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VARIATIONAL PROBLEMS WITH
NON-CONSTANT GRADIENT CONSTRAINTS

Lisa Santos

Abstract: This paper studies existence, uniqueness, continuous dependence on

the given data and the asymptotic behavior of the solution of an evolutive variational

inequality with non-constant gradient constraint and homogeneous Dirichlet boundary

condition.

With assumptions on the given data, we prove existence of solution for a variational

inequality with two obstacles, a Lagrange multiplier problem and an equation with gra-

dient constraint. Equivalence of these problems with the variational inequality with

gradient constraint is proved. An example of non-equivalence among these problems is

given in order to show the necessity of the assumptions.

1 – Introduction

Variational problems with gradient constraint have been studied by several

authors, in many different situations. The well known elastic-plastic torsion prob-

lem, a linear elliptic variational inequality, with constant coefficients and gradi-

ent constraint γ (the threshold of plasticity, which, for simplicity, is assumed

here to be 1), in a simply connected domain, was solved by Brézis in [2]. Brézis

also proved the equivalence of this problem with two other problems, a dou-

ble obstacle variational inequality and a Lagrange multiplier problem. The first

equivalence was generalized by Caffarelli and Friedman ([3]) to problems with

non-homogeneous boundary conditions and the second one by Gerhardt ([6])

to multiply connected domains and also non-homogeneous boundary conditions.
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A general elliptic variational inequality with a convex set defined by a convex

nonlinear function of the gradient, bounded from above by 1, was studied by

Jensen in [9]. Evans studied general linear elliptic equations with a non-constant

gradient constraint in [5] and his regularity result was extended by Ishii and Koike

([8]). Choe and Shim ([4]) obtained a regularity result for a variational inequality

for the p-Laplacian, with non-constant gradient constraint and non-homogeneous

boundary condition.

Parabolic variational inequalities with gradient constraint have also been con-

sidered (see, for instance [20], [21] and [23]).

Recently, the interest in problems with gradient constraint increased, since

the critical state model of type-II superconductors in a longitudinal geometry

turns out to be a nonlinear evolution equation involving the p-Laplacian, for the

relevant component of the magnetic field, together with a gradient constraint the

threshold of which depends on the solution (see [1] and [17]). More explicitly,

the model turns out to be a quasivariational inequality with a gradient constraint

depending on the solution itself. Another model, the description of the growth of a

sandpile, is also a quasi-variational inequality with gradient constraint depending

on the solution ([16]). Some recent works about quasi-variational inequalities with

gradient constraint are [10], [11] and [19].

In this paper we study an abstract evolutive variational inequality, with non-

constant gradient constraint and homogeneous Dirichlet boundary condition.

Part of the results presented here were announced in a symposium and are shortly

described in [21].

This paper has two sections:

– the first section is divided in three subsections. The first one establishes

briefly the existence of solution of the variational inequality, being this

proof related with the one presented in [19], for the quasi-variational case

with the p-Laplacian. Obviously, the result obtained here for the varia-

tional case (with the Laplacian) is stronger. The second subsection studies

the continuous dependence of the solution on the data and the third one

obtains the asymptotic limit of the solution, when t→ +∞;

– in section two we suppose the given function depends only on the t variable.

With assumptions on the gradient constraint we prove, in the first subsec-

tion, existence of solution of a double obstacle problem, deducing easily the

W 2,1
p (QT ) regularity of the solution in this case. Afterwards, equivalence

of this problem with the variational inequality with gradient constraint is
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proved. In the second subsection we establish existence of solution of a

Lagrange multiplier problem and we prove that its solution is solution of

the variational inequality. In the third subsection, existence for an equa-

tion with gradient constraint is proved, as well as the equivalence between

this problem and the variational inequality. The forth subsection is ded-

icated to the presentation of an example that shows the non-equivalence,

in general, among these problems.

2 – The variational problem

The main purpose of this section is to define the variational inequality problem

and to present a brief proof of existence of solution. We also present a result about

the continuous dependence of the solution on the given data and we study the

asymptotic behavior of the solution, when t→ +∞.

