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SECTOR ESTIMATES FOR KLEINIAN GROUPS

R. Sharp

Abstract: We study the number of lattice points in a fixed sector for certain

Kleinian groups. We show that they are asymptotically distributed according to the

Patterson–Sullivan measure.

0 – Introduction

Let Γ be a (non-elementary) group of isometries of the (n+1)-dimensional

real hyperbolic space Hn+1. Given a point x ∈ Hn+1, we shall be interested

in the behaviour of its orbit Γx under the action of Γ. This orbit accumulates

only on the boundary of Hn+1, which we may regard as Sn. We call the set of

accumulation points, which is independent of x, the limit set of Γ and denote

it by LΓ. The limit set is a closed perfect subset of Sn; either LΓ = Sn or LΓ
is nowhere dense in Sn. Write C(Γ) ⊂ Hn+1 ∪ Sn for the convex hull of LΓ; if

Γ\(C(Γ)∩Hn+1) is compact then we say that Γ is convex co-compact. (Note that

this condition is weaker than requiring that Γ be co-compact, i.e., that Γ\Hn+1

is compact, since co-compact groups have LΓ = Sn.) In this paper we shall be

concerned exclusively with convex co-compact groups.

Given points p, q ∈ Hn+1 we can define the orbital counting function

NΓ(p, q, T ) = #{g ∈ Γ : d(p, gq) ≤ T}, where d(·, ·) denotes distance in Hn+1.

A lot of effort has gone into understanding the asymptotic behaviour of this func-

tion and it is known that, for convex co-compact Γ, NΓ(p, q, T ) ∼ C(p, q,Γ)e
δT ,

as T →∞, where C(p, q,Γ) > 0 is a constant and where 0 < δ ≤ n is the exponent

of convergence of Γ [12]. (A more precise estimate is known under the additional

hypothesis that δ > n/2 [7].)
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A more delicate question is to understand the asymptotics of the number of

orbit points lying in a fixed sector. Fix a (closed) ball B ⊂ Sn and let B̂ denote

the sector in Hn+1 formed by the set of geodesic rays emanating from p with

end-points in B. Define

NB
Γ (p, q, T ) = #

{
g ∈ Γ: d(p, gq) ≤ T and gq ∈ B̂

}
.

The behaviour of this function is closely related to the so-called Patterson–

Sullivan measure µp,q on Sn. It is known that there exist constants 0 < C1 < C2
(depending only on Γ) such that if the centre of B lies in the limit set of Γ then,

for all sufficiently large T ,

C1 µp,q(B)NΓ(p, q, T ) ≤ NB
Γ (p, q, T ) ≤ C2 µp,q(B)NΓ(p, q, T )

[8]. Our object in this paper is to obtain a more precise result for certain classes

of Kleinian groups; namely groups satisfying the condition defined below.

Definition. A Kleinian group Γ is said to satisfy the even corners condition

if Γ admits a fundamental domain R which is a finite sided polyhedron (possibly

with infinite volume) such that
⋃
g∈Γ g ∂R is a union of hyperplanes. (This defi-

nition was introduced by Bowen and Series [3] for the case n = 1 and studied by

Bourdon [2] for n ≥ 2.)

Theorem 1. Let Γ be a convex co-compact group acting on Hn+1. If Γ

satisfies the even corners condition then for any p, q ∈ Hn+1 and any Borel set

B ⊂ Sn such that µp,q(∂B) = 0 we have

lim
T→∞

NB
Γ (p, q, T )

NΓ(p, q, T )
= µp,q(B) .

This result is known in certain cases. In particular, it is known if Γ is co-

compact [9], [10] (in which case µp,q is equivalent to n-dimensional Lebesgue

measure on Sn) or if Γ is a Schottky group [6].

More generally, Theorem 1 is known to hold if Γ is convex co-compact and

the points p and q lie in the convex hull of LΓ [13]. In this case, the result follows

from an approach based on an analysis of the orbit structure of hyperbolic flows.

