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SECTOR ESTIMATES FOR KLEINTAN GROUPS

R. SHARP

Abstract: We study the number of lattice points in a fixed sector for certain
Kleinian groups. We show that they are asymptotically distributed according to the
Patterson—Sullivan measure.

0 — Introduction

Let I' be a (non-elementary) group of isometries of the (n+ 1)-dimensional
real hyperbolic space H"*!. Given a point 2 € H"*!, we shall be interested
in the behaviour of its orbit 'z under the action of I". This orbit accumulates
only on the boundary of H"*!, which we may regard as S™. We call the set of
accumulation points, which is independent of z, the limit set of I' and denote
it by Lp. The limit set is a closed perfect subset of S™; either Lp = S™ or Lr
is nowhere dense in S™. Write C(I') ¢ H"*!' U 8™ for the convex hull of Lr; if
I\(C(I') NH"*1) is compact then we say that I is convex co-compact. (Note that
this condition is weaker than requiring that I' be co-compact, i.e., that T'\H"*!
is compact, since co-compact groups have Ly = S™.) In this paper we shall be
concerned exclusively with convex co-compact groups.

Given points p,q € H"™' we can define the orbital counting function
Nr(p,q,T) = #{g € T': d(p,g9q) < T}, where d(-,-) denotes distance in H" 1.
A lot of effort has gone into understanding the asymptotic behaviour of this func-
tion and it is known that, for convex co-compact I', Np(p,q,T) ~ C(p,q,T)edT,
as T — oo, where C(p, ¢,I") > 0 is a constant and where 0 < § < n is the exponent
of convergence of I" [12]. (A more precise estimate is known under the additional
hypothesis that § > n/2 [7].)
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A more delicate question is to understand the asymptotics of the number of
orbit points lying in a fixed sector. Fix a (closed) ball B C S™ and let B denote
the sector in H"*! formed by the set of geodesic rays emanating from p with
end-points in B. Define

NE(p,q,T) = #{g €T: d(p.gq) < T and gq € B} .

The behaviour of this function is closely related to the so-called Patterson—
Sullivan measure p, , on S™. It is known that there exist constants 0 < C; < C»
(depending only on I') such that if the centre of B lies in the limit set of I" then,
for all sufficiently large T,

C1 ftp.o(B) Nr(p, ¢, T) < NE(p,q,T) < Cz ppq(B) Nr(p,q,T)

[8]. Our object in this paper is to obtain a more precise result for certain classes
of Kleinian groups; namely groups satisfying the condition defined below.

Definition. A Kleinian group I is said to satisfy the even corners condition
if I' admits a fundamental domain R which is a finite sided polyhedron (possibly
with infinite volume) such that (J,ep g OR is a union of hyperplanes. (This defi-
nition was introduced by Bowen and Series [3] for the case n = 1 and studied by
Bourdon [2] for n > 2.) o

Theorem 1. Let I' be a convex co-compact group acting on H"*1. If T
satisfies the even corners condition then for any p,q € H**!' and any Borel set
B C 8™ such that i, 4(0B) = 0 we have

_ NE(p,q,T)

P Nr(pyg, 1) FralP)

This result is known in certain cases. In particular, it is known if I' is co-
compact [9], [10] (in which case pp 4 is equivalent to n-dimensional Lebesgue
measure on S™) or if I is a Schottky group [6].

More generally, Theorem 1 is known to hold if I" is convex co-compact and
the points p and ¢ lie in the convex hull of L [13]. In this case, the result follows
from an approach based on an analysis of the orbit structure of hyperbolic flows.
More precisely, writing M = I'\H"*!, consider the projection 7: H"*! — M and
the geodesic flow ¢y: SM — SM on the unit-tangent bundle of M. The counting
function N (p, ¢, T) may be reinterpreted as the number of ¢-orbits, with length
not exceeding T, passing from the fibre Sy )M to the fibre Sy )M, such that
the initial point lies in B C Sy, M. (It is a standard procedure to identify the
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boundary of H"*! with the fibre SrpyM lying over a fixed base point.) The
non-wandering set ) C SM for ¢ consists of all vectors tangent to the projection
7(C(T) NH"*!) and the restriction ¢;: © — Q is a uniformly hyperbolic flow.
If p,q € C(T) then Nf(p,q,T) counts orbits which lie in Q and the methods of
[13] give the required result. (Roughly speaking, Nf(p,q,T) is approximated by
functions counting orbits passing from small pieces of unstable manifold to small
pieces of stable manifold; these latter quantities admit a symbolic description to
which one may apply the techniques of thermodynamic formalism.)

