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REAL ALGEBRAIC CURVES
AND REAL ALGEBRAIC FUNCTIONS

P. FREDIANI

Abstract: In this paper we consider real generic holomorphic functions f: C —P!(C),
where C is a compact connected Riemann surface of genus g. f is said to be generic if
all the critical values have multiplicity one and it is real if and only if there exists an
antiholomorphic involution o acting on C such that for all z in C, foo(z) = f(2). It is
possible to give a combinatoric description of the monodromy of the unramified covering
obtained by restricting f to C—f~1(B), where B is the set of critical values of f. In this
paper we want to describe the topological type of the antiholomorphic involution o of
the Riemann surface C that gives the real structure, once we know the monodromy graph
of f. More precisely, we give a lower bound on the number of connected components of
the fixed point locus of ¢ in terms of the monodromy graph, in the case in which f has
all real critical values. Moreover, we are able to determine the exact number of the fixed
components of ¢ in terms of the monodromy graph, when the monodromy graph satisfies

some suitable properties.

Introduction

Let f: C—P!(C) be a non constant holomorphic function of degree d, where
C is a compact connected Riemann surface of genus g. We assume that there
exists an antiholomorphic involution ¢ on C and that f is a real holomorphic
map, that is f o o(z) = f(2), Vz € C.

In [Frl1] it is given a combinatorial description of the monodromies of generic
real algebraic functions.
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The purpose of this paper is to understand the topological type of the involu-
tion o on C from the monodromy graph of the real algebraic function f: C — P*.

Let ¥ be a compact connected Riemann surface of genus g, let M (X) denote
the set of all the complex structures of X.

Consider a curve with a complex structure X € M(X), X can be embedded in
a projective space P"(C) in such a way that the image C of X in the projective
space is defined by a finite number of polynomial equations, i.e. C is a complex
algebraic curve.

If C is defined by real polynomials, then C is invariant under complex con-
jugation in P™(C). Complex conjugation induces an antiholomorphic involution
on X,o0:X — X.

Viceversa, if X is a Riemann surface together with an antiholomorphic invo-
lution o, it is possible to choose a pluricanonical embedding of X into P"™(C) in
such a way that ¢ is the involution induced by complex conjugation. So X is a
complex algebraic curve defined by real polynomials.

An antiholomorphic involution o: X — X is induced by an orientation re-
versing involution of the topological surface o: ¥ — X.

Definition 0.1. Two orientation reversing involutions o: ¥ —3, 7: ¥ — 3
are said to be of the same topological type if there exists a homeomorphism
f: ¥ — ¥ such that 7= fooo f~L

Equivalently we could say that ¢ and 7 are of the same topological type
iff ¥/(o) is homeomorphic to ¥/(7), where (o) is the group generated by
o: X — 3.0

Let 0: ¥ — X be an orientation reversing involution, let >, be the fixed-point
set of o and let v be the number of connected components of Y.

Definition 0.2. The orientation reversing involution ¢ of the surface X is
said to be of type (g,v,a = 0) if ¥ — X, is not connected. Otherwise o is of type
(9,v,a = 1). We say that a real algebraic curve is of type (g,v,0), or (g,v,1)
according to the type of its topological model. o

Remark 0.3. If a(o) = 0 and X, is the fixed point locus of o then the
number of components of ¥ — ¥, is two. o

In fact two adjacent connected components A, B of ¥ —X, are homeomorphic,
since they are exchanged by o. o fixes the common boundary of A and B, so the
closure of AU B is a compact subvariety of X, hence it concides with X.
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Theorem 0.4. Let v > 0 be an integer. Assume that (g,v,a) is the topo-
logical type of a real algebraic curve. If a = 1, then 0 < v < g, if a = 0, then
l1<v<g+1landv =g+ 1 (mod2). These are the only restrictions for the
topological types of real algebraic curves of genus g. m

The second inequality, 1 < v < g + 1, is a famous theorem of Harnack, the
rest was proved by Klein and Weichhold (see [KI1], [We]).

One computes that there are [(3g + 4)/2] topological types of orientation
reversing involutions of a genus g surface.

In this paper we consider a real generic algebraic function f: C — P! with
all real critical values and we want to determine the topological invariants a(o)
and v(o) of the antiholomorphic involution o acting on the Riemann surface C.

In this contest we would like to mention a paper of Natanzon ([Na2]) in which
he studies the Hurwitz space of isomorphism classes of holomorphic mappings
f: C — P! both in the complex and in the real case, and in which, in particular
in the real case he gives a complete description of the topological invariants of
the antiholomorphic involution acting on C and of the real map f.

In [Fr1] we give a complete description of all the monodromy graphs of generic
real algebraic functions: if C is a compact (connected) Riemann surface of genus
gand f: C — P!(C) is an algebraic function of degree d we say that f is generic
if all its critical values have multiplicity one. In fact we generalize the results
obtained in [C-F] in the case of polynomial mappings, i.e. holomorphic mappings
f: PY(C) — P!(C) such that there exists a point p in the target for which f~!(p)
consists of only one point.

The problem of giving a topological classification of polynomial mappings was
reduced by Davis and Thom (see [Dal, [Th]) to a combinatorial problem, more
precisely in 1957 C. Davis ([Da]) showed that for each choice of n distinct real
numbers there is a real polynomial of degree (n+1) having those as critical values,
and a similar question was asked for complex polynomials. Thom in 1965 ([Th])
observed that by Riemann’s existence theorem the answer is that for each choice
of n distinct complex numbers and an equivalence class of admissible monodromy,
there exists exactly one polynomial, up to affine transformations in the source,
having those points as critical values and the given monodromy.

The case in which f is rational, f~!(co) has cardinality 2 and f is complex
has been treated by Arnold in [Ar4] where he counts all the monodromy graphs
in the complex case. In this case the monodromy graphs have the same number
n of edges and vertices and the product of the transpositions corresponding to
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the edges consists of two cycles of lengths p and ¢ with p 4+ ¢ = n, where p and
q are the orders of the poles of the Laurent polynomial f. In this paper Arnold
gives a formula that counts such monodromy graphs depending on p and gq.

The general (complex) case in which f has only oo as non generic critical
value has been recently solved by Goryunov and Lando (see [G-L]). Hurwitz in
1891 published a conjecture giving the number of topological types of rational
functions on P!(C) with fixed orders of poles and fixed critical values, assuming
that all the critical values except oo were generic (see [Hu]). Goryunov and
Lando gave a proof of the conjecture using, as Arnold already did for Laurent
polynomials, properties of the Lyashko-Looijenga mapping.

We describe now in detail the structure of the paper: the first section contains
results of [Frl], namely we consider a compact (connected) Riemann surface C of
genus ¢ and an algebraic function of degree d, f: C — P!(C). We assume that
f is generic, then in particular, by Hurwitz’s formula we know that the number
of critical values of f is 2g 4+ 2d — 2.

If B is a finite set and 0 and oo are not in B, by Riemann’s existence theorem
one knows that there is a bijection between

(1) the set of conjugacy classes of homomorphisms u: 71 (P(C)—B,0) — Sy
such that I'm(u) is a transitive subgroup, and for a given basis 71, ..., Yn
of m(C — B,0), u(vy;) = o; is a transposition, the product oy...0,, = id

(2) the set of equivalence classes of algebraic maps f of degree d that are
generic with branch set equal to B.

If f is real then B is selfconjugate and viceversa if B is selfconjugate then f
is real if and only if complex conjugation on P1(C) lifts to C.

