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GLOBAL EXISTENCE AND UNIFORM STABILIZATION
OF A NONLINEAR TIMOSHENKO BEAM

KA1sS AMMARI

Presented by E. Zuazua

Abstract: We study the global existence and the large time behavior of the system
governing the non-linear vibrations of a Timoshenko beam. For small initial data we

prove global existence of strong solutions and exponential decay of the energy.

1 — Introduction

Our purpose in this paper is to prove the global existence and uniform stabi-
lization of solutions to a nonlinear problem governing nonlinear vibrations of a
Timoshenko beam (see [6], [11] for furher discussion on the model). Stabilization
of linear or nonlinear Timonshenko beams, has been widley studied in literature
(see [4], [6] and [10]). In the present paper, we tackle the same problem but with
a dissipation distributed in the whole domain. The equations are:

wy et = —edo (vt - .w) —I—b(/Q(amw)Q(y,t) dy) 2 w(, 1)
—adiw, O2x(0,00) ,

(1.2) %831#(9:,15) = (e t) - cd (V1) — dw(w 1)) — B, Qx(0,00)

(13) w(z,0) =wo(z), dw(z,0)=wi(z), Q,
Y(z,0) = Yo(z), O(x,0)=91(x), Q,

(1.4) w(0,t) =w(l,t) =0, (0,00) ,

(1'5) O ¢(07t) =0y ¢(1vt) =0, (07 OO) )
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where Q = ]0,1] and b,¢,d, o, 3 are strictly positive constants (a and [ de-
pend on the control device, and see [3], [11] for physical significations of b, ¢, d).
We denote by w(z,t) the deflection of the beam from the equilibrium line and by
¥ (x,t) the slope of the deflection curve, for the precise meaning of 1) see [9].

Our paper is organized as follows. In the first section, we prove, as in [4],
existence and regularity results for the linear problem related to (1.1)—(1.5) and
then, by a fixed point approach, we show existence results for the nonlinear
problem (1.1)—(1.5). The second and third sections are devoted to prove the
main results in this paper: the global existence of strong solutions and the uniform
stabilization.

2 — Local existence

We first consider the following linear problem:
(2.1)  Fwx,t) = —cddpp(x,t) + At) 02 w(z,t) —adiw, Qx(0,00),

(2.2) %afzp(x,t) = Pu(a,t) — cd (v(a.1) — dw(w 1)) — B, Qx(0,00)
w(z,0) = wo(x), Ow(x,0)=wi(z), N,

(2:3) B(z,0) = Yol), O, 0) = bi(z), 9.
(2.4) w(0,t) =w(l,t) =0, (0,00),
(2'5) az d}(oa t) = aﬂc ¢(1,t) s (07 OO) y

where A(t) € C([0,T]), A(t) > c¢d > 0 and c, d are two strictly positive constants.
We state and prove the following theorem:

Theorem 2.1. Let (wo,w;1) € [H*(Q) N H(Q)] x H}(Q) and (o,1) €
HxHY(Q), then the problem (2.1)—(2.5) admits a unique solution (w,) in
(e((0, 7], H2(Q) N H(2))net([0, T, H () ) x (€ ([0, 7], H)NCY([0, T], H())),

where H = {® € HX(92), 0,9(0) = 0,®(1) = 0}.

Proof: Let (wo,wi) € [H2(Q)NH(Q)] x HE(Q) and (o,11) € Hx HY(Q).
The variational formulation of the problem (2.1)-(2.5) is the following:
(2.6) (02w, ®) = —cd(Dy1h, ®) + A(t) (92w, ®) ,
1
c

(2.7) (B9, @) = (3¢, ®) —cd (¥ —pw, ®) ,

for any ® € H} (), ® in H. We denote by (.,.) the scalar product in L?(£2).
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Let {£]}52, be a basis of H () and {£2}:2, a basis of the space H. We define
the approximate solutions wy,(x,t), ¥, (x,t) by

ng &),
ng &(z) ,

where the functions g;,(t), in(t) are such that the following equations hold

(2.8)

(2.9) (02w, ®) = — cd (g Y, ®) — A(t) (Op wp, O B)
and
(2-10) 1 (8132 (U (i)) = _(ax Yn, Oz (i)) - Cd(@z)n — Op W, ‘i)) )

for any ® in vect{£ b, ® in vect{€?}!" | and where

n
wp(z,0) = wy (z :Z wo, &) €1 (z)

Btwn(a: 0)—’11)1 _Zwlagz gz( )7
(2.11)

I NgER

%(9070) = ng(ac) = (1#075@ ) §z ( ) )