We assume that Ω is an open, bounded subset of RN , with a smooth boundary

∂Ω. We denote by I=[0, T ] (T ∈R+) a closed interval of R and byQT the cylinder

Ω× ]0, T [. The set Σ = ∂Ω× I is the lateral boundary and Ω0 = Ω× {0}.
Let f and g be functions defined in QT , g ≥ 0, and let h be defined in Ω.

Define, for a.e. t ∈ I, the following closed convex subset of H1
0 (Ω),

Kg(t) =
{

v ∈ H1
0 (Ω): |∇v(x)| ≤ g(x, t) for a.e. in x ∈ Ω

}

.(1)

We consider the following variational inequality problem:

To find u ∈ L∞(0, T ;H1
0 (Ω)) such that























u(t) ∈ Kg(t) for a.e. t ∈ I , u(0) = h ,
∫

Ω
ut(t)

(

v(t)− u(t)
)

+

∫

Ω
∇u(t)·∇

(

v(t)− u(t)
)

≥
∫

Ω
f(t)

(

v(t)− u(t)
)

,

∀ v ∈ L∞(0, T ;H1
0 (Ω)) : v(t) ∈ Kg(t), for a.e. t ∈ I .

(2)

2.1. Existence of solution

This subsection is dedicated to the proof of existence of solution, since the

uniqueness is obvious. In [19], it can be found the proof of existence of solution

for a related quasi-variational inequality problem with the p-Laplacian. There are
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many similarities between both proofs. Obviously, the solution for the variational

inequality presented here is more regular and we prove here with more detail the

facts which are specific of this problem.

Let us impose some assumptions on the given data:































g ∈ C0(QT ) ∩W 1,∞(0, T ;L∞(Ω)) ,

∃m > 0 ∀ (x, t) ∈ QT g(x, t) ≥ m ,

f ∈ L∞(QT ) ,

h ∈ H1
0 (Ω) , |∇h| ≤ g(0) a.e. in Ω .

(3)

Let f ε∈ C0α,α/2(QT ), gε ∈ C1,0α,α/2(QT ) and hε ∈ C2α(Ω) (0<α<1) be smooth

approximations of f , g and h in the spaces L∞(QT ), C
0(QT )∩W 1,∞(0, T ;L∞(Ω)),

H1
0 (Ω) respectively, verifying hε and gε the additional conditions |∇hε| ≤ gε(0)

a.e. in Ω, gε ≥ m. Let kε be a C2, nondecreasing function, such that kε(s) = 1

if s ≥ 0, kε(s) = es/ε if ε ≤ s. Consider now a family of approximate quasilinear

parabolic problems, defined as follows,







uεt −∇·
(

kε(|∇uε|2 − g2ε)∇uε
)

= f ε in QT ,

uε(0) = hε in Ω0 , uε = 0 on Σ .
(4)

The following theorem is the main result of this section.

Theorem 2.1. With the assumption (3), problem (2) has a unique solution

u belonging to L∞(0, T ;W 1,∞
0 (Ω))∩C0(QT )∩H1(0, T ;L2(Ω)). Besides that, u is

the weak limit in Lp(0, T ;W 1,p
0 (Ω)) (for any p ∈ ]N,+∞[) of a subsequence (uεn)n

of solutions of the family of approximate problems (4), uεn −→ u in C0(QT ),

uεn
t ⇀ ut in L

2(QT )-weak.

We begin presenting first some auxiliary results.

Proposition 2.2. Problem (4) has a unique solution uε∈C2,1α,α/2(QT)∩C0(QT ),

0 < α < 1.

Proof: This result is an immediate consequence of the well known theory of

quasilinear parabolic equations (see theorem 6.2, page 457 of [12]).
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Lemma 2.3. Let uε be the solution of problem (4) and suppose that the

assumption (3) is verified. Then

∃C0 > 0 ∀ ε ∈ ]0, 1[ ∀ (x, t) ∈ QT |uε(x, t)| ≤ C0 ,(5)

the constant C0 being dependent on ‖f‖L∞(QT ) and ‖h‖L∞(Ω).

Proof: This result is an immediate consequence of the well known maximum

principle for quasilinear parabolic equations (see [12], theorem 7.1, page 181).