Once and for all we fix the canonical geometric basis of 71 (P'(C) — B,0)
described in [C-F] (see Fig. 1). Then as in [B-C], we associate to the class, modulo
inner automorphisms of Sy, of the monodromy of an algebraic generic function
f: C — PY(C) of degree d a connected graph with d vertices and 2g + 2d — 2
labeled edges in such a way that the vertices correspond to the points in the fiber
f71(0), the edge labeled by i connects two vertices iff they are interchanged by
(i)

We state as in [Frl] all the necessary conditions that a graph must satisfy in
order to be the monodromy graph of a generic real algebraic function of degree d
from a compact Riemann surface of genus g. Then we state the theorem of [Fr1]
where we prove that the conditions that we have found, are also sufficient.
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The reduced graph G,.q of the monodromy graph G of f is defined to be
the graph obtained from G in this way: for every two vertices we remove some
edges of G in such a way that there remains only one edge connecting the two
vertices.

A polygon contained in G is said to be odd if it has an odd number of edges.

We obtain the two following results

Theorem 0.5. Let C be a real smooth algebraic curve of genus g, o: C — C
be the antiholomorphic involution that gives the real structure, assume that
v(o) # 0, let f: C — Pé be a generic real algebraic function of degree d > 2
(foo(x)= f(z), Yoz el).

Assume that all the critical values of f are real and positive (if they are not
positive it suffices to perform a base point change).

Let G be the monodromy graph of f. Assume furthermore that any two

polygons contained in G..q have no common edges. Set o, : Hy(C,Z/2Z) —
Hy(C,Z/2Z). Then

dim(o + identity). (Hl (C, Z/QZ)> = #{odd polygons in Geq} .

So
v(oc) = g+ 1 — #{odd polygons in G.q} .

In particular, if G,eq does not contain any polygon, v(c) =g+ 1.

Theorem 0.6. Let C be a real smooth algebraic curve of genus g, 0: C — C
be the antiholomorphic involution that gives the real structure, assume that
v(ioc) #0, let f: C— Pé be a generic real algebraic function of degree d > 2
(foo(z)= f(x), Yz €C).

Assume that all the critical values of f are real and positive (if they are not

positive it suffices to perform a base point change).

Let G be the monodromy graph of f. Then
dim(o + z'dentz'ty)*(Hl(C, Z/2Z)) < p(Gred) 5

where p(Gyeq) is the minimal number of polygons of G,.q whose union is the union
of all the polygons of Geq. Sov(c) > g+ 1— p(Gred)- n



6 P. FREDIANI

1 — Monodromies of generic real algebraic functions

In this section we explain some results that are in [Frl]. Let C be a compact
(connected) Riemann surface of genus g; a necessary condition for an algebraic
function f: C— P! to be real is that the branch locus B of f must be selfconjugate.
Therefore the critical values of f are k real critical values wy, ..., w; and m pairs
(vi, ;) of complex conjugate critical values where v; is in the upper half plane.

If B is selfconjugate f is real if and only if complex conjugation on P! lifts to
C. This means that complex conjugation fixes the monodromy class [u] (obviously
we have chosen a basis of 7).

We suppose that 0 and co are not critical values and we choose a geometric
basis of 71 (P11, 0) by taking 71, ..., 7 loops around w; and pairs of selfconjugate
loops (8;, ;) around (v;, 0;), where d; is in the upper half plane (see Fig.1). The
circles around the critical values in the loops are performed counterclockwise.

(@

(b)

Fig. 1

Suppose now that f: C — P! is a generic algebraic function. We partition
the set B of critical values into two subsets: the set of negative critical values
ws~ < ... <wp~ <0 and the set of positive critical values 0 < w1t < ... < w, ™.
With the choice of a geometric basis for 71 (P!(C) — B, 0) as in [C-F] (see Fig. 1)
we have: 77 = (3) " (4) . (07 1) T (9F) T yim1 e, analogously for 7
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We can therefore conclude that p is the monodromy of a real algebraic function
if and only if there exists a permutation « of period 2 (induced by complex
r_

conjugation on f~1(0)) such that, if ;= pu(y;"), 7/ =u(y; ), v;=p(8;), v;=u(s;),

K3
/ / / .
Pi—1= T1T2...Ti—1, Pj_1 = Ti.--Tj_1, We have:

ata=piaTiply,  arna=p T, avia=7v;. (%)

Let now G be the monodromy graph of f, &' be the subgraph of G with the
edges labeled by the wj’s. Analogously we define £7. Let S; be the subgraph of
G with the edges labeled by those w;-”s with j < ¢. In the same way we define
§';; finally let G* be the subgraph of G with labels given by the v;’s and by the

vj’s. For a subgraph S, we define supp(S) as the union of the vertices of S.

Remark 1.1. If we order the loops d;’s of the basis of 71 in increasing order
starting from the first that we meet if we move counterclockwise with respect to
the positive direction of R, we have:

VoA 01O s Y] b1 = id

DU Ty To U A T T = id, T+ 8+2m=2d+2g—2 .0

Remark 1.2. Every vertex of G is contained in at least two edges. o

Proof: If there exists one vertex which is contained in only one edge of G,
this is moved only by one transposition, thus the product of all the transpositions
corresponding to the edges of G is not the identity. n

Consider now the ordering on the labels of the edges induced by the natu-
ral ordering on R of the critical values, i.e. o1 =7, ..., 05 = 7{, Os41 = T1, -y
Ospr = Tp.

To state the necessary conditions that G must satisfy in order to be the mono-
dromy graph of a generic real algebraic function, we need some technical defini-
tions.

Definition 1.3. Let 7 be a subgraph of E=E£1TUE ™. Let v be a vertex of 7.
Let (ki,..., k) € Nt with k; < k;11 Vi =1,....,t — 1, such that og,, ..., o, are the
transpositions that correspond to all the edges of 7 that contain v. We say that
7T is saturated in v if Vm such that o, is a transposition corresponding to an
edge of £ containing v, then either m < ki, or m > k¢, or m € {ky, ...,k }.

7 is said to be saturated if it is saturated in every vertex v. o
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Definition 1.4. A triod is a graph with three edges and 4 vertices with
respective valences 3, 1, 1, 1. o

Definition 1.5. An order degenerate saturated triod is a saturated
graph which is associated to the following transpositions: o; = (a,b) = oy,
oj=(b,c),i <j<k,c#a (see Fig.2(a)).

Definition 1.6.

e A 3-path is a graph made of three consecutive distinct edges.

e A three-path with labeled edges is said to be snake if for the labeled edge
in the middle the labels of the neighboring edges are either both greater
or both smaller than its label (see Fig. 2(b)).

e A non-degenerate triangle is the graph associated to the following
transpositions: o; = (a,b), o0 = (b, ¢), o) = (c,a), with a, b, c all distinct
(see Fig.2(c)). o

O
G; (o
' ! (@
J—\
S 9 % i< k<)
(b)
Gk GJ
o (©)

Fig. 2

Let us now suppose that all the critical values are real and positive, so 7; = o;
Vi. With simple computations, using (*x*), (see [Frl]) one can prove the following
lemmas.