However, if p and ¢ do not lie in C(I') then the relevant orbits would lie
outside 2 and the above arguments no longer hold. In this paper we impose no
restrictions on p and ¢q. Instead of formulating the problem in terms of hyperbolic
flows, we shall obtain a symbolic description directly from I'. The “even corners”
property ensures that that this description matches the geometry of the action
on H™t1,

We end the introduction by giving two classes of examples of even cornered
groups.

Example 1. Let K1, ..., Ko, be 2k disjoint n-dimensional spheres in R™*1,
each meeting S™ at right angles. For ¢ = 1,...,k, let g; be the isometry which
maps the exterior of K; onto the interior of Kjy;. Then the group I' generated
in this way is called a Schottky group and satisfies the even corners condition.
Viewed as an abstract group, it is the free group on k generators. In this case,
Lr is a Cantor set. o

Example 2. Let R be a polyhedron in H"™! with a finite number of faces
and with interior angles all equal to 7/k, k € N, k > 2. Let I" be the Kleinian
group generated by reflections in the faces of R. Then I' satisfies the even corners
condition. For instance, let R be a regular tetrahedron in H? with infinite volume
and with dihedral angles /4. In this case, Lr is a Sierpinski curve [1], [2]. o

The author would like to thank Sanju Velani for introducing him to this
question.

1 — Kleinian groups and Patterson—Sullivan measure

Let H"*! denote the real hyperbolic space of dimension n + 1. A convenient
model for H" ™! is the open ball {x € R"*!: ||z||]2 < 1}, equipped with the metric

4(day+ - +da? )

ds® =
(1= [[][3)2
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(In particular, geodesics passing through 0 are just Euclidean straight lines.)
We can then naturally identify the ideal boundary of H"*! with the n-dimensional
unit sphere S™.

A Kleinian group I is a discrete group of isometries of H"*1. (If n=1, we say
that I is a Fuchsian group.) Its action on H"*! extends to an action on S™. We
say that I' is non-elementary if it does not contain a cyclic subgroup of finite index.
In this paper we shall only consider non-elementary groups and all statements
implicitly assume that I" is non-elementary. We say that I' is geometrically finite
if there is a fundamental domain for its action on H"*! which is a polyhedron with
finitely many faces; this includes the class of convex co-compact groups. (Note
that, for n > 4, there are other, inequivalent, notions of geometrical finiteness.)
If " is geometrically finite then it is finitely generated.

One of the most important quantities attached to a Kleinian group is its
exponent of convergence. This is the abscissa of convergence of the Dirichlet
series » e e—sdP.99) (for any p,q € H**') and is denoted by § = 6(I"). We have
0 < < n. Ifl is geometrically finite then ¢ is also equal to the Hausdorff
dimension of Lp and, furthermore, if L # S™ then § < n (so that, in particular,
the n-dimensional Lebesgue measure of Lr is equal to zero) [16], [17].

The limit set of a Kleinian group supports a natural family of equivalent mea-
sures fp 4 (p,q € H™™1) called Patterson—Sullivan measures [11], [15]. Roughly
speaking, (i, 4 is the weak™ limit, as s — J+, of

—sd(p,9q)
Z € Dgq
gerl’

Z e—sd(a,99) 7

gel’

regarded as measures on H"t1U S, where D4 denotes the Dirac measure at gq.
If T' is convex co-compact, they are characterized as the unique non-atomic
measures supported on L satisfying

d#m,q (é—) — P(p27£) ’
diip, q P(p1,€)

where P(x,&) = (1 — ||z|3)/(||z — &||3) is the Poisson kernel;

(i) for P1,p2 € Hn+1)

(i) g ppq = pg-1pq for g €T
(iii) g*p,g = |9'1° tpg, for g €T.

