/(p−1)

≥
1

2
,(3.40)

that is,

d = c ‖(u0, u1)‖2p
H1

0
(Ω)×L2(Ω)

<

(

1− 2(1−p)/2
)2/(p−1)

[

exp
(

c(p−1)T/2
)

− 1
]2/(p−1)

.(3.41)

Thus we have proved (3.30) and (3.31).
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In the following, the constants c’s denote various constants depending on T ,

µ, Ω, the constants k, p in (2.7). In addition, using problems (3.22) and (3.23),

the operator K defined in (3.16) is now given by

K(u0, u1) =
(

z′(T ),−z(T )
)

.(3.42)

Lemma 3.4. Suppose that (H) holds and f(0) = 0. Assume that p satisfies

(2.10). Then we have

‖K(ξ1)−K(ξ2)‖Hs−1(Ω)×Hs
0
(Ω) ≤

≤ c (r + rp)(p−1)/2 exp
[

c
(

1 + (r + rp)p−1
)]

‖ξ1 − ξ2‖H1

0
(Ω)×L2(Ω)(3.43)

for any ξ1 = (u01, u
1
1), ξ2 = (u02, u

1
2) ∈ Br(0) ⊂ H1

0 (Ω)×L
2(Ω), where r is the con-

stant obtained in Lemma 3.3 and s is as in (3.24).

Proof: Given ξ1 = (u01, u
1
1), ξ2 = (u02, u

1
2) ∈ Br(0), by Lemma 3.3, (3.23)

has unique solutions z1, z2, respectively. Let w1, w2 be the solutions of (3.22)

corresponding to ξ1, ξ2, respectively. By (3.11) and (3.31), we have

‖wi(t)‖0 ≤ c r, ‖zi(t)‖0 ≤ c rp , i = 1, 2, ∀ t ∈ [0, T ] .(3.44)

From (3.23) it follows that















(z1− z2)
′′ −∆(z1− z2) + f(w1+ z1)− f(w2 + z2) = 0 in Q,

z1(0)− z2(0) = 0, z′1(0)− z
′
2(0) = 0 in Ω,

z1− z2 = 0 on Σ .

(3.45)

As in the proof of (3.35), multiplying (3.45) by As−1(z1− z2)
′ and integrating

over Qt= Ω×(0, t), it follows that

E(z1− z2, t) ≤

≤ c

∫ t

0

(

‖w1(t) + z1(t)‖
p−1
0 + ‖w2(t) + z2(t)‖

p−1
0

)

×
(

‖w2(t)− w1(t)‖0 + ‖z2(t)− z1(t)‖0
)

‖A(s−1)/2(z1 − z2)
′(t)‖0 dt

(use (3.44))

≤ c

∫ t

0
(r + rp)p−1

×
(

‖w2(t)− w1(t)‖0 + ‖z2(t)− z1(t)‖0
)

‖A(s−1)/2(z1− z2)
′(t)‖0 dt ≤
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≤ c (r + rp)p−1 ‖w2 − w1‖
2
L∞(0,T ;L2(Ω))

+ c
[

1 + (r + rp)p−1
]

∫ t

0
E(z1− z2, t) dt ,(3.46)

where the positive constant c is independent of r. It therefore follows from Gron-

wall’s inequality (see [6, p. 36]) that

E(z1− z2, t) ≤ c (r + rp)p−1 exp
[

c
(

1 + (r+rp)p−1
)

t
]

‖w2 − w1‖
2
L∞(0,T ;L2(Ω))

≤ c (r + rp)p−1 exp
[

c
(

1 + (r+rp)p−1
)

t
]

‖ξ2 − ξ1‖
2
H1

0
(Ω)×L2(Ω) .(3.47)

This implies (3.43).

Until now, we have finished the proof of Theorem 2.1.

We are now in the position to prove Theorem 2.2.

Proof Proof of Theorem 2.2: It is known from [12, Theorem 2.1, p. 405]

that, for every initial state (y0, y1) and terminal state (z0, z1) in H1
0 (Ω)×L

2(Ω),

there exists a control

v ∈ C
(

[0, T ];L2(Ω)
)

,(3.48)

such that






















y′′ −∆y = v in Q,

y(x, 0) = y0, y′(x, 0) = y1 in Ω,

y(x, T ) = z0, y′(x, T ) = z1 in Ω,

y = 0 on Σ .