Notice that, since h ∈ H1
0 (Ω) and |∇h| ≤ g(0), then h ∈ L∞(Ω).

Lemma 2.4. Let uε be the solution of problem (4) and suppose that the

assumption (3) is verified. Then

∃C1 > 0 ∀ ε ∈ ]0, 1[ ,
∥

∥

∥kε(|∇uε|2 − g2ε)
∥

∥

∥

L1(QT )
≤ C1 ,(6)

the constant C1 being dependent on
1
m2 , ‖f‖2L2(QT )

, ‖g‖2L2(QT )
and ‖h‖2L2(Ω).

Proof: Multiply the equation of the problem (4) by uε and integrate over

Qt = Ω× ]0, t[. Then,

1

2

∫

Ω
[uε(t)]2 +

∫

Qt

kε(|∇uε|2 − g2ε) |∇uε|2 =

∫

Qt

f εuε +
1

2

∫

Ω
h2ε .

Using Hölder and Poincaré inequalities, denoting by C the Poincaré constant,

we have

∫

Qt

kε(|∇uε|2 − g2ε) |∇uε|2 ≤ C

(
∫

Qt

(f ε)2
)

1
2
(
∫

Qt

|∇uε|2
)

1
2

+
1

2

∫

Ω
h2ε

and using Young’s inequality and the fact that kε ≥ 1, we have

∫

QT

kε(|∇uε|2 − g2ε) |∇uε|2 ≤ C2 ‖f ε‖2L2(QT )
+ ‖hε‖2L2(Ω) .

Now,

∫

QT

kε(|∇uε|2 − g2ε) |∇uε|2 =

∫

QT

kε(|∇uε|2 − g2ε)
[

|∇uε|2 − g2ε
]

+

∫

QT

kε(|∇uε|2 − g2ε) g2ε
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and, since kε(s) = 1 for s ≤ 0 and kε(s)s ≥ 0, ∀ s ∈ R+0 , then
∫

Qt

kε(|∇uε|2 − g2ε)
[

|∇uε|2 − g2ε
]

=

∫

{|∇uε|2≤g2
ε}
kε(|∇uε|2 − g2ε)

[

|∇uε|2 − g2ε
]

+

∫

{|∇uε|2>g2
ε}
kε(|∇uε|2 − g2ε)

[

|∇uε|2 − g2ε
]

≥ −
∫

QT

g2ε .

Then we conclude that
∫

Qt

kε(|∇uε|2 − g2ε) ≤
1

m2

[
∫

QT

kε(|∇uε|2 − g2ε) |∇uε|2 +
∫

QT

g2ε

]

≤ 1

m2

[

C2 ‖f ε‖2L2(QT )
+ ‖hε‖2L2(Ω) + ‖gε‖2L2(QT )

]

≤ 1

m2

[

C2 ‖f‖2L2(QT )
+ ‖h‖2L2(Ω) + ‖g‖2L2(QT )

+ 1
]

,

since f ε, gε and hε are approximations of f , g and h.

Lemma 2.5. Let uε be the solution of problem (4) and suppose that the

assumption (3) is verified. Then

∃C2 > 0 ∀ ε ∈ ]0, 1[ ‖uεt‖2L2(QT )
≤ C2 ,(7)

the constant C2 being dependent on C1 and on ‖g‖2W 1,∞(0,T ;L∞(Ω)).

Proof: Multiply the equation of problem (4) by uεt , noticing that uεt |Σ ≡ 0,

and integrate over Qt. Calling φε(s) =

∫ s

0
kε(τ) dτ , we have

∫

Qt

[uεt ]
2 +

1

2

∫

Qt

d

dt

[

φε(|∇uε|2 − g2ε)
]

+

∫

Qt

kε(|∇uε|2 − g2ε) gε gεt =

∫

Qt

f εuεt ,

and, consequently,

∫

QT

[uεt ]
2 ≤

∫

QT

[f ε]2+2C1 ‖gε‖L∞(QT ) ‖gεt‖L∞(QT ) −
∫

Ω

[

φε(|∇uε(t)|2 − g2ε(t))
]