Since p and ¢ are fixed, we shall write 1 = p, 4. It is a regular Borel measure on
S™.
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Remark. In the above, we have used a prime to denote differentiation with
respect to the metric obtained by radial projection from p. To mke this more
precise, let 1 denote a conformal mapping preserving the unit ball such that

Y(p) =0. For §,neS", we define d,(&,n) = |cos™Lap(€) - 4h(n)| and |g'(€)| =
limy, ¢ dp(9€, gn) /dp(§,m)- 0

2 — Symbolic dynamics

We shall be interested in the action of I' on S™. For groups satisfying the
even corners condition, it is possible to replace this action with a single piecewise-
analytic expanding map of S™ which has the same orbit structure. This, in turn,
may be modeled by a symbolic dynamical system, namely a subshift of finite
type o: X4 — X 4. This is a particular case of the strongly Markov coding
introduced by Cannon [4], [5]. However, if I" satisfies the even corners condition
then this construction is more closely related to the action of I' on H"*!. In [2]
and [14] it was shown how to construct a Holder continuous function r: X4 — R
which encoded the distances d(p, gq). This facilitated an analysis of the Poincaré
series > cp e—54(P.99) via a family of linear operators acting on a space of Holder
continuous functions defined on X 4.

To begin, we recall the notion of word length: given a (symmetric) generating
set S, the word length |g| = |g|s of an element g € T'\{e} is defined by

lg| = inf{kkl: g=9gi Gk, gi €S, izl,...,k}.

In particular, |g| = 1 if and only if g € S. (By convention, we set |e| = 0.)

Let R be a polyhedron as specified by the even corners condition. Label
the faces of R by {Ri,..., Ry} and let g; € T' denote the isometry for which
giRNR = R;. Write S={gi, ..., gm }; then, by the Poincaré Polyhedron Theorem,
S generates I'. For each i = 1,...,m, R; extends to a codimension one hyperbolic
hyperplane, which divides H"*! U S™ into two half-spaces. Let H; denote the
half-space which does not contain R and let U; = H; N S™. In general, the U;’s
will overlap; to obtain a partition we let P = { Py, ..., P} denote the sets formed
by taking the closure of all possible intersections of the interiors of the U;’s. Write
P =UF, P; then U P, = 5™ and int P;Nint P; = () if i # j.

Choose an arbitrary ordering < on S. Let geI'. If g=g,---9i, , We
say that the word g;,...gi, , is lexically shortest if |g| =n and if, whenever
g=hi, - hi, , with hi,,....,h € S, then g;; < h;;, where j is the smallest
index at which the terms disagree. Clearly every group element is presented by

in—1

a unique lexically shortest word.
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Define amap f: P— S™ by f|p,(z) = a; 'z, where int P; = int U}, N- - -Nint Uj,
and where a; is the <-smallest element of {g;,,...,g;,}. (Strictly speaking, f is
well-defined on the disjoint union Hle P;.) If necessary refining a finite number
of times by considering intersections of sets in P, f~P, ..., f P, for some n > 0,
[ will satisfy the Markov property: if f(int P;) Nint P; # () then f(P;) D Pj.
We shall now define a graph G = (V, F), where the set of vertices V = {1, ..., k}
and the set of edges FE is defined by

E = {(z‘,j) EVXV: f(P) D Pj} .

If P; is contained in only one U; then we call i a pure vertex; there are precisely
#S pure vertices. The map (i1, ...,9,) — a;,---a;, gives a bijections between
the set of paths in G starting at a pure vertex and I'. In order that these paths
can be written as infinite paths, we shall augment G by adding an extra vertex 0
and edges (v,0) for all v € V to form a new graph G'. Let A and B denote the
incidence matrices of G’ and G, respectively.

Define the shift space X 4 by

Xa = {x e(Vu {0})Z+: A(p, Tpy1) =1 Vn > 0}

and define Xp in a similar way. On each of these spaces, define the shift map
o by (0x), = xpy1. For notational convenience, we shall use 0 to denote the
element of X 4 consisting of an infinite sequence of 0’s.