Lemma 1.7. (See [Frl]) There don’t exist saturated triods T in £ and there
don’t exist order degenerate saturated triods. m

Lemma 1.8. (See [Frl]) Any saturated tree-path is snake and there doesn’t
exist any non-degenerated saturated triangle. n
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Observe that in [C-F] we proved that the monodromy graphs that are associ-
ated to real generic polynomials are only linear snakes, that means that there are
no triods, and that every three path is snake. In this case, since the graph is a
tree, the condition of non existence of triods is equivalent to the condition of non
existence of saturated triods, so 1.7 and 1.8 give generalizations of the necessary
conditions found for polynomials in [C-F].

Lemma 1.9. (See [Frl]) Let G be the monodromy graph of a real generic
algebraic function f: C — PY(C) of degree d > 2, where C is a Riemann surface
of genus g. If g = 0 and 7T is a subgraph of G made of two vertices and r edges that
connect the two vertices, then r < 2. If g > 0 and 7 is a saturated subgraph of G
made of two vertices and r edges that connect the two vertices, then r < 2 + 2g,
Vd>2.n

The proof of Lemma 1.9, which we will not reproduce, is made in two steps:
at first we prove the statement with simple geometric methods in the case of
genus g = 0, then we use induction on g.

Now we would like to generalize the results of 1.7 and 1.8, but we need the
following

Definition 1.10. Let a be a vertex of a graph G with labeled edges. We say
that a set of indices {ig, ..., %, 9 < i1 < ... <1} is a saturated angle in a if
a € supp(oj,), Vs =0,...,r,and if Vj > 1 i; = min{m > i;_1| a € supp(o,)}. O

Recall that we are now assuming o; = 7;, Vi. Using (xx) we can show the
following two lemmas that generalize respectively 1.7 and 1.8.

Lemma 1.11. (See [Frl]) Let G be as above. Let 1, = (b,c). Let h<rj<ry<
...<r < i be a saturated angle in b and suppose that 1., # T, T, = T, = (b,d)
Vi=1,...,k, d#c, 7 = (a,b), a #d.

Then k is even. u

Lemma 1.12. (See [Frl]) Let 7,= (¢,d), h <11 <1y < ... <1y asaturated
angleind, 7., = 10, = ... = 7,,, = (d,b), b # c¢. Leti = min{r > r,,| b € supp(7,)},
7i = (b,a), a # d. Then m is even. m

We are now ready to define on a graph G that satisfies these necessary condi-
tions an involution «.



10 P. FREDIANI

Theorem 1.13. (See [Frl]) Let d, g be two integers, d > 3, g > 0. Let G be a
connected graph with d vertices and 2d + 2g — 2 edges with labels 71, ..., Tog1 242
that verifies the necessary conditions 1.1, 1.2, 1.9, 1.11, 1.12. Then there is a
canonical procedure which associates to G an involution o. m

We don’t give the proof of the theorem, which is in [Fr1], but we describe how
« is defined, since we will use its definition in the sequel.

Every vertex b is in the support of two edges of £T.

Let ¢ = min{h| b € supp(74)}, j = min{k > i| b € supp(7x)}, 7 = (a,b).

1. 7; # 7. We define a(b) = a.
2. T, =T = (a,b).

(a) Fh>j| b€ supp(ry) and 71, #7;. Choose h=min{k > j| b € supp(7x),
Tk # Ti}. Let i =r) <ry < .. <r < h be a saturated angle in b.
By assumption 7,, = (a,b) Vk =1, ..., t.
If ¢ is even we define «a(b) = b.
If ¢ is odd we define a(b) = a.

(b) Yh > jst. b e supp(r), 7, = 7j. Since d > 3 and G is connected,
there exists h| a € supp(7y,) and 7, # 7.

(i) ¢ =min{k| a € supp(7x)} and a € supp(m), h >1i, 7, # T
Take h = min{k > i| a € supp(ri), 7x # 7i}. Let i = r <
ro < ... <1y < h be a saturated angle in a, then by assumption
Ty = (a,b) Vj=1,..,t
Then if ¢ is even we define «(b) = b.

If ¢ is odd we define a(b) = a.

(ii) a € supp(ry) with A < 4. Then 713, # 7; since b ¢ supp(7i) with
k <.
We define a(b) = b.

Let us now suppose that the critical values of f are real but not necessarily
positive.

Remark 1.14. Suppose that 73 =07, that we change base point in 7, (C—B5,0)
and that we choose as base point the point a on the real axis such that wf <
a < w; . Then if we call 61, ..., 6., the totally ordered set of transpositions that

we get, we have: 6; = o0y, fori >1; 6, = 01050, for j <l —1.0

In order to give the general statement we introduce the following
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Definition 1.15. An odd multiple triod is a graph whose edges correspond
to the transpositions: oy, = (b, ¢), oy, = ... = oy, = (b, d), ¢ # d, 05 = (a,b), a # d,
where h < r; < ... < 1 < i is a saturated angle in b and k is odd (e.g. a non
degenerate or an order degenerate triod).

An odd multiple path is a graph whose edges correspond to the transpo-
sitions oy, = (¢,d), oy, = ... = 0, = (d,b), 0, = (b,a) where b # ¢, a # d,
h <r <...<rpis asaturated angle in d, i = min{r > r,|b € supp(c,)} and m
is odd (e.g. a non-degenerate triangle or a non snake 3-path). o

Definition 1.16. A multiple-bond-snake pair is a pair ((o1, ...,0m), 1), where
O1,...,0m is a totally ordered set of transpositions, | € {1,...,m + 1} satisfying
the following:

1. 0poOm_1...0101...01_1 = id;

2. if G is the associated graph, then G doesn’t contain any odd multiple triod;
3. G doesn’t contain any odd multiple path;
4

. G satisfies 1.9. o
Definition 1.17. The admissible operation is the following operation:

((01yeyom), 1) — (010100, ... 0101-101, 00, e, Oy L+ 1) . D

Then one can prove the following

Proposition 1.18. (See [Frl]) The admissible operation carries the set of
multiple-bond-snake pairs to itself. m

Finally in section 2 of [Frl] we prove the following

Theorem 1.19. (See [Frl]) Let g, d be two integers such that d > 2, g > 0,
let G be a connected graph with d vertices and 29+ 2d — 2 edges that is associated
to the multiple-bond-snake pair (o1, ..., 0244292, = 1) (sincel =1, 7; = 0y, Vi).
Let « be the canonical involution provided by 1.13, then « satisfies (x%), therefore
G is the monodromy graph of a generic real algebraic function f: C — P1(C)
of degree d whose critical values are all real and positive, where C is a compact
Riemann surface of genus g.
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2 — Topological types of involutions

Let f: C — Pé be a real generic algebraic function, let o: C — C be the

antiholomorphic involution that gives the real structure, i.e. f o o(zx) = f(x),
Vzel.

We would like to describe the topological invariants of the involution o, once
we know the monodromy graph of f. On this subject we would like to mention
a paper of Natanzon (see [Na2]) in which he studies both the complex and the
real Hurwitz space.

We would like now to understand from the monodromy graph of a real generic
algebraic function f: C — P! the topological type of the antiholomorphic invo-
lution o: C — C.

We will partially solve this problem in the case in which f has only real
critical values by computing the action of the involution o on H;(C,Z/2Z), using
Reidemeister—Schreier presentation of m1(C).

Theorem 2.1. Let C be a real smooth algebraic curve of genus g, 0: C—C
be the antiholomorphic involution that gives the real structure, assume that
v(o) # 0, let f: C — Plc be a generic real algebraic function of degree d > 2
(foo(x)= f(x), Vz €C).