,

since
∫

Ω

[

φε(|∇uε(0)|2 − g2ε(0))
]

≤ 0, because |∇uε(0)| = |∇hε| ≤ gε(0) .
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Let Λ = {(x, t) ∈ QT : |∇uε(x, t)| < gε(x, t)}. Then we have:



















for a.e. (x, t) ∈ Λ φε(|∇uε(x, t)|2 − g2ε(x, t)) = |∇uε(x, t)|2 − g2ε(x, t)
≥ −g2ε(x, t) ,

for a.e. (x, t) ∈ QT \Λ φε(|∇uε(x, t)|2 − g2ε(x, t)) ≥ 0 ≥ −g2ε(x, t) ,

Consequently, for a.e. t0 ∈ I,

−
∫

Ω
φε(|∇uε(t0)|2 − g2ε(t0)) ≤ ‖ gε ‖2L∞(0,T ;L2(Ω))

and the proof is concluded.

Lemma 2.6. Let uε be the solution of problem (4) and suppose that the

assumption (3) is verified. Then

∀ p ∈ [1,+∞[ ∃Dp ∈ R+ ∀ ε ∈ ]0, 1[ : ‖∇uε‖Lp(QT ) ≤ Dp ,(8)

the constant Dp being dependent on p, C1 and on ‖g‖2L2(QT )
.

Proof: We know, from (6), that there exists a constant C1, independent of ε,

such that, for any ε ∈ ]0, 1[,

∫

QT

kε(|∇uε|2 − g2ε) ≤ C1 .

So,

C1 ≥
∫

{|∇uε|2>g2
ε+ε}

kε(|∇uε|2 − g2ε) =

∫

{|∇uε|2>g2
ε+ε}

e
|∇uε|2 − g2

ε
ε .

Recalling that,

∀ s ∈ R+ ∀ j ∈ N es ≥ sj

j!
,

we obtain

∀ j ∈ N
∫

{|∇uε|2>g2
ε}

[

|∇uε|2 − g2ε
]j
≤ j! εj

∫

{|∇uε|2>g2
ε+ε}

e
|∇uε|2 − g2

ε
ε ≤ j! εj C1 .

Given p ∈ [1,+∞[, we have

∫

QT

|∇uε|p =

∫

{|∇uε|2≤g2
ε+ε}

|∇uε|p +

∫

{|∇uε|2>g2
ε+ε}

|∇uε|p .(9)
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Since there exists a constant M > 0, not depending on ε, such that

‖gε‖L∞(QT ) ≤ M , we can estimate, for p ∈ N, the second integral in the sec-

ond term of (9) as follows,
∫

{|∇uε|2>g2
ε+ε}

|∇uε|2p ≤

=

∫

{|∇uε|2>g2
ε+ε}

p
∑

j=0

(

p
j

)

‖gε‖2p−2jL∞(QT )

[

|∇uε|2 − g2ε
]j

≤
p
∑

j=0

(

p
j

)

‖gε‖2p−2jL∞(QT )
j! εj C1 .

The first integral in the second term of (9) is obviously bounded. In fact,
∫

{|∇uε|2≤g2
ε+ε}

|∇uε|2p ≤
∫

QT

(

g2ε + 1
)p

and the conclusion follows easily, not only for p ∈ N, but also for any p ∈ [1,+∞[.

Lemma 2.7. Define

Kgε(t) =
{

v ∈ H1
0 (Ω): |∇v(x)| ≤ gε(x, t) for a.e. x in Ω

}

.(10)

Then, for any v ∈ L∞(0, T ;H1
0 (Ω)) such that v(t) ∈ Kg(t) for a.e. t ∈ I, there

exists vε ∈ L∞(0, T ;H1
0 (Ω)) such that vε(t) ∈ Kgε(t) and

vε−→ v when ε→ 0 in L∞(0, T ;H1
0 (Ω)) .

Proof: Let αε(t) = ‖gε(t)− g(t)‖L∞(Ω). Obviously,

αε −→ 0 when ε→ 0 in C0([0, T ]) .