=1

INgE

at¢n($70):¢?(x) = Wlfz)fz( )

Now if we set ® = d; w,, and ® = 9, 1, in the variational equations (2.9) and
(2.10), we integrate by parts we get:

(212) O |0 wn|* = —2¢d Dy n, O wy) — A(t) 0y |0p wi|> — |0y wy|? |
and 1
(2.13) Eat‘atwnP = _8t‘6z¢n’2_18‘6t¢n‘2

— 20d(¢n,8t¢n) + QCd(ar wn,&gwn) ,

where |.| denotes the L?(2) norm. Summing up the two above equations, we
obtain:

1
Ou(= 101wl + 100 Yl + 100w + A1) 19 wnl?) <
(2'14) < cd (’&v %\2 + ‘615 wn‘Q) +cd (\%\2 + ’875 %\2)
+ [N ()] 10 wal? + cd (10 al? + 10, wal?) |
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and by Gronwall’s Lemma we deduce that w,, and v, (respectively 0w, and 0;1,)
remain in a bounded set in L°°([0, 7], H(Q2)) (respectively L°°([0,T], L*(2))).

If we differentiate (2.9) and (2.10) with respect to the variable ¢ and write the
corresponding variational formulation we obtain that for any ® € HJ () and d
in H, we have:

(a? meI)) = _Cd(a:%twmq)) + )‘(t) (829075 Wn, )+ )‘/< )(a Wn, (I))

2.15
( ) - (at2 Wn, (I)) )

and
1 ~ -
(2.16) - (3? P, @) = (ag;ct Un, ) —cd (O thn — :vt Wn, ) - B (atQ P, P) .

Next, if we set in the above relation ® = 97 w,, and P = 0?2 1y, we obtain:

SO0 wal? = — ed (020, 0 w) — L 002w,

(2.17)
+/\/(t) (8% wmatz wy) — ’8t2 wn’2 )
and
1 1
S O0t|0r V| = — 50t |0 Y| —C zt¥ny Uy Wn

+cd (0% wn, 0} ) — B 02 Yn)? .

Summing up the above identities we obtain:

1 1 At
S 1R nl? + 5 0110 wnl? + 0 (X 02, wnf?) =

(2.19) = —cd (02, 02 ) — cd (Opthn, 02 ) + cd (0%wp, 02 Uy,
!
N @, 07 + 2 02 w2 — L 0010
—« ’8152 wn‘Q - ﬁ |8t2 ¢n’2 .

Once again, Gronwall’s Lemma allows us to conclude that 02w, and 07 v,
(respectively 0y w, and O;1,) remain in a bounded set in L°°([0,T], L?(f2))
(respectively L>([0,T], H'(2))). We extract then from (wy,,) a subsequence
still denoted by (wp, 1) such that:

O} wy, — 02w weakly* in L>([0,T], L*(Q)) ,
Odrw, — Opw  weakly* in L=([0,T], H(Q)) ,
OF by, — OF1p  weakly* in L*°([0,T], L*(Q)) ,
Ophn — Oyt weakly* in L°°([0,T], H(Q)) ,
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and (w, ) satisfies the problem (2.1)—(2.5). Hence w, v are in L>([0, 7], H*(12))
and following Strauss [8] (see also Lions and Magenes [7], page 296), we obtain
w, € C([0,T], H*(Q))NC ([0, T], H'(£2)). To complete the proof of the theorem,
we have to show the uniqueness of such solution. This follows from the following
energy inequality: .

[,
E@t) < celo M) E©),

where
1
B(0) = {[0vwl? + ¢ |06l + X0) 0, wl’ + cd vl +[0: v |

and C is a positive constant.

The proof of this inequality is obvious. It suffices to multiply (2.1) and (2.2)
by 0;w and 0; ¢, respectively and then integrate by parts and apply Gronwall’s
Lemma.

We note that using similar arguments we may prove that (2.1) and (2.5) have
a unique solution in (C([0, 77, H(2) N HE(Q)) N CY([0,T], HA() N H(2)) x
<C([O,T], H3(Q) N H) N ci(o,T], H)) if the initial data (wp,w;) belongs to
[H3(Q) N HL(Q)] x HE(Q) and (3o, 11) belongs to [H3(Q) N H] x H.