Assume that all the critical values of [ are real.

Let G be the monodromy graph of f, set o.: H1(C,Z/2Z) — H,(C,Z/2Z).
If G doesn’t contain any (non degenerate) polygon as a subgraph, then

oy = identity : H(C,Z/2Z) — H,(C,Z/2Z) ,
soa(c) =0,v(c) =g+ 1.

Proof: We assume that all the critical values of f are positive, the general
case follows easily by base point change in 71 (P! — {critical values of f}).

By the hypothesis we have made on the graph G, we know that there exists a
vertex b such that if 1, ..., are the labels of all the edges that pass through b,
then 7, =7, = ... = 7, = (b, a).

Let ¢ = min{h| b € supp(73)}, 7 = min{k > i| b € supp(7%)}-

We immediately see from the hypothesis on b that the first case in 1.13 can
be excluded. We therefore assume that 7; = 7, i.e. we restrict our attention to
case two of 1.13.

In order to find the action of o, on Hy(C,Z/2Z), we give a presentation of
H\(C,Z/2Z) using the Reidemeister—Schreier method (see e.g. [M-K-S]).
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Observe that, since the graph doesn’t contain any polygon and the product
T|To...Tod429—2 = 4d, for each pair of two vertices {a,b}, there are at least two
edges that connect {a,b}.

First of all we find a presentation of 71(C — f~!(B),b) where B is the set of
critical values of f, b € f~1(0) corresponds to the vertex of the graph with the
properties described above, then we have to take the quotient for some relations
to determine 71 (C,b). Finally we take the quotient for the commutators and we
consider everything in Z/2Z, in order to determine H,(C,Z/27Z).

Note that the order in which we perform these operations is important, since
we cannot abelianize before we have found a Reidemeister—Schreier presentation
of the fundamental group.

In order to apply the Reidemeister—Schreier method we must find a Schreier
system of representatives for m (P! — B,0) modulo f.m(C — f~1(B),b). We
choose a maximal tree contained in G in this way: for each two vertices that are
connected by an edge, we choose the edge with the smallest label.

In our situation we have 7, = 7, = 7, = ... = 7, = (a,b), T, =(a,c) with ¢ # b
and where h is the minimum of the labels of the edges that connect a and c
(see Fig. 3).

Sy

Fig. 3

A Schreier system of representatives for 71 (P! — B,0) modulo f. 1 (C—f~1(B),b)
is the following:

Lo=1, Li=v, Lo=7%v, L3=2vwm",

and so on following the maximal tree that we have chosen.
After some easy computations we see that a set of generators for Hy(C,Z/2Z)
is given as follows:

g =7%7%, 92=%Yr3> 93=7iVrs> ey Gt—1 = Vi Uy s

let my=h<mg<...<my be a saturated angle in a and 7,,,, = (a,c), Vs=1,..., k,
we continue the list of generators as follows:

Gt = YiVh Yma Vi Ly Gl = Vi Vh Yms Vi Ly s Girk—2 = YViVh Yk Vi



14 P. FREDIANI

now if r is the minimum of the labels of the edges that connect ¢ with a vertex d
different from a and b, and s1 = r < s9 < ... < s; is a saturated angle in ¢ and
7s; = (¢,d), Vj =1,...,1, then we continue the list of generators as follows:

Girk—1 = ViV Ve Voo Vi - Vi Ly Gtk = Vi Vh VY Yss Vi Vi ts e

Gt+k+1-3 = Vi Yh Vr Vs, 7}?1 7;1 .

The complete list of generators of Hi(C,Z/2Z) is made by going on in this way
using all the edges of the maximal tree that we have chosen above.

Notice that we must take the quotient by some relations. More precisely the
relations are the following:

Rl = Vt1 5 R2:’Yt27 ceey Rn:’Ytn )

where {7¢,,..., 7, } is the set of all the loops such that the corresponding trans-
positions {7, ..., 7, } do not move b;

2 2 2
Rn+1 =% > Rn+2 = 7‘73 Rn+3 = 77‘33 cee

2 2 —1 2 -1 2 -1
Ry = Ve Ry =iy > Bogeye = YiVYmsYi Rytty3 = YiVYmsYi 5 s

Rugik =YY Yi s Btk = %m¥iv, s Botirkrz = Y%myion, i

Rottikts = YV VrsVn 00 5 e s

Rutkiat = Yvn ¥V 9 Rutkaoe1 = Yo, i s

2 —1_ -1 2 —1_—1
Ry ykyotyo = YiVYnYssYh Vi s Ryikyot43 = ViVhYss Y Vi s o

Rytktort = %’Yh’Ysl’Yh_l%_la Rytktotti41 = %%%%%_17}:17”&_17
Rngksoti42 = YWY Vi Y Batkeotries = YmW VeV Vi Vi s

ey

R k3t = YOV Ve Ve W Vit Bkt = Ym0 s
Rohtstries = YV ¥ma Ve Vi ¥ s Rotktsti4s = YV Yma Ve Vi Vi s
Ry hstiak = YV Ymu Ve Y Vi s

and so on using the edges of the maximal tree that we have chosen above.
Finally there is also the relation

S1 =712 .- V2d+29-2 »
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that comes from 71 (P! — B,0) and all the relations conjugated to S; by the paths
of the maximal tree:

S = (V) Y1 Y2 - Yadr2g—2 (Vi ) s
S3 = (vivn) 12 - Yodr2g—2 ()
Sa = (Vi) M V2 - Y2dr29—2 ()

and so on. Finally we must abelianize and consider everything in Z/2Z, i.e.
_ 1y
9i=9; V.

So we start now with case 2.

Case 2.(a) is excluded by the hypothesis on b. In fact there cannot exist h > j
such that b € supp(y,) and 7, # 7.

Therefore we treat case 2.(b), that is we assume that Vh > j such that
b € supp(7y), then 7, = 7; and there exists h such that a € supp(7,) and 73, # 7.

We assume at first that we are under the hypothesis of case 2.(b)(i), that is
i = min{k| a € supp(7x)}, a € supp(1), h >4, 7, # 7. Let i =r; < j=rs <
rg < .. <1y < h be a saturated angle in a such that 7; = 7; = 7, = ... = 7.
If ¢ is even then o(b) = b, if t is odd then o(b) = a.

Suppose that ¢ is even, so o(b) = b.

Recall that o (vn) = 77 199 LoVt 1Y “Yn1--7271 V1.

Thus, using the relations written above we get:

ox(g1) = ox(7iv;)

-1,.—-1 -1 ,_-1
= (1 2 v Yierenem)
1. -1 _—1_-1.-1 _—1_-1_ o
e i Yir1-V5-175 V1o Yit 1 Vi Vi1 Y2V1)

= A e i e e e e

(D) (D () - (D () (D (-
e (Yivirr DO (Fim1)--(n)

= (i =9'=a.

Analogously we have: 0.(g92) = 0«(7iVrs) = go.  Similarly one sees that
04(9s) = 0 (ViVropr) = 9s Vs=1,..,t = 1.

With a similar computation we obtain: o.(g:) = ox(Vivhyma7; 1) = ge-

Analogously one sees that 04 (gr+s) = ge+s Vs. Therefore o, = Id.
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We consider now case 2.(b)(i) with ¢ odd, so that o(b) = a.

Observe that since Tog424—272g42d—1.--71(a) = a, and G doesn’t contain any
polygon, there must exist an odd number of edges connecting a and b with labels
greater than h.