For a path (ig,i1,...,in) in G = (V, E), we write

n .
Pig, i1, .in) = [ f 77 P(i5) .
j=0

We call such a set a geometric n-cylinder. We shall denote the collection of all
geometric n-cylinders by P,, and write P,, = pep, P. We have Lr = (72, P

The map f restricts to amap f: Lr — Lt which models the action of I" on Lr.
It is an expanding map in the sense that there exists n > 0 and 3 > 1 such that
|(f™)(z)] > B for all z € P, and it is locally eventually onto. If (ig,i1,...) is an
infinite path in (V, E) then diam P(io, ..., i) and pu(P(d, ..., in)) both converge to
zero as n — o0; the latter statement following from the fact that p is non-atomic
and regular. In particular, (N,2, P(io,...,in) consists of a single point x;,;,. ..,
say.

There is a natural Holder continuous semi-conjugacy II: Xp — Lt between
o: Xp— Xp and f: Lr — Lp, defined by Il(ig,i1,...) = i, ,,... which is
bounded-to-one and one-to-one on a residual set. A particular consequence is
that the matrix B is aperiodic.
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For each i =1, ..., k, define C(i) = Naes(i) Ha and, for P(ig,...,ip), define

C(igy -veyin ﬂ iy ai;_, C(ig)

We refer to C/(ig, ..., in) as the “cap” of P(io, ..., i,). We shall also denote the cap
of P € P, by Cp. The following result is immediate from the construction.

Lemma 1. Suppose that ¢ € R. If gq € C(io,...,in) then g = a;, - - - a;, and

n

this is the lexically shortest representation of g. m

Remark 1. If ¢ ¢ R then the above lemma can be simply amended. However,
for simplicity, we shall restrict ourselves to the case ¢ € R. o

3 — Approximation

For g € T, write £(g) € S™ for the (positive) endpoint of the geodesic from
p to gq. Then, for any set F' C S™, we have N{ (p,q,T) = #{g€T: d(p,q) <T
and £(g) € F}.

Let € > 0 be given. Then, since u(0B) = 0, we can find n sufficiently large
and collections Q@ C Q' of geometric n-cylinders such that

UPcBc|JPU(S™P,)

PeQ PeQ’
and
pw(B)—e < > uP) < Y uw(P) < pu(B)+e.
PeQ pPeg’
Since we then have
Z NII‘D(p7Q7T < NF paQa Z NF pan +O( )
PeQ Peg’
it suffices to show that
NE (p,q,T)

im = u(P
T—o0 NF(p7Q7T) ( ) ’
whenever P is a geometric n-cylinder.

To do this we need to make a second approximation. First we introduce some
notation. Let P denote the sector formed by geodesic rays emanating from p
with endpoints in P and let C denote the cap of P.
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Choose € > 0 and let N (OP) denote the e-neighbourhood of P in S™. Since
C and P are tangent at 9P, provided Ty is sufficiently large and d(p, gq) > Ty, if
gq € CAP then £(g) € N(0P). Thus, for T > Ty,

N(OP
NE(p,q,T) = #{g € T: d(p,gq) < T, gqu}’ < N pq. 1)

Since u(Na(0P)) — 0, as € — 0, the proof of Theorem 1 will be complete
once we have shown the following two results. The proof of Proposition 1 will be

given in the next section.
Proposition 1.

1
lim ———— T:d <T ol — (P .
2% Nr(p, 0, ) #{g€T: dp,ga) <T, gg€ C} = p(P) .

Lemma 2.

N (OP) T
hm sup I (pa q, )

< C (0P)) .
T—o0 NF(pa QaT) N QM(NQ ( ))

Proof: Choose m sufficiently large that if R € P, and RN N (OP) # 0
then R C N2 (OP). Set R = {R € Py,: RNN(OP) # 0}. If d(p, gq) > Tp and
£(g) € Ne(OP) then gq € Cg for some R € R. Thus

NP (p g, T)

N (U S R
. 1
< Tlggo(T)};z#{g el Ty <d(p,gq) <T, gq € CR}
— Z Iu,(R) = /L( UR) < M(NQE(aP))y
RER ReR

where we have used Proposition 1. n

4 — Poincaré series

In this section we will prove Proposition 1 by considering the analytic domain
of a certain function of a complex variable. Before we do this, we need to consider
a family of linear operators defined as follows. Note that X 4\ Xp consists of all
sequences in X 4 ending in an infinite string of 0’s. Define r: X4\Xp — R by