Define ψε(t) = 1+
αε(t)

m
and, given v∈L∞(0, T ;H1

0 (Ω)) such that v(t)∈Kg(t)

for a.e. t ∈ [0, T ], define vε =
1

ψε
v ∈ L∞(0, T ;H1

0 (Ω)).

Then,

|∇vε(x, t)| = 1

ψε(x, t)
|∇v(x, t)| ≤ 1

ψε(x, t)
g(x, t) ≤ gε(x, t) ,

because

ψε(x, t) = 1 +
αε(t)

m
≥ 1 +

αε(t)

gε(x, t)
≥ gε(x, t) + g(x, t)− gε(x, t)

gε(x, t)
=

g(x, t)

gε(x, t)
.
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So, vε(t) ∈ Kgε(t) for a.e. t ∈ [0, T ] and vε −→ v in L∞(0, T ;H1
0 (Ω)), when

ε→ 0, since

‖vε(t)− v(t)‖H1
0 (Ω)

=

∣

∣

∣

∣

1

ψε(t)
− 1

∣

∣

∣

∣

‖v‖L∞(0,T ;H1
0 (Ω))

≤ |αε(t)|
m

‖v‖L∞(0,T ;H1
0 (Ω))

,

and so,

vε −→ v when ε→ 0 in L∞(0, T ;H1
0 (Ω)) .

Proof of Theorem 2.1: We have proved that there are constants C2 and

Cp (independent of ε), ∀ p ∈ [1,+∞[, such that

‖uεt‖L2(QT ) ≤ C2 , ‖uε‖Lp(0,T ;W 1,p(Ω)) ≤ Cp .

So, for p > N , by a well known compactness theorem ([22], page 84), {uε}ε∈]0,1[
is relatively compact in C(0, T ;C(Ω)) and so, at least for a subsequence, we have

uε(t) −→ u when ε→ 0 uniformly in t in C0(Ω) ,

and we also know that,

uε ⇀ u when ε→ 0 weakly in Lp(0, T ;W 1,pΩ)), p ∈ [1,+∞[ ,

uεt ⇀ ut when ε→ 0 weakly in L2(QT ) .

Let us prove now that u is, in fact, solution of the variational inequality (2).

Given v ∈ L∞(0, T ;H1
0 (Ω)) such that v(t) ∈ Kg(t) for a.e. t ∈ [0, T ], let vε ∈

L∞(0, T ;H1
0 (Ω)) be defined as in Lemma 2.7. Multiply the equation of problem

(4) by vε(t)−uε(t) and use the monotonicity of kε and integration over ]s, t[×Ω,

0 ≤ s < t ≤ T to conclude that
∫ t

s

∫

Ω
uεt (v

ε − uε) +

∫ t

s

∫

Ω
∇vε ·∇(vε − uε) ≥

∫ t

s

∫

Ω
f ε(vε − uε) .

Letting ε→ 0 and because s and t are arbitrary, we conclude that
∫

Ω
ut(t) (v(t)− u(t)) +

∫

Ω
∇v(t)·∇(v(t)− u(t)) ≥

∫

Ω
f(t) (v(t)− u(t)) ,

∀ v ∈ L∞(0, T ;H1
0 (Ω)) : v(t) ∈ Kg(t) for a.e. t ∈ ]0, T [.

(11)

Calling, for M ≥ ε, AM,ε = {(x, t) ∈ QT : |∇uε|2 − g2ε ≥ M}, we see that,

since in AM,ε we have kε(|∇uε|2 − g2ε) ≥ e
M
ε ,

|AM,ε| =
∫

AM,ε

1 ≤
∫

AM,ε

kε(|∇uε|2 − g2ε)
e

M
ε

≤ C1 e
−M

ε ,
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since ‖kε(|∇uε|2−g2ε)‖L1(QT ) ≤ C1, C1 independent of ε. So, choosingM =
√
ε,

∫

QT

(

|∇u|2 − g2
)+
≤ lim inf

ε→0

∫

QT

(

|∇uε|2 − g2ε −
√
ε
)+

= lim inf
ε→0

∫

A√ε,ε

(

|∇uε|2 − g2ε −
√
ε
)

≤ lim
ε→0

D
∣

∣

∣A√ε,ε

∣

∣

∣

1
2 = 0 ,

where D is an upper bound of

[
∫

QT

(

|∇uε|2 − g2ε −
√
ε
)2
]

1
2

, D independent of ε.