Therefore we have i =711 < j=ro <ry3 < ..<r<h<mi <mg <..<mg,
a saturated angle in a where 7, =7, =7, = ... =Ty, = Ty = ... = T, = (a,)),
Th = (a,c¢) with ¢ # b and both ¢ and s are odd.

Now since Togt24—2T2g+2d—1---T1(b) = b, and G doesn’t contain any polygon,
there must exist h < p1 < p2 < ... < Py < Mq < ... < My, a saturated angle in a
where m is odd, 7, = 7, = ... =7, = (a,¢) (see Fig.4).

Fig. 4

A set of generators for m1(C,b) can be found as we have explained above.

Now, if we let o, act on 7;(C,b) we have to take in the target a = o(b) as
base point. Thus we have another maximal tree and therefore another set of
generators and relations for m(C, a).

We only write the set of generators, the relations can be found as above.

We call the generators of 71(C,b) g;’s as before, the generators of m1(C,a) in
the target ;’s.

Y1 =77 = 91, V2 = YiVrs = 92, U3 =YiVrs =93, -y Vi1 = ViVry = Gt—1
Py = YhVp1s Yip1 = YhVpas e Vifm—1 = YaVpm >
wt-&-m = YiYm1> ¢t+m+1 = YiVYmar -+ wt+m+s—1 = YiVYms -

And so on following the maximal tree.
We perform now o,.

0x(g1) = ox(7i7;)

= (1 ' it i)
-1 -1 _—-1_-1 -1 _-1_. . A —
. (fyl < Yic1 Y Vi1 Y-17 ’yj_l---%-;-l’h%—l---%) -
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= (1) (DO ) - (D () (i D aveyi Y

(7i7i+17;1)(’73)(%’*1)-"(’71)

-1
=% = ¥1.
In the same way one sees that o.(g;) =¢; Vj=1,....,t -1
Analogously we can compute the image of the other generators and we obtain:

o (Vi Y; ) = Ui
Observe that since we have performed a base point change in the target, we

have Id (YivhYp.%; ') = Mo = Y-
With a similar computation it is easy to see that
o (Vim ) = W = Ty ), Vi=1,..,m.
The image of the last group of generators can be computed analogously and we

get: o (Vivmy) = Vttr1-Virm-1Vtrm.-
Now we show, using the relations, that ¢4 1...04m—1 = 1.

In fact recall that
Y12 Y2g+2d—2 = 1,

VN2 Vagr2d—2V; =1
So we have to write these two relations in terms of the generators w;s.
1 = y172..V2g+2d—2
= () (i) ivisryi D vy D (i) () (g i )
O PR LT T oy I C 7710 ) O 7V iy I C T P
(%‘%m)(7m1+1)---(%7ms)(Vms+1)---(72d+29—2)

= P12 Vi 1VipmWVipmt1 - Vitmts—1 -

1 = yimy2--Y2g+2d—27; "
= (¥ ) (ivie1y DOD (i) (-1 (i D ey )
e (Vi¥rs) (Y1) (V¥ ) (1) - (o) (¥4 1%, ) - (0¥00) (Y 1)
e o DO t1% ) (V) Wt 1) - (Yo% D) (Vi¥ma 417 )
e (YiVma ) (Y ¥y ) (ViVmat1yy D) (Viv2g+2a—27; )
= 1/111#2‘--7%:—1(?/)t¢t+l~-¢t+m—1)¢t+m¢t+m+1.--¢t+m+s—1 .

But from this second relation we get

ViYip1Pipm—1 = Y1V 1VimWVirma1 - Vigms—1 = 1
by the first relation.
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So we have 0.(7ViVm,) = Yt+m = Id«(Viym,). In the same way we see that

s« (Yivmy) = Vigmik—1 = Lds(Yiym,,)s VE=1,...,s.
Therefore we have proven that in case 2.(b)(i)

o, = Id,: Hi(C,Z/2Z) — H\(C,Z/2Z) .

It remains case 2.(b)(ii).

Here we assume that 7; = 7; = (a,b), Vh > j such that b € supp(m,), 7, = 75,
a € supp(7), h < i, so 7, # 7; and o(b) = b.

Take b as base point, h = min{r| a € supp(7,)}, so 7; and 7 are two edges of
the maximal tree.

The generators and relations of 71 (C, b) are described above, whence we have
to calculate o.(g;) V.

Since G doesn’t contain any polygon and Tog424—272d+29—1---T1(a) = a, there
must exist at least an index p; such that 7,, =7, = (a,¢), p1 > h.

Now by 1.7, we know that if h<p; <po<...<pp<i=7r1<j=r9o < ..<1r <
m1 < mg < ... < mg is a saturated angle in a with 7, = 7,, = ... = 7,,, = (a,¢),
and 7, =7, = Ty = ... = 7, = (b, a), then t is even.

Now since Tog424—272d+29—1---T1(a) = a, and there aren’t polygons, then m is
even and s is odd, or m is odd and s is even. But we know that o(a) = ¢, som
cannot be odd, otherwise {o(b),o(a)} = {pi—1(b), pi—1(a)} = {b,a}, and this is a
contradiction.

Therefore we have m even and s odd (see Fig. 5).

We calculate at first

ox(g1) = ox(viv5)

o1 -1 -1 -1 -1 _—1_-1 -1 _—1_-1
= (71 72 V=1 VR Y1 Vp1—1Vp1 Vpi+1-Vpa—17ps Vpoti

-1 —1.-1 -1 1
o Vom—1Vom Ypmtd - Vic1 Vi VieLeeVpmALeeVpg oo Vpr Voo 1) -
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—-1_-1 —1 —1 —1 —-1_-1 —1 —-1_-1
N TRC: V1 VR Y1 Vp1—1Vp1 Vpr+1-Vpe—1Vps Tpati
—1 —-1_-1 -1 —1_-1 -1 -1
= Vom=1Ypm Vpm+1Yi-1%i Vi1 V=175 Vi—1--7iVi-1
e Ypme Lo Ypg e Ypr oo VoY1)
= (D02 D)o e ) (D () (i)
o (G (5 D -1 D (v D () (iea)
oo (Ypm) -+ (¥pr ) - (9R) (1)
= () =g

Analogously we obtain: o.(gx) = 0x(ViVre+1) =gk Vk=1,...,t — 1.
With a similar computation we get: o.(g:) = g and

U*(gt+l) = O-*(/Yif}/pl+1/7}:1’7i_l) = Gt+1 » VZ - 17 ey 1M — 1.

Finally we have to calculate o4 (g+m) and we obtain:

U*(9t+m) = 9192---9t—-19t+m -

Then we see that from the relations we get gigoe...gs—1 = 1. In fact, we have
YY2--V2d+2g—2 = 1 and

1 = y172-..72d429—2

= (1) (Va=1) V)V ) oo Vo) e+ (Vi) (iYir1 %y ) - (vivim17; ) (v5)
o (s ) (i) Vet ) oo (P )oo- (Y ) o (V2g-42d—2)

= 9191 -

S0 04 (Gt+m) = Gr+m-

Similarly one can verify that o (gitmir) = Ox(ViVRVmrs1 Vi Y = gevmars
Vr=1,...,s—1.

Thus we have proven that o,: Hy(C,Z/2Z) — H1(C,Z/2Z) is the identity
in all the cases of 1.13.