More precisely, writingM = Γ\Hn+1, consider the projection π : Hn+1 →M and

the geodesic flow φt : SM → SM on the unit-tangent bundle ofM . The counting

function NB
Γ (p, q, T ) may be reinterpreted as the number of φ-orbits, with length

not exceeding T , passing from the fibre Sπ(p)M to the fibre Sπ(q)M , such that

the initial point lies in B ⊂ Sπ(p)M . (It is a standard procedure to identify the
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boundary of Hn+1 with the fibre Sπ(p)M lying over a fixed base point.) The

non-wandering set Ω ⊂ SM for φ consists of all vectors tangent to the projection

π(C(Γ) ∩ Hn+1) and the restriction φt : Ω → Ω is a uniformly hyperbolic flow.

If p, q ∈ C(Γ) then NB
Γ (p, q, T ) counts orbits which lie in Ω and the methods of

[13] give the required result. (Roughly speaking, NB
Γ (p, q, T ) is approximated by

functions counting orbits passing from small pieces of unstable manifold to small

pieces of stable manifold; these latter quantities admit a symbolic description to

which one may apply the techniques of thermodynamic formalism.)

However, if p and q do not lie in C(Γ) then the relevant orbits would lie

outside Ω and the above arguments no longer hold. In this paper we impose no

restrictions on p and q. Instead of formulating the problem in terms of hyperbolic

flows, we shall obtain a symbolic description directly from Γ. The “even corners”

property ensures that that this description matches the geometry of the action

on Hn+1.

We end the introduction by giving two classes of examples of even cornered

groups.

Example 1. Let K1, ...,K2k be 2k disjoint n-dimensional spheres in Rn+1,

each meeting Sn at right angles. For i = 1, ..., k, let gi be the isometry which

maps the exterior of Ki onto the interior of Kk+i. Then the group Γ generated

in this way is called a Schottky group and satisfies the even corners condition.

Viewed as an abstract group, it is the free group on k generators. In this case,

LΓ is a Cantor set.

Example 2. Let R be a polyhedron in Hn+1 with a finite number of faces

and with interior angles all equal to π/k, k ∈ N, k ≥ 2. Let Γ be the Kleinian

group generated by reflections in the faces of R. Then Γ satisfies the even corners

condition. For instance, let R be a regular tetrahedron in H3 with infinite volume

and with dihedral angles π/4. In this case, LΓ is a Sierpiński curve [1], [2].

The author would like to thank Sanju Velani for introducing him to this

question.

1 – Kleinian groups and Patterson–Sullivan measure

Let Hn+1 denote the real hyperbolic space of dimension n+ 1. A convenient

model for Hn+1 is the open ball {x ∈ Rn+1 : ||x||2 < 1}, equipped with the metric

ds2 =
4 (dx21 + · · ·+ dx2n+1)

(1− ||x||22)
2

.
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(In particular, geodesics passing through 0 are just Euclidean straight lines.)

We can then naturally identify the ideal boundary of Hn+1 with the n-dimensional

unit sphere Sn.

A Kleinian group Γ is a discrete group of isometries of Hn+1. (If n=1, we say

that Γ is a Fuchsian group.) Its action on Hn+1 extends to an action on Sn. We

say that Γ is non-elementary if it does not contain a cyclic subgroup of finite index.

In this paper we shall only consider non-elementary groups and all statements

implicitly assume that Γ is non-elementary. We say that Γ is geometrically finite

if there is a fundamental domain for its action on Hn+1 which is a polyhedron with

finitely many faces; this includes the class of convex co-compact groups. (Note

that, for n ≥ 4, there are other, inequivalent, notions of geometrical finiteness.)

If Γ is geometrically finite then it is finitely generated.

One of the most important quantities attached to a Kleinian group is its

exponent of convergence. This is the abscissa of convergence of the Dirichlet

series
∑

g∈Γ e
−sd(p,gq) (for any p, q ∈ Hn+1) and is denoted by δ = δ(Γ). We have

0 < δ ≤ n. If Γ is geometrically finite then δ is also equal to the Hausdorff

dimension of LΓ and, furthermore, if LΓ 6= Sn then δ < n (so that, in particular,

the n-dimensional Lebesgue measure of LΓ is equal to zero) [16], [17].