Next, we prove the existence of a solution to the problem (1.1)—(1.5) by using
a fixed point approach. We have:

Theorem 2.2. Let (wg,w1) be in [H*(Q) N H ()] x HL(Q) and (vo,1) be
in H x HY(Q), then there exist T > 0 and a unique couple of functions (w, ) €
(C(lo, L, > (@) N H (@) nC ([0, T, HY (€))% (C([0, T[, H)n € (0, T, 1'(52)))
solution of the problem (1.1)—(1.5). Furthermore, at least one of these two affir-
mations is true:

a) T = +OO,
by tim {Jhellue + e + 100 wllr + 00 gl } = +o0.

Proof: Let X be a Hilbert space. We denote by C*([0,T], X — w) the set
of functions k-differentiable from [0,7] into X, equipped with a weak topology.
We consider R, T > 0 and define

XrRr= {<1> e C([0,T], H>—w) n CY([0,T], H' - w), E(®,t) < R%, Vte [O,T]} ,

where
E(®,t) = ||®[F2 + |0: |71 -
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The set X7 g is a complete metric space under the metric defined by
~ cd ~ 1 ~ 1/2
4®,8) = sup {5110 = Bl + 510 (@ - B3|

t€[0,T 2 2

and the space X7 r x X7 g is also a complete metric space under the metric
defined by

d((q)l,i’l),(%»‘i)z)) = ts[%l?p]{
€10,

cd

o (1121 = @23 + l181 = @213 )

TERCIE I TCAE ST
We define for ® € X1 g, S(®,®) by
5(®,9) = (w, ),
where (w, 1) is the solution of the following problem:
OPw = —cddy(vp — 0pw) + 0|0, 2% w —adiw, Qx(0,00),
Lo = 00— cd(v—0ow) ~ B0, x (0.00)

w(z,0) =wo(z), Orw(zr,0)=wi(z), Q,

1!1(90,0) = 7[)0(33)7 atill)(l‘,()) = 1/)1(90% Q,
w(0,t) =w(l,t) =0, (0,00),

O (0,t) = 0, (1,8) =0,  (0,00) .
Let A = {(®,®), ® € X7 r}. It is easy to see for T' small enough that S is a

contraction under the metric d and S(A) C X7.r x X7 (see for instance [1]).
Let now the mapping S be defined from:

Xrr— A— XrpxXrr — XrR,

by
S = aroSoas,

where a7 and ag are two contractions defined by:
ag((I)):(CI),CI)), CI)EXTJ% R

and

Oq(q),q)) = <I>, ((I),(D) S XT,R X XT,R .
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This implies that S is a contraction. Then, using the Banach fixed point theorem,
it follows that S has a fixed point and then the problem (1.1)-(1.5) admits a
unique solution. The proof of the local existence result is now complete.

The purpose of the next section is to prove global existence of solutions to the
problem (1.1)—(1.5) for small initial data.

3 — Global existence

The first main result of this paper is formulated in the following theorem.

Theorem 3.1. Let (wp,w) be in [H?(Q) N HE ()] x HL(Q) and (vo,v1) be
in HxH' (), such that

1 3b 1 1
4 —, 1)\ 2./bE 1w |2 4+ — |00
sup(cd, ) 5ed <cd+ b (O)) (2 |0, w1 |* + 2CI 1|

cd .9 5 b 2192 |2 2, 2)1/2
(3.1) + 5 [0zwo = Bzthol* + 5 [Dawo” |9zwol +loRwl) T <

a PBe 1

- mm(g,i)’ sup(2a+ﬂ+%+2, (2+2a)/cd) 7

then there exists a unique couple of functions (w,1)) G(C([O,—i—oo[, H%(Q) N

HH(Q)) N C1(]0, +o00], H&(Q))) x (cqo, +oo[, H) N CL([0, +00], Hl(Q))> solution
of equations (1.1)—(1.5).

Proof: From the local existence result, there exists a maximal solution (w, 1))
to the problem (1.1)-(1.5) and we know that w € C([0,T[, H*(Q) N H(Q)) N
C'([0,T[, H5(€)) and ¢ € C([0,T[, H) N C*([0,T[, H'(2)). Let

At) = ed + b/Q(ax w)?(y,t) dy .
We introduce
F(t) = 5 {1020 + L 02 0P + cd o, v — B + 510, wl? 2wl + |02 v/}
For

(wo,w1) € [H?(Q) N Hy ()] x [H*(Q) N Hy(Q)], (%o, ¢1) € [H*( Q)N H] x H
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we have
(w, ) € (c o T] H3(Q)mH§(Q))ﬁ cl([o,T[,H2(Q)mHg(Q))>
x (c([o T H Q) N H) N cl([o,T[,H)) .