Now, in order to conclude that a(c) = 0 and v(0) = g + 1 we use the fact
that for a real curve (C,0), v(o) = g+ 1 —dim(o + id)«(H1(C,Z/27Z)) (see e.g.
[Ci-Pe], Corollary 4.1.8).

We have just proven that o, = id, so v(c) = g + 1 and therefore a(c) = 0. u

Let us now define the reduced graph G,.q of the monodromy graph G of f to
be the graph obtained from G in this way: for every two vertices we remove some
edges of G in such a way that there remains only one edge connecting the two
vertices.
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A polygon in G is said to be odd if it has an odd number of edges.
We prove the following

Theorem 2.2. Let C be a real smooth algebraic curve of genus g, 0: C — C
be the antiholomorphic involution that gives the real structure, assume that
v(io) £ 0, let f: C — Pb be a generic real algebraic function of degree d > 2
(foo(x)=flz), Ve €C).

Assume that all the critical values of f are real and positive (if they are not

positive it suffices to perform a base point change).

Let G be the monodromy graph of f. Assume furthermore that any two
polygons contained in G..q have no common edges. Set o, : Hy(C,Z/2Z) —
H,(C,Z/2Z). Then

dim(o + identity)«(H1(C,Z/2Z)) = #{odd polygons in G,eq} .

So
v(o) = g+ 1 — #{odd polygons in Greq}

Proof: Assume first of all that the graph G has only 3 vertices and that G,..q
is a triangle. Then there exists a vertex which is fixed by o.

Let us now take as base point one vertex of the triangle which is fixed by o,
let us call it b, then since o(b) = b, and case 2.(b) of 1.13 cannot occur (since b
is a vertex of a triangle), b must satisfy the hypothesis of 2.(a) of 1.13.

So we take as base point a vertex b such that o(b) = b and b satisfies the
hypothesis of case 2.(a) of 1.13.

Assume that 7, =7 =7, = ... =7, = (a,b), Th = Tiny = ... = T, = (b, ¢),
T = (c,a), i<j<r; <..<rg<h<m <..<m, is a saturated angle in b.
k can either be smaller or bigger than .

Assume first of all that k < 4. Let k, < kn,_1 < ... < k1 < k < i be a saturated
angle in a, 7, =7 = (c,a), Vj=1,..,n.

As in Theorem 2.1 we have generators for H1(C,Z/2Z):

g1 ="7%i%j, 92 = ViVr1y - Gt—1 = YiVrys Gt = VR VYmys -y Gt+r—1 = YA Vm.
9L =YV s 9h = ViV Ve s e Gnal = ViVka Vi -

The relations are analogue to the relations in Theorem 2.1, so we have:

S1 = Y1.-Y2g42d—2 = 9192---Gt—1GtGt+1---Gt+r+1
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therefore we get g192...9t-1 = gtgt+1---Gt+r+1-
Sy = 717172--~72g+2d—27f1 = 9’1--~g;z+191---gt71 >

whence we have g1¢9...gt1—1 = 91195---9;1+1-

o«(g1) = ox(7iv;)

= (' e e rem)
’(71717271"'%':11'7;1%111--~’Yj:117j717j71-.-’Yi’yifl...'yl)

= () (i) T ) P (i) T () T () T (s D (e )
e (Vivie1 D () (im1)-- (1)

= g1 -

Analogously one sees that o.(g;) = g;, Vj =1,...,t—1, and 0.(g1+5) = gi+j,
Vji=0,..,r+1.

0.(gh) = ou(vivery Y

= (71_1...'yk_nl...7,;1...7,;11...7,;_117,;1...fyi__llfyi_l’yi_l...fka*yk...’ykl...Pykn...'yl)
. (71_1...7,;1...'yk_ll...fyk__llfy,;lfyk,l...’ykl...fykn...’yl)
-1 -1 -1 -1 _-1 -1 _-1-1 _-1 -1 _-1
e T e e e Pl fo AR T POy PRty A

e Y YR e Lo Vg oYy e+ Y oe ViV Vg oo Vo - VL)
= (D)D) ) e Do (D (D) (v
(e D ave 2D e D (e, )
R D T D m D v - )
(v D R =) Ve ) iy ) (ViVrg—17%7 )
Va9 D) Vivra =17 D ivres) o (1) (i D (vivj—1v Y
(Vv D) i=1) () - (V) o (W ) (1)

= 91 gt—19t—2--- g1 -

o (gh) = o(Vive vy, )

—1 —1 -1 —1 —-1_-1 -1 _—-1_-1
= (M VeV 172 V1V Vor Vi1V Vb1

e YT Y Ve 1 VR Y= 1o Vet 1V Vs — 1+ Vg o+ Vi Y1)
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-1 -1 -1 _—1 _—1
TV Vg1V, Vhr—1eVhg e Yk V1)

-1 -1 -1 -1 -1 —1 _—1 _-1
B e e O i o W te (R O O T

e VA YR 1o g g e Yy oo Vo Vi VeV -+ VY1)

n

= (1) D)) D) - D (D) () (i)
(e D e D (mve—17; )
W17 D R D ka1 D - e ) (e
R Pt BN T e P NN T T T N (S Ty
(=1 DO 1) () ey Do (i) (¥ ) (Y —1)
A D D (i D) i) () (V) - (V) -+ (1)

= 919591 Gt—1Gt—2 - 1
= 05 Gt—1Gt—2 .- g1 -

In the same way one can see that 0.(¢);) = ¢/,9192...9t—1 Yd=2,...,n.

We claim now that rank(o + Id). = 1.

In fact let us first of all consider the following matrix whose columns are the
images through (o + Id), of the generators gi, ..., gi—1, Gt, -, Gt4r—1, 91> - Gns1-

0---

0 -1
0---0

-1

_ =
_ =

‘We have:
Im(o + Id). = ((o+1d).(g})) -

Therefore we only have to check that (o + Id)«(g}) = g1...g¢+—1 is not the identity.
But this is true, since the only relations between the g;’s and the g;-’s are S7 and
Sy. Thus we have proven that rank(o + Id). = 1.

Assume now that k > 4, more precisely suppose that 7, =7, =7, = ... =7, =
(a,b), Tk =Tk, = ... =Tk, = (a,¢), Th = Tiny = ... = Tin,. = (b, ¢), with ¢ even and
sodd, wherei < j <7 < ..<m<k<k<..<ks<h<m;<..<m, are
the labels of a saturated subgraph.
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We compute the action of o only on the set of generators:
_ -1
g ="%YY
—1
gl = ’YZ ’yk1 ’}/h ]

9= VvV

5= VT W s

since on the other generators we have already seen that o acts as the identity.
We have the relations

S1= 7172 V29+2d-2 = G192 - Gt—1 Gt Gt+1 - Jttr+1 5
SO we get g1 92 Gt—1 = gt Jt+1 - Jt4r+1-

Sy = VM V2 Y2gr2d—2% = 9192 Gt-19 G| - G ,
therefore we obtain g1 g2...gt—1 = ¢' 9} g5 ... 9.