The limit set of a Kleinian group supports a natural family of equivalent mea-

sures µp,q (p, q ∈ Hn+1) called Patterson–Sullivan measures [11], [15]. Roughly

speaking, µp,q is the weak∗ limit, as s→ δ+, of
∑

g∈Γ

e−sd(p,gq)Dgq

∑

g∈Γ

e−sd(q,gq)
,

regarded as measures on Hn+1∪ Sn, where Dgq denotes the Dirac measure at gq.

If Γ is convex co-compact, they are characterized as the unique non-atomic

measures supported on LΓ satisfying

(i) for p1, p2 ∈ Hn+1,

dµp2,q
dµp1,q

(ξ) =

(
P (p2, ξ)

P (p1, ξ)

)δ
,

where P (x, ξ) = (1− ||x||22)/(||x− ξ||
2
2) is the Poisson kernel;

(ii) g∗µp,q = µg−1p,q, for g ∈ Γ;

(iii) g∗µp,q = |g
′|δ µp,q, for g ∈ Γ.

Since p and q are fixed, we shall write µ = µp,q. It is a regular Borel measure on

Sn.
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Remark. In the above, we have used a prime to denote differentiation with

respect to the metric obtained by radial projection from p. To mke this more

precise, let ψ denote a conformal mapping preserving the unit ball such that

ψ(p) = 0. For ξ, η ∈ Sn, we define dp(ξ, η) = | cos
−1 ψ(ξ) · ψ(η)| and |g′(ξ)| =

limη→ξ dp(gξ, gη)/dp(ξ, η).

2 – Symbolic dynamics

We shall be interested in the action of Γ on Sn. For groups satisfying the

even corners condition, it is possible to replace this action with a single piecewise-

analytic expanding map of Sn which has the same orbit structure. This, in turn,

may be modeled by a symbolic dynamical system, namely a subshift of finite

type σ : XA → XA. This is a particular case of the strongly Markov coding

introduced by Cannon [4], [5]. However, if Γ satisfies the even corners condition

then this construction is more closely related to the action of Γ on Hn+1. In [2]

and [14] it was shown how to construct a Hölder continuous function r : XA → R
which encoded the distances d(p, gq). This facilitated an analysis of the Poincaré

series
∑

g∈Γ e
−sd(p,gq) via a family of linear operators acting on a space of Hölder

continuous functions defined on XA.

To begin, we recall the notion of word length: given a (symmetric) generating

set S, the word length |g| = |g|S of an element g ∈ Γ\{e} is defined by

|g| = inf
{
k ≥ 1: g = g1 · · · gk, gi ∈ S, i = 1, ..., k

}
.

In particular, |g| = 1 if and only if g ∈ S. (By convention, we set |e| = 0.)

Let R be a polyhedron as specified by the even corners condition. Label

the faces of R by {R1, ..., Rm} and let gi ∈ Γ denote the isometry for which

giR∩R = Ri. Write S={g1, ..., gm}; then, by the Poincaré Polyhedron Theorem,

S generates Γ. For each i = 1, ...,m, Ri extends to a codimension one hyperbolic

hyperplane, which divides Hn+1 ∪ Sn into two half-spaces. Let Hi denote the

half-space which does not contain R and let Ui = Hi ∩ S
n. In general, the Ui’s

will overlap; to obtain a partition we let P = {P1, ..., Pk} denote the sets formed

by taking the closure of all possible intersections of the interiors of the Ui’s. Write

P̄ =
⋃k
i=1 Pi; then

⋃k
i=1 Pk = Sn and intPi ∩ intPj = ∅ if i 6= j.