Consequently,

|∇u| ≤ g a.e. in QT .

So u ∈ Kg(t) and, to complete the proof, it is necessary to show that, by

a variant of Minty’s Lemma (see [18], lemma 4.2, page 99), it is possible to

substitute the term

∫

Ω
∇v(t)·∇(v(t)− u(t)) in (11) by

∫

Ω
∇u(t)·∇(v(t)− u(t)),

in order to obtain the variational inequality (2). So, let w ∈ L∞(0, T ;H1
0 (Ω)) be

such that w(t) ∈ Kg(t) for a.e. t ∈ [0, T ]. Define v = u + θ(w − u), θ ∈ ]0, 1].

Notice that v(t) ∈ Kg(t) for a.e. t ∈ I. Then, substituting v in (11) and dividing

both sides by θ, we obtain

∫

Ω
ut(t) (w(t)− u(t)) +

∫

Ω
∇u(t)·∇(w(t)− u(t)) + θ

∫

Ω
|∇(w(t)− u(t))|2 ≥

≥
∫

Ω
f(t) (w(t)− u(t))

and, letting θ → 0, we prove that

∫

Ω
ut(t) (w(t)− u(t)) +

∫

Ω
∇u(t)·∇(w(t)− u(t)) ≥

∫

Ω
f(t) (w(t)− u(t)),

∀w ∈ L∞(0, T ;H1
0 (Ω)) : w(t) ∈ Kg(t) for a.e. t ∈ ]0, T [ .

It remains to prove uniqueness, which is an immediate consequence of

Theorem 2.8 below.

2.2. Continuous dependence on the data

This subsection is dedicated to the study of the continuous dependence of the

solution of problem (2) on the given data.
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Let u1 and u2 denote, respectively, the solution of problem (2) with data

(f1, g1, h1) and (f2, g2, h2). Denote

Kgi(t) =
{

v ∈ H1
0 (Ω): |∇v| ≤ gi(t) a.e. in Ω

}

, i = 1, 2 .(12)

Theorem 2.8. Suppose that (f1, g1, h1) and (f2, g2, h2) satisfy assumption

(3), with the same m for g1 and g2. Then

∃C0, C1, C2 > 0: ‖u1 − u2‖2L∞(0,T ;L2(Ω)) + ‖∇(u1 − u2)‖2L2(QT )
≤

≤ C0 ‖f1 − f2‖2L2(QT )
+ C1 ‖h1 − h2‖2L2(Ω) +

C2
m
‖g1 − g2‖L2(0,T ;L∞(Ω)) .

(13)

Here, C0, C1 and C2 depend on the given data, not on u1 and u2.

Proof: Let θ(t)=‖g1(t)− g2(t)‖L∞(Ω) and ψ(t)=1+
θ(t)

m
. Define v1(x, t) =

1

ψ(t)
u1(x, t) and v2(x, t) =

1

ψ(t)
u2(x, t).

Notice that

g1(x, t)

g2(x, t)
= 1 +

g1(x, t)− g2(x, t)
g2(x, t)

≤ ψ(t) and also
g2(x, t)

g1(x, t)
≤ ψ(t) .

Since

|∇v1(x, t)| =
∣

∣

∣

∣

1

ψ(t)
∇u1(x, t)

∣

∣

∣

∣

≤ 1

ψ(t)
g1(x, t) ≤ g2(x, t)

and

|∇v2(x, t)| =
∣

∣

∣

∣

1

ψ(t)
∇u2(x, t)

∣

∣

∣

∣

≤ 1

ψ(t)
g2(x, t) ≤ g1(x, t) ,

we have that v1(t) ∈ Kg2(t) and v
2(t) ∈ Kg1(t).