Since F(t) € C1([0,T]), then if we take its derivative, we obtain

) = —a [(@w?dr - p [ @R e + 3 Ru) 5 (100F)

This gives

%F(t) < sup(f—d,Q) WO F(),  Ytelo,T].

Hence the following estimate holds

t 2 /
F(t) < F(0) e/S“p<c 2) [X(s)] ds

i

T 2
| sup(5:2) () ds
< F(0)e cd .
In what follows we show for T'< 0o that |\ (¢)| remains bounded on [0, T]. Let
_ 2 1 2 o 2 g 2
= [ Qpwojwdr + — | 09050 dx + = | (Opw)* dx + = | (0x9)° dx
Q cJa 2 Ja 2 Ja

It follows from (3.1) that there exists € > 0 such that

. . (o fc 1
€ < min mln(—,— R R

1
2 sup(2a—|—ﬁ+ p + 2, (2+2a)/cd)

and
e > 4sup(—d,1> 9ed (cd—l—%/bE( )) (5 |Opw1] +2—C |01 |
1/2
+ & \3211}0 — Outbo|® + \3zw0\2 |07wo|* + 8:%1/10’2)

From

le(t)] < sup<2a+5+ % 4o, (2+2a)/cd) P
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we deduce that .
ele(t)| < §F(t), Vtel0,T].

This gives
1
(3.2) S (D) < Fu(t) < gF(t) . vtelo,T],

where
On the other hand, from
1
N(t) = 2b/ dpw O3 w dx
0

it follows that the following inequality holds

IN()| < 24/bA(®) |03, w], Vte[o,T].

Since A(t) > c¢d > 0, we obtain

o2 w|, Vtelo,T].

Thus,

(3.3) AA’((;” < 2V2 \/E,/F(t), Vte[0,T] .

From (3.2), we have

‘AA'((:))’ < 4\/5,/1«;(1:), vt e [0,7].

Let now

1 1 b
E(t) = > {|3MU|2 +- 0,012+ ed [y — Gpw|* + 5 |0, w|* + @:MQ} :

We can easily verify that

d
—B(t) = —a|owl® = 5|0 .
This implies

E(t) < E(0) .



134 KAIS AMMARI

Thus,
At) = cd+b]d,w* < cd+2Vb/E(), Vtel0,T].

The identity (3.3) gives

(3.4) \)\’(t)]gzl\/g(cd—l—%/g E(O)) (), Vtelo,T],

and

(3.5) |X()y<2\/7(cd+2\/,/ >\/T Vit e (0,17 .

Next, if we set t = 0 in the inequality (3.4), we obtain

\)\’()\<4\/7(d+2\/_\/7)\/7 %
k:zsup(cld,1>.

We shall prove by contradiction that

where

V(1)) <%, Vit e 0,77 .
Assume that there exists ¢* € [0,7] such that
/ € *
‘)‘(t)’<E7 VtE[O,t[,

and
N ()| =

then, if we take the derivative of F.(t), we find

)

| M

F(t) = F'(t) +ee(t)
b d
= —a [ (@ de = 8 [ (@20) do + 5 2 (1000 PRu()
+ 2 [ @20 da + = [ (O da
+ 5cd/ D, () — Dyw) 02w d — sb[@zw(t)|2/(8§w)2 dz
Q Q

_ 5/9(821/;)2 dr — scd/ﬂax(w D) Dy d
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This gives
Fi(t) < sup(.2) WO F(O)
cd
8 [ @) de = o | (@) do
+§ /Q (02,40)* dx + ¢ /Q (9%,w)? da
—5cd/ 0yt — 02w)? dz — sb|axw(t)|2/((‘)§w)2 dz
Q Q
—5/ RO
Q
Thus,

) < Sup(02d,2> ()| F(t) — 2 min(a—¢, Be—c, &) F(t) .

Since ¢ is such that

then from
. 2
Flt) < —<2 min(a—z, Be—e¢, &) — Sup<cd,2) |)\’(t)|> Ft)

and since we have
min(a — e, fc—e,¢) = €

1
k= —.1
SuP(cd’ )a

F.(t*) < F.(0) .

and

we obtain

By a density argument we can show that the above inequality remains true
for (wp,w1) and (o, 1) € H*(Q)x H*(Q). But from (3.4), we have

S
7.0

M (t*
V(@) < 5

which contradicts the hypothesis. We conclude that |A'(t)| is bounded for any
t € [0,T]. This shows that the quantity (||w|| g2 + ||| g2 + ||Ocw]| g1 + ||Os|| 1)

is uniformaly bounded for ¢ € [0,7]. Hence the global existence of a solution to
(1.1)—(1.5) with small initial data holds according to Theorem 2.2. u
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4 — Stabilization

We define the energy of the system ((1.1)—(1.5)) by:
B(t) = E(w,,t) = % {|8tw2 + % 0% + cd v — Byw|? + g 1By wl* + |ax¢|2} .
By simple computation we have

(4.1) B (w,,1) = —a/ﬂ(atw)z dr — ﬂ/ﬂ(aﬂpﬁ de < 0.