0.(g) = 0. (’Yﬂiﬂﬁl)

= (i Yietem)

-1 -1.-1 -1 -1
N O PRt P o PR T TR

-1 -1 -1 -1 _—1 -1 _-1 1 -1 -1
e eV Yy Ve Y1 Ve Vi Ve V1 YR YA—1

o Vhg oo Yhy oo Voo Yrg oo Yr oo Vg oo Yiee Y1)

--%_tl---7;;_117;;1%—1---7”----%1---%’---’)’i---%)

= () (DO ) - (D O ) (D v
e (V¥ 1% D iy (D i)
D e D v
e (Y S D i e D (i v D (v D (mvig i
e v D v D (iva—1v D () (Y1)
o (V) (k) Vg =1) - V1) ) oo (1) (e vivre -1 1)
e (e D v 1) (D Qi1 D) (0F) (im1)--- (1)

— gl

In the same way we have o0.(¢}) = ¢'g5 g5 ... 9.
Analogously o0.(g;) = ¢'91--- 91 Gjy1-- 9% Vi
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We claim now that rank(o + Id), = 1.
In fact, as above, let us first of all consider the following matrix whose columns
are the images through (o + Id), of the generators g;’s, ¢, g, .., g%

0---000---0
0---000---0

0---000 ---
0---011---1

00111
We notice, as before, that we have:
Im(oc+1d), = <(J + Id)*(g/)> :
Therefore we only have to check that
(0 +1d)(g") = g'g1--9¢ = g1 9e—1

is not the identity. But this is true, since the only relations are S and Sy. Thus
we have proven that rank(o + Id), = 1.

Assume that G has d vertices and G,..q4 is a polygon with d edges.

We want to show that, as in the case of triangles, in order to compute the rank
of (o + Id), it suffices to restrict ourself to the case in which every two vertices
of G are connected by exactly 2 edges. In fact, when we have polygons in the
reduced graph, we have generators of the type of the g.’s that we have obtained
in the case of triangles, as it is illustrated in Figure 6, where we have

-1
91 = Vet Vha - Voo Yir Vs -+ Vhg Yy 5

—1 -1 -
92 = Vh1 Vha - Voo Yiz Ve -+ Vhg Yy s

b= Vor Vo - Vo, Yie Vi -+ Vg Vg
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Notice that in the figure we only drew the subgraph of G we are interested in.

Fig. 6

Assume that i1 < iy < ... < iy and that {iy,19,...,7;} is a saturated angle
both in ¢ and in c.
Then one can easily prove, as in the case of triangles, that if o, (géj) = h, then

U*(ggj+1) = hg;]+1g;]7 SO that
(a* + Id)(ggj“) - hg;jH gg]’ gll'jﬂ = hg;j ’

Therefore
(ox +1d)(g;,) = (ox+1d)(g},) = ... = (ox+1d)(g},) -

This allows us to reduce ourselves to the case in which every two vertices are
connected by exactly two edges. In fact if in Figure 6 ¢ is even, we can delete all
the edges connecting a and ¢ with labels ¢; with j > 3. If ¢ is odd, we know from
the properties of monodromy graphs of real generic algebraic functions described
in section 1, that there must exist at least another edge connecting a and ¢ with
a label m either bigger then i; or smaller then i; (of course then the set of indices
{m,i1,...,4;} need not be anymore a saturated angle in a and ¢, as Figure 7
shows).

If ¢ is odd then we delete all the edges with labels io, ..., 7; and we are left with
the two edges with labels 7 and m. The procedure that we have just described
is illustrated in the two examples given in Figure 7.
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Observe that in Figure 7, when we remove some edges, we relabel the edges
of the new graph mantaining the previous order, only in order to have the labels
in the right set of indices.

6

\OO
(P>
%

—_—

o

()

\;
)

—_—

6 j4
b

6 2 6 4
b

o

Fig. 7

First of all we treat the case in which the polygon given by G,..q is odd, i.e. it
has an odd number of vertices, and every two vertices are connected by exactly
2 edges.

To understand better the situation, we describe precisely the case of pentagons
and then we explain how to get the general case of an odd polygon.

For pentagons we have the different graphs of Figure 8.

Notice that every other graph of this type can be treated analogously. In all
the examples in Figure 8 we take as base point the vertex b.

In Figure 8 1) a Schreier system of representatives for 71 (P! — B,0) modulo
fem (C—f~1(B),b) is the following: Lo=1, Ly=>1, La="3, L3="179, La="375.

A list of generators is the following: g1 = v172, 92 = 1374, 93 = Y1Y97107Y1 L
91=VV6Y5 s Gh = NNV V3 s Gh = MN0EY5 Vs

We have seen in 2.1 that o0.(g;) = g¢; for all 7, and as in the case of triangles
one easily sees that (o + Id).(¢}) = (o + Id)«(gb)-
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Therefore the image of (0. + Id) is generated by (0. + Id)(g}) and the only
thing that we have to prove is that (0. + Id)(g}) # 0. We have:

U*(g,l) = G294 gé
and the relations S =7172..78, S2=171%2-- 871 > 3 = V3V1Y2-- V873 s
Si = My9My2--8Ye V1 s giver g1 = g2 = g3 = ga, gh = 919}
Thus we get: H1(C,Z/27Z) = (g1, 9}),

0.(9)) = 92040h =91 9291 = 91 G191 = Q1 g} -

Then (0. + Id)(g}) = g1 and the rank of (o, + Id) is one.

Now we treat case 2) in Figure 8. Here we choose Lo = 1, L1 = 72, Ly = 9,
L3 = vy, La = 977
We have a list of generators: g1 = 7273, g2 = Y910, 93 = 12V1V6Vz » g4 =

7977787;1, g1 = 7271747;175;1, gh = 72W1757;17§1. Also here we only have to
determine the image of ¢} by (o« + Id). We obtain as above 0.(¢]) = 919495 =

939194 = 919}, since the relations S;’s give: g; = g; Vi,7j, gh = g19}.

So it remains to consider case 3) in Figure 8. Here we have: Lo =1, L1 = s,
Lo= g, Ly= 571, L4 = 78y2. We have a list of generators: g1 = v576, g2 = Y879,
93 = VNNTVs 5 04 = WNVI008 s 91 = VNNV s s Gh = Vs NWaVe s
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One computes: 0.(g]) = g19], and the relations still give: ¢, = g; V1,7,
g5=g19g}. Thus the statement is proven in the case of pentagons.

In general, for an odd polygon with d edges and such that every two ver-
tices are connected by 2 edges (i.e. the genus of C is 1), we obtain a similar list
of generators: g¢1,...,94-1, 91,95 such that o.(g;) = gi Vi, (ox + Id)(g}) =
(04 + Id)(g5) = g1. Therefore the rank of (o, + Id) is one.

Assume now that G is a graph made of d edges with d even, such that the
reduced graph G,.q4 is a polygon with d edges.

We have already remarked that we can restrict out attention to the case in
which every two vertices of G are connected by exactly 2 edges. First of all we
consider the case in which d = 4. We will prove that the action of o, on the
generators obtained from the edges of the square is the identity. Following 1.13
we see that for a square in G we have basically the three following possibilities
illustrated in Figure 9:

A) 6 Bg 2
3 7
8 |7 3] 2 13 4 5
2 6
b
1 1
()
8
2
413 56
7
b ) a
Fig. 9

So we treat at first the simplified case A).
We take b as base point. We choose: Lo =1, L1 = v1, Lo = 3, Ly = y177.
A list of generators is: g1 = Y172, g2= 1374, 93= MYV s L= NV s
gh=NV1V6Vs -
We have relations:
S1=m7278 = (1172)(1372) (95) (96) (v7) (18) = 9192, SO g1 = g2,
Sy =MMY2- 87 =9g193, SO g3 =g,
S5 = 137172 V873 - = 9291 9h -
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So we have g5 = 19y and H1(C,Z/2Z) = (g1, g1)-
ox(g1) = 91, 04(g)) = 9205 = 1197 = ¢}. Therefore we have seen that in
case A) o, = Id.