Choose an arbitrary ordering ≺ on S. Let g ∈ Γ. If g = gi0 · · · gin−1
we

say that the word gi0 ...gin−1
is lexically shortest if |g| = n and if, whenever

g = hi0 · · ·hin−1
with hi0 , ..., hin−1

∈ S, then gij ≺ hij , where j is the smallest

index at which the terms disagree. Clearly every group element is presented by

a unique lexically shortest word.
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Define a map f : P̄→Sn by f |Pi
(x) = a−1i x, where intPi = intUj1∩· · ·∩intUjl

and where ai is the ≺-smallest element of {gj1 , ..., gjl}. (Strictly speaking, f is

well-defined on the disjoint union
∐k
i=1 Pi.) If necessary refining a finite number

of times by considering intersections of sets in P, f−1P, ..., f−nP, for some n ≥ 0,

f will satisfy the Markov property: if f(intPi) ∩ intPj 6= ∅ then f(Pi) ⊃ Pj .

We shall now define a graph G = (V,E), where the set of vertices V = {1, ..., k}

and the set of edges E is defined by

E =
{
(i, j) ∈ V×V : f(Pi) ⊃ Pj

}
.

If Pi is contained in only one Uj then we call i a pure vertex; there are precisely

#S pure vertices. The map (i1, ..., in) 7→ ai1 · · · ain gives a bijections between

the set of paths in G starting at a pure vertex and Γ. In order that these paths

can be written as infinite paths, we shall augment G by adding an extra vertex 0

and edges (v, 0) for all v ∈ V to form a new graph G ′. Let A and B denote the

incidence matrices of G ′ and G, respectively.

Define the shift space XA by

XA =
{
x ∈ (V ∪ {0})Z

+

: A(xn, xn+1) = 1 ∀n ≥ 0
}

and define XB in a similar way. On each of these spaces, define the shift map

σ by (σx)n = xn+1. For notational convenience, we shall use 0̇ to denote the

element of XA consisting of an infinite sequence of 0’s.

For a path (i0, i1, ..., in) in G = (V,E), we write

P (i0, i1, ..., in) =
n⋂

j=0

f−j P (ij) .

We call such a set a geometric n-cylinder. We shall denote the collection of all

geometric n-cylinders by Pn and write P̄n =
⋃
P∈Pn

P . We have LΓ =
⋂∞
n=1 P̄n.

The map f restricts to a map f : LΓ → LΓ which models the action of Γ on LΓ.

It is an expanding map in the sense that there exists n ≥ 0 and β > 1 such that

|(fn)′(x)| ≥ β for all x ∈ P̄n and it is locally eventually onto. If (i0, i1, ...) is an

infinite path in (V,E) then diamP (i0, ..., in) and µ(P (i0, ..., in)) both converge to

zero as n→∞; the latter statement following from the fact that µ is non-atomic

and regular. In particular,
⋂∞
n=0 P (i0, ..., in) consists of a single point xi0,i1,...,

say.

There is a natural Hölder continuous semi-conjugacy Π: XB → LΓ between

σ : XB → XB and f : LΓ → LΓ, defined by Π(i0, i1, ...) = xi0,i1,... which is

bounded-to-one and one-to-one on a residual set. A particular consequence is

that the matrix B is aperiodic.
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For each i = 1, ..., k, define C(i) =
⋂
a∈S(i)Ha and, for P (i0, ..., in), define

C(i0, ..., in) =
n⋂

j=0

ai0 · · · aij−1
C(ij) .

We refer to C(i0, ..., in) as the “cap” of P (i0, ..., in). We shall also denote the cap

of P ∈ Pn by CP . The following result is immediate from the construction.

Lemma 1. Suppose that q ∈ R. If gq ∈ C(i0, ..., in) then g = ai0 · · · ain and

this is the lexically shortest representation of g.

Remark 1. If q /∈ R then the above lemma can be simply amended. However,

for simplicity, we shall restrict ourselves to the case q ∈ R.

3 – Approximation

For g ∈ Γ, write ξ(g) ∈ Sn for the (positive) endpoint of the geodesic from

p to gq. Then, for any set F ⊂ Sn, we have NF
Γ (p, q, T ) = #{g∈Γ : d(p, q) ≤ T

and ξ(g) ∈ F}.