This shows that the energy is decreasing.
The second important result in this paper is:

Theorem 4.1. If (w, ) is a global strong solution of the problem (1.1)—(1.5)
then the energy satisfies the following estimate:

(4.2) E(t) < kE(0)e @t

where k,w are two strictly positive constants independent of the initial data.

In order to prove this theorem, we need the following technical result (see [5],
Theorem 8.1, page 103, for a proof):

Lemma 4.2. Let F: R" +— IR" be a decreasing function. If we assume
that there exists A > 0 such that:

+oo
F(s)ds < AF(t), VteR"',
t

then we have
Ft) < F0)e'™4, VieR*' . u

We now go back to the proof of Theorem 4.1. For 0 < § < T < oo, arbi-
trary fixed, we have from (4.1):

E(S) - E(T) = a/ST/Q(atw)Qdaz dt + 5/;/9(0@)%; dt |

Lemma 4.3. We have:

Q/STE(t)dt < cE(S) —a/ST/Qwatwdxdt—ﬂ/ST/Qwaﬂbdxdt.
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Proof: We multiply (1.1) by —w and (1.2) by —, integrating the sum of
these two equations on [S,T] x 2, we obtain

0= —{/ﬂw&gw dm}z — i[/ﬁlﬁ@ﬂ/) d:n]:

T 1
- /. (4@w2—meﬁ+w@wﬁ+bunw4+cww—awﬁ
+ a/wﬁtwdﬂc + ﬁ/@/}@twd:v) dt .
Q Q
But from the expression of the energy we get
b 1
5 ’axw|4 + Cd|¢ - aﬂcw|2 + |ax¢’2 = 2E(t) - ‘8tw|2 - E |8tw|2 .
Hence it follows that
T 1 T
——[/wﬁtwdaﬁ] ——Uwatwdx}
Q S cL/Q S
T 2 1 2 b 4 2 1 2
= [ (ol = S jol + S 10wl + 2 B() — Jorwl —  Jor
s c 2 c
+ a/w@twdx + ﬁ/zﬁ&qﬁdw) dt .
Q Q

This gives

Q/STE(t) dt = — [/Qwatwdm]: - % {/Ql/fatwdm}:
+ /ST<_04/Qw6twdx — ﬁ/{ziﬁaﬂﬁ dx

—Smwﬁ+2WMﬁ+1@¢ﬂ>w
Note that if we write
(Ozw)? = (Ozw — ) Dpw + YOz w
then
/Q(Ozw)Qda: < 216/S2(8xw—¢)2dx + 25—:/9(8xw dr + —/ D)2

1
v O<e<—.
g, 15 5
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It follows that
/Q(az w)dz < K(e) (/Q@zw—w)?dm +/Q(ar¢)2dx> ,

where
Consequently we obtain

2/STE(t)dt < cE(S)—a/qTAwﬁtwdxdt—ﬁ/gT/fzwﬁtwdxdt.u

T T
Now we will estimate the quantities / / w Oyw dx dt and / / Y Opp dx dt.
S JQ S JQ

We have
1/2 1/2
a/ woyw dx dt < « (/(@Ew)2 d:c) (/(Otw)2 dx) ,
Q Q Q

\/K(a) (% + 2) o EY2|E|V?

IN

and

2 2 12 2
5/sz8t¢d:1:dt§\/B\/K(E)<cd+2>+ch B2

This gives

T T T
[ [wowdzda v [ [ powazae < e [ B2,
S JQ S JQ S

where

= \/K(s) (%4—2)@ + \/B\/K(a) (%+2)+c—2d.

From Young’s inequality, we have
1
c1 E1/2 |E/’1/2 S o |E/‘ + 5‘E ,

where

=N
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Finally, we arrive at

T T 1 T
2/ E(t) dt < cE(S)+02/ |E’\dt+—/ Edt,
s S 2 Js

< g(CQ—i—C)E(S) .

Setting T' goes to 400 we obtain

where

+0o0 1
E(t)dt < — E(S),
s w
_ 3
2(cte)

Using once again Lemma 4.2, we finally obtain

[10]
[11]

[12]

Et) < E0)e™" Vt>0.m
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