Now we consider case B).

We have: Lo =1, L1 =72, Ly = 7, L3 = yam1.

A list of generators is the following: g1 = 273, 92 = V778, 93 = ’72’717672_1,
g = Yy1vav7 g = 2717577 - The relations give:

S1=m7--78 =9g192, sowehave g1 =g2,
So = YoM Y2 - 8Ys = 919593
Ss = vz -8 VT =91 9592
therefore we have g1 = g2 = g3, 95 = 9149}, and H1(C,Z/2Z) = (g1, 9})-

o.(g1) = g1, 04(g})) = 9195 = g3g} = g|. Thus we have seen that also in
case B) o, = Id.

Now we treat case C). We observe that here all the vertices are moved by o.
We take at first b as base point, o(b) = a. A list of generators is: g1 = Y177,

92 = Y374, 93 = NV s 91 = N1V57275 s 9h = 717V57875 - The relations are:

S1=m%.-18 =9g3g1, so wehave g3=g,
So = Y1717 ...7871_1 =g291, SO we obtain g2 =g,

S5 = MY571Y2 - 18%5 T = 9192 0h

therefore we get g5 = g191, and H1(C,Z/2Z) = (¢1,9}). Now o(b) = a so we take
a as base point in the target. A list of generators is the following: 1 = 177,

P2 = Y5%6, ¥3 = T34V s Y = 1325 s v = mss s
The relations are:
ST =172 ...78 = 391, so we have 1 =3,
Sh = yy1y2 -8y L = 2th1,  therefore we get 1o =1y ,
S = Yy371Y2 - 1873 9T = W o bl
so we have 4 = 1] and Hy(C,Z/2Z) = (11, ¢]).
0.(91) = ou(1177) = Yoth1ths = Y1, 0x(g)) = ou(nY57273 1) = U,

/

1
On the other hand Id,(g1) = 11, Id«(g}) = V.
Therefore also in case C) o, = Id,.
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Now in the same way one can see that if G4 is an even polygon, then o, = Id,.

In fact we restrict ourselves to the case in which every two vertices are con-
nected by exactly two edges and we find as above a list of generators g1, ..., g4_1,
g1,95 and relations S; such that Hy(C,Z/2Z) = (¢1,9)) and o.(g1)=¢1,
o«(g}) =g}, if the base point b is fixed; otherwise, if G has no vertex which is fixed
by o, we have 0.(g1) = 11, 0«(g]) = ¢}, where ¢; and 1] are the corresponding
generators that we have obtained by changing base point to o(b).

Therefore the theorem is proven in the case in which G,.q4 is a polygon. Now
one has only to use Theorem 2.1 to obtain the statement under the assumption
that every two polygons in G,..q do not have any common edge. u

Now using the proof of 2.2 we obtain the following

Theorem 2.3. Let C be a real smooth algebraic curve of genus g, 0: C — C
be the antiholomorphic involution that gives the real structure, assume that
v(ioc) #0, let f: C — Pé be a generic real algebraic function of degree d > 2
(foo(zx)= f(x), Vo €C).

Assume that all the critical values of f are real and positive (if they are not

positive it suffices to perform a base point change).
Let G be the monodromy graph of f. Set o.: Hi(C,Z/2Z) — H,(C,Z/2Z).
Then

dim(o + identity).(Hy(C,Z/2Z)) < p(Gred)

where p(Greq) is the minimal number of polygons of G,.q whose union is the union
of all the polygons of Gcq. So

V(U> >g+1 _p(gred) :

Proof: The inequality obviously holds if the reduced graph G,.q does not
contain any polygon (see 2.1) or if every pair of polygons in G,¢q have no common
edges (see 2.2).

So we must understand what happens when we have two polygons in G,.q
that have at least a common edge. Assume that the reduced graph is the union
of two polygons as in Figure 10.

In Figure 10 we have chosen labels of the edges of the reduced graph as follows:
for any two vertices a and a’ of G,.q we have taken the smallest label of the edges
of G connecting a and a’.
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Fig. 10

Then we choose the following set of Schreier representatives for w1 (P! — B, 0)
modulo f.m(C — f~Y(B),b):

L():la
L1:’7i17

Lo = 7i, i,

Lr—1 =i, Yig - Yir_1 »
L/l =Y >
L/2 = Y51 7Vj2 »

L/sfl = Y1 Vg2 -+ Vjs—1 s
Lll/ = TYmi1 »
LIQI = Ymi1Tma >

"
t = TmiVma -+ Tmy -

As in the proof of 2.2 we can assume that every two vertices are connected by
exactly two edges. Then if the reduced graph is as in the figure, we have that the
genus of C is 2 and H1(C,Z/2Z) is generated by g1, h1, ¢} h}, where g1 = v, Yn,
n is the label of the other edge connecting b with a, h1 = 7;,7p, p is the label of
the other edge connecting b with ¢,

9/1 = Ly—1i, (Lg)—l )

Wy=Li 4y (L)~
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Then, since 04(g1) = g1, 0«(h1) = h1, the image of (o, + Id) is generated by the
elements: (o, + Id)(g}), (o« + Id)(h}).

Therefore the rank of (o, + Id) is smaller or equal to 2.

In conclusion, to determine the rank of (o, + Id) we can assume that the
monodromy graph G is such that every two vertices are connected by exactly two
edges. Under this assumption, every polygon in a tessellation of G,.q gives rise
to two generators g¢;, g; with o.(g;) = ¢i, so that only ¢} possibly contributes to
increase the rank of (o + Id). But then rank(o, + Id) < p(Gyeq), where p(Greq)
is the minimal number of polygons in G,.q whose union is the union of all the
polygons in Gcq. m

Remark 2.4. Notice that in the proof of 2.3, if G,¢q is the union of two
polygons with common edges, we cannot conclude that rank(o, + Id) = 2, as it
is shown in the following example (Fig.11). o

8
7
6
o 4 Y 9l 1
1
b2
Fig. 11

We have Lo =1, L1 = v1, Lo = 5, L3 = 4.

The generators are g1 =172, 92 ="5%6, 93 ="3V4, J1 271V97§17 95 :71710751,
Ry =vsvrvs My = 157873 -

The relations are S1 = y172..710 = 919293, S2 = V1V1V2-- Y1071 - = 919,95,
S3=Y5M72.-7107; = g2hihbgigs, therefore gy = gigs, gh = g1gi, hh = gshl,
Hl(c7 Z/2Z) = <gla g3, 9/17 h/1> and G*(gi) =g, 1=1,3, J*(gll) = glg3gi> U*(hll) =
g193hf,

(04 + 1d) =

and (0. + Id)(g1) = (o« + Id)(h}).
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Remark 2.5. Let 7 be a graph that is the union of two polygons that have
some edges in common. Then there exists a monodromy graph G of a real generic
algebraic function with all real critical values with G,..q = 7, such that

1. If the two polygons are both odd, then rank(o, + Id) = 2.
2. If one polygon is odd and the other is even, then rank(o, + Id) = 1.
3. If both polygons are even, then o, = Id. o

Proof: One can easily compute that it suffices to consider the graph G in
Figure 12. n

Remark 2.6. Notice that for the graph in Figure 13 we have
rank(o, + Id) =2,

although there is a polygon with an even number of edges. o
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