Let ε > 0 be given. Then, since µ(∂B) = 0, we can find n sufficiently large

and collections Q ⊂ Q′ of geometric n-cylinders such that

⋃

P∈Q

P ⊂ B ⊂
⋃

P∈Q′

P ∪ (Sn\P̄n)

and

µ(B)− ε ≤
∑

P∈Q

µ(P ) ≤
∑

P∈Q′

µ(P ) ≤ µ(B) + ε .

Since we then have

∑

P∈Q

NP
Γ (p, q, T ) ≤ NB

Γ (p, q, T ) ≤
∑

P∈Q′

NP
Γ (p, q, T ) +O(1) ,

it suffices to show that

lim
T→∞

NP
Γ (p, q, T )

NΓ(p, q, T )
= µ(P ) ,

whenever P is a geometric n-cylinder.

To do this we need to make a second approximation. First we introduce some

notation. Let P̂ denote the sector formed by geodesic rays emanating from p

with endpoints in P and let C denote the cap of P .
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Choose ε > 0 and let Nε(∂P ) denote the ε-neighbourhood of ∂P in Sn. Since

C and P̂ are tangent at ∂P , provided T0 is sufficiently large and d(p, gq) > T0, if

gq ∈ C4P̂ then ξ(g) ∈ Nε(∂P ). Thus, for T ≥ T0,
∣∣∣∣N

P
Γ (p, q, T ) − #

{
g ∈ Γ: d(p, gq) ≤ T, gq ∈ C

}∣∣∣∣ ≤ N
Nε(∂P )
Γ (p, q, T ) .

Since µ(N2ε(∂P )) → 0, as ε → 0, the proof of Theorem 1 will be complete

once we have shown the following two results. The proof of Proposition 1 will be

given in the next section.

Proposition 1.

lim
T→∞

1

NΓ(p, q, T )
#
{
g ∈ Γ: d(p, gq) ≤ T, gq ∈ C

}
= µ(P ) .

Lemma 2.

lim sup
T→∞

N
Nε(∂P )
Γ (p, q, T )

NΓ(p, q, T )
≤ C2 µ(N2ε(∂P )) .

Proof: Choose m sufficiently large that if R ∈ Pm and R ∩ Nε(∂P ) 6= ∅

then R ⊂ N2ε(∂P ). Set R = {R ∈ Pm : R ∩ Nε(∂P ) 6= ∅}. If d(p, gq) > T0 and

ξ(g) ∈ Nε(∂P ) then gq ∈ CR for some R ∈ R. Thus

lim sup
T→∞

N
Nε(∂P )
Γ (p, q, T )

N(T )
≤

≤ lim
T→∞

1

N(T )

∑

R∈R

#
{
g ∈ Γ: T0 < d(p, gq) ≤ T, gq ∈ CR

}

=
∑

R∈R

µ(R) = µ

(
⋃

R∈R

R

)
≤ µ(N2ε(∂P )) ,

where we have used Proposition 1.

4 – Poincaré series

In this section we will prove Proposition 1 by considering the analytic domain

of a certain function of a complex variable. Before we do this, we need to consider

a family of linear operators defined as follows. Note that XA\XB consists of all

sequences in XA ending in an infinite string of 0’s. Define r : XA\XB → R by

r(i0, i1, ..., in, 0̇) = d(p, ai0 · · · ainq)− d(p, ai1 , · · · ainq) ,
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so that
n∑

k=0

r(i0, ..., ik, 0̇) = d(p, ai0 · · · ainq) .

This extends to a Hölder continuous function r : XA → R [2], [6], [14].

For s ∈ C, define Ls : C
α(XA)→ Cα(XA) by

Lsφ(x) =
∑

σy=x
y 6=0̇

e−sr(y) φ(y) .

(Note that this agrees with the usual definition of the Ruelle transfer operator

for x ∈ XA\{0̇}.) The following result is well-known.

Proposition 2.