(50515 vy in, 0) = d(p,aiy -+~ ai, q) — d(p, ai,, - ai, q)
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so that

n

Z (50, ooy g, 0) = d(p, iy -~ i, q) -
k=0
This extends to a Holder continuous function r: X4 — R [2], [6], [14].
For s € C, define L4: C*(X4) — C*(X4) by

Lsp(z) = > e W g(y) .

oYy=x

y#0

(Note that this agrees with the usual definition of the Ruelle transfer operator
for z € X4\{0}.) The following result is well-known.

Proposition 2.

(i) The restricted operator Ls: C*(Xp) — C*(Xp) has 1 as a simple
maximal eigenvalue with a strictly positive associated eigenfunction 1.
The corresponding eigenmeasure v for L5 satisfies 11,v = u, where p is
the Patterson—Sullivan measure.

(ii) For s in a neighbourhood of 0, L4 has a simple eigenvalue p(s) which is
maximal in modulus such that s+ p(s) is analytic and p(d) = 1.

(iii) For s =9, s # 0, L, does not have 1 as an eigenvalue.

Proof: Part (i) follows by a standard calculation because log|f’|: Lr — R
pulls back under II to a function cohomologous to r: Xp — R (i.e. log|f' oIl| =
r+u o o—u for some u € C(Xp)). To see this note that it suffices to show that
r(z) = Y=g r(ofx) = S s log | f/(TI(c*z))|, whenever o™z = z is a periodic
point for o: Xp — Xp. To every such periodic point, we can associate a con-
jugacy class in T' and hence a closed geodesic on I'\H"*! with length equal to
r™(z). The result now follows as in, for example, Theorem 8 of [6]. Part (ii) is
standard. Part (iii) follows from the fact that Ny (p,q,T) ~ C(p,q,T)e’". u

It is easy to see that Ls: CY(X4) — CYX4) and Ls: CY(Xp) — C*(XpB)
have the same isolated eigenvalues of finite multiplicity [14]. In particular, we
have L5 = 9 for some ¢ € C%(X4) with ¢|x, > 0.

Lemma 3 ([6]). The extension of ¢ to X 4 is strictly positive. u

A simple argument then shows that the corresponding eigenmeasure can be
identified with v by setting v(X4\Xp) = 0.
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In view of the above we may write, for s close to d, L5 = p(s) ms + Qs, where 7
is the projection onto the eigenspace associated to p(s) and where the spectral ra-
dius of @5 is bounded away from 1 from above. In particular, 75(¢) = ([ ¢ dv) .

Let C' = C/(ig, ..., im). To prove Proposition 1, we shall consider the “restricted
Poincaré series”

gerl
gqeC

This converges to an analytic function for Rs > 4.
It is easy to see that we may rewrite nc(s) in the form

ne(s) = 3 £ (0)
n=0

where x is the characteristic function of [ig, ..., iy] :={x €Xa: ;= i, j=0,...,m}.

Combining these observations, we see that n¢(s) has a meromorphic extension
to a neighbourhood of s > ¢, has no poles on s = § apart from s = 4, and, for
s close to 4, satisfies

PP L I
§) = 4 +w(s),
e (5/7"du(3—6)

where w(s) is analytic. Noting that [ xdv = p(C) and comparing with the
Dirichlet series - cp e5dP99) = 5% £ 1(0), allows us to rewrite this last

expression as

nels) = w +uw(s) .

Applying the Tkehara Tauberian Theorem, we obtain that

#{g €D dp,gg) < T, gg € C} ~ Cp,q, 1) u(C) T,
from which Proposition 1 follows.

Remark. It is straightforward to extend the above analysis to cover the case
of a subgroup I' <T" (of an even cornered Kleinian group I') satisfying I'/T" = ZF,
and obtain

NEZ(p,q,T)

im =u(B) .
T—o0 Nf(p, q,T) ( )

(In this case Ng(p,q,T) ~ const. 97 /T*/2 as T — 00.) o
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