(3.49)

By setting

h = v + f(y) ,(3.50)

then we have






















y′′ −∆y + f(y) = h in Q,

y(x, 0) = y0, y′(x, 0) = y1 in Ω,

y(x, T ) = z0, y′(x, T ) = z1 in Ω,

y = 0 on Σ .

(3.51)

It remains to prove that

h ∈ C
(

[0, T ];L2(Ω)
)

.(3.52)

Since v ∈ C([0, T ];L2(Ω)) and y ∈ C([0, T ];H1
0 (Ω)), it suffices to prove

f(y) ∈ C
(

[0, T ];L2(Ω)
)

.(3.53)

This follows from the following lemma.
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In what follows, we denote by ‖ · ‖0,r the norm in Lr(Ω) and we recall that

‖ · ‖s denotes the norm of Hs(Ω) for any s ∈ R.

Lemma 3.5. If assumption (H) in Section 2 holds and p satisfies (2.9), then

f(y) : H1
0 (Ω)→L2(Ω) is locally Lipschitz continuous, that is, for every constant

c ≥ 0, there is a constant l(c) such that

‖f(y1)− f(y2)‖0 ≤ l(c) ‖y1 − y2‖1 ,(3.54)

for all y1, y2 ∈ H
1
0 (Ω) with ‖y1‖1≤ c, ‖y2‖1≤ c.

Proof: If p = 1, it is easy to see that f is actually globally Lipschitz. Thus,

we now assume that p > 1. If n ≥ 3, by (2.9), we have

(p− 1) (n− 2) ≤ 2 .(3.55)

Set

q1 =
n

n− (n−2) (p−1)
, q2 =

n

(n−2) (p−1)
.(3.56)

Then we have

1 < q1 ≤
n

n−2
, 1 ≤ (p−1) q2 ≤

n

n−2
,

1

q1
+

1

q2
= 1 .(3.57)

If n ≤ 2, we take

q1 = p , q2 =
p

p−1
.(3.58)

Then we have

1 < q1 <∞ , 1 ≤ (p−1) q2 ,
1

q1
+

1

q2
= 1 .(3.59)

It therefore follows from the differential mean value theorem, (2.7) and Hölder’s

inequality that

‖f(y1)− f(y2)‖0 ≤ c
∥

∥

∥(y1 − y2)
(

|y1|
p−1 + |y2|

p−1
)∥

∥

∥

0

≤ c ‖y1 − y2‖0,2q1

∥

∥

∥|y1|
p−1 + |y2|

p−1
∥

∥

∥

0,2q2

≤ c ‖y1 − y2‖0,2q1

(

‖y1‖
p−1
0,2q2(p−1) + ‖y2‖

p−1
0,2q2(p−1)

)

.(3.60)

On the other hand, by the Sobolev imbedding theorem (see [1, p. 97]), we have

the following continuous imbeddings:

H1(Ω) ⊂ Lr(Ω) , 1 ≤ r ≤
2n

n−2
, n ≥ 3 ,(3.61)

H1(Ω) ⊂ Lr(Ω) , 1 ≤ r <∞, n = 2 ,(3.62)

H1(Ω) ⊂ C(Ω̄) , n = 1 .(3.63)

Therefore, (3.54) follows from (3.60) and the above imbeddings.
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Finally, we prove Theorem 2.3.

Proof of Theorem 2.3: The proof is similar to that of Theorem 2.2 by

using Theorem 2.2 of [12, p. 408] about the linear wave equation. In this case,

by Theorem 2.2 of [12, p. 408] we have

v ∈ C
(

[0, T ];H−1(Ω)
)

,(3.64)

y ∈ C
(

[0, T ];L2(Ω)
)

.(3.65)

Hence, by Lemma 3.2, we have

f(y) ∈ C
(

[0, T ];Hs−1(Ω)
)

⊂ C
(

[0, T ];H−1(Ω)
)

.(3.66)

Thus, we deduce that

h ∈ C
(

[0, T ];H−1(Ω)
)

.(3.67)
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