(i) The restricted operator Lδ : C
α(XB)→ Cα(XB) has 1 as a simple

maximal eigenvalue with a strictly positive associated eigenfunction ψ.

The corresponding eigenmeasure ν for L∗
δ satisfies Π∗ν = µ, where µ is

the Patterson–Sullivan measure.

(ii) For s in a neighbourhood of δ, Ls has a simple eigenvalue ρ(s) which is

maximal in modulus such that s 7→ ρ(s) is analytic and ρ(δ) = 1.

(iii) For <s = δ, s 6= δ, Ls does not have 1 as an eigenvalue.

Proof: Part (i) follows by a standard calculation because log |f ′| : LΓ → R
pulls back under Π to a function cohomologous to r : XB → R (i.e. log |f ′ ◦Π| =

r+u ◦ σ−u for some u ∈ C(XB)). To see this note that it suffices to show that

rn(x) :=
∑n−1

k=0 r(σ
kx) =

∑n−1
k=0 log |f

′(Π(σkx))|, whenever σnx = x is a periodic

point for σ : XB → XB. To every such periodic point, we can associate a con-

jugacy class in Γ and hence a closed geodesic on Γ\Hn+1 with length equal to

rn(x). The result now follows as in, for example, Theorem 8 of [6]. Part (ii) is

standard. Part (iii) follows from the fact that NΓ(p, q, T ) ∼ C(p, q,Γ) e
δT .

It is easy to see that Ls : C
α(XA)→ Cα(XA) and Ls : C

α(XB)→ Cα(XB)

have the same isolated eigenvalues of finite multiplicity [14]. In particular, we

have Lδψ = ψ for some ψ ∈ Cα(XA) with ψ|XB
> 0.

Lemma 3 ([6]). The extension of ψ to XA is strictly positive.

A simple argument then shows that the corresponding eigenmeasure can be

identified with ν by setting ν(XA\XB) = 0.
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In view of the above we may write, for s close to δ, Ls = ρ(s)πs +Qs, where πs
is the projection onto the eigenspace associated to ρ(s) and where the spectral ra-

dius of Qs is bounded away from 1 from above. In particular, πδ(φ) = (
∫
φ dν)ψ.

Let C = C(i0, ..., im). To prove Proposition 1, we shall consider the “restricted

Poincaré series”

ηC(s) =
∑

g∈Γ
gq∈C

e−sd(p,gq) .

This converges to an analytic function for <s > δ.

It is easy to see that we may rewrite ηC(s) in the form

ηC(s) =
∞∑

n=0

Lnsχ(0̇) ,

where χ is the characteristic function of [i0, ..., im] :={x∈XA: xj= ij , j=0, ...,m}.

Combining these observations, we see that ηC(s) has a meromorphic extension

to a neighbourhood of <s ≥ δ, has no poles on <s = δ apart from s = δ, and, for

s close to δ, satisfies

ηC(s) =

∫
χdν ψ(0̇)

δ

∫
r dν (s− δ)

+ ω(s) ,

where ω(s) is analytic. Noting that
∫
χdν = µ(C) and comparing with the

Dirichlet series
∑

g∈Γ e
−sd(p,gq) =

∑∞
n=0 Ls1(0̇), allows us to rewrite this last

expression as

ηC(s) =
C(p, q,Γ)µ(C)

s− δ
+ ω(s) .

Applying the Ikehara Tauberian Theorem, we obtain that

#
{
g ∈ Γ: d(p, gq) ≤ T, gq ∈ C

}
∼ C(p, q,Γ)µ(C) eδT ,

from which Proposition 1 follows.

Remark. It is straightforward to extend the above analysis to cover the case

of a subgroup Γ / Γ (of an even cornered Kleinian group Γ) satisfying Γ/Γ ∼= Zk,

and obtain

lim
T→∞

NB
Γ
(p, q, T )

NΓ(p, q, T )
= µ(B) .

(In this case NΓ(p, q, T ) ∼ const. eδT /T k/2, as T →∞.)
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