Putting in (2), for data (f1, g1, h1), v = v2, we obtain

∫

Ω
u1t (t) (u

2(t)− u1(t)) +

∫

Ω
∇u1(t)·∇(u2(t)− u1(t)) ≥

≥
∫

Ω
f1(t) (u

2(t)− u1(t))(14)

+

∫

Ω

(

1− 1

ψ(t)

)

[

u1t (t)u
2(t) +∇u1(t)·∇u2(t)− f1(t)u2(t)

]

,

and an analogous expression substituting the superscripts 1 by 2 and 2 by 1.
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Summing both inequalities, integrating between 0 and t and using Poincaré

inequality (being C the Poincaré constant), we obtain

1

2

∫

Ω
(u1(t)− u2(t))2 +

1

2

∫

QT

|∇(u1 − u2)|2 ≤

≤ C2

2

∫

QT

(f1 − f2)2 +
1

2

∫

Ω
(u1(0)− u2(0))2

+

∫

QT

∣

∣

∣

∣

1− 1

ψ

∣

∣

∣

∣

∣

∣

∣u1t u
2 + u2t u

1 + 2∇u1 ·∇u2 − f1 u2 − f2 u1
∣

∣

∣

≤ C2

2

∫

QT

(f1 − f2)2 +
1

2

∫

Ω
(u1(0)− u2(0))2

+

[

∫

QT

(

1− 1

ψ

)2
]

1
2
[

∫

QT

(

u1tu
2 + u2tu

1 + 2∇u1 ·∇u2 − f1u2 − f2u1
)2
]

1
2

.

Noticing that

∃D > 0 (depending only on the data) :
∥

∥

∥u1t u
2 + u2t u

1 + 2∇u1 ·∇u2 − f1 u2 − f2 u1
∥

∥

∥

L2(QT )
≤ D ,

since u1t , u
2
t ∈ L2(QT ), u

1, u2 ∈ L∞(0, T ;W 1,∞(Ω)), f1, f2 ∈ L∞(QT ) and that

[

∫

QT

(

1− 1

ψ

)2
]

1
2

≤ C

(
∫

QT

θ2(t)

)
1
2

,

(13) is proved.

2.3. Asymptotic behavior in time

In this subsection we are going to study the asymptotic limit, when t→ +∞,

of the solution of the variational inequality (2).

Considering T = +∞, we begin proving that there exists a global solution of

the variational inequality, defined in Ω× R+0 .

Lemma 2.9. Suppose that the assumption (3) is verified, with T = +∞.

Then problem (2) has a solution u such that

u ∈ L∞(0,+∞;W 1,∞
0 (Ω)) ∩ C0(Ω× R+0 ) , ut ∈ L2loc(R+0 ;L2(Ω)) .
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Proof: For each T ∈ ]0,+∞[, let uT : Ω × [0, T ] → R denote the unique

solution of the variational inequality (2). Let u : Ω × R+0 → R be defined as

follows: given (x, t) ∈ Ω× R+0 , fix T > t and define u(x, t) = uT (x, t). Clearly, u

is well defined, due to the uniqueness (for each T ) of solution of the variational

inequality (2), and u solves (2) with T = +∞. By the estimates obtained in the

previous section, it is obvious that u ∈ C0(Ω×R+0 ) and that ut ∈ L2loc(R+0 ;L2(Ω)).
From the fact that u(t) ∈ Kg(t) for a.e. t ∈ R+0 , we obtain that

|∇u(x, t)| ≤ g(x, t) for a.e. (x, t) ∈ Ω× R+0

and, since g ∈ L∞(Ω× R+0 ), it follows that u ∈ L∞(0,+∞;W 1,∞(Ω)).

Let us now define, for given functions (f∞, g∞), satisfying the assumption



















g∞ ∈ C0(Ω) ,

∃m∞ > 0 ∀x ∈ Ω g∞(x) ≥ m∞ ,

f∞ ∈ L∞(Ω) ,

(15)

the limiting elliptic problem











To find u∞ ∈ Kg∞ :
∫

Ω
∇u∞ ·∇(w − u∞) ≥

∫

Ω
f∞(w − u∞) , ∀w ∈ Kg∞ ,

(16)

where

Kg∞=
{

w ∈ H1
0 (Ω): |∇w| ≤ g∞ a.e. in Ω

}

.(17)

Existence of solution for the variational inequality (16) follows immediately

from Stampacchia Theorem (see [18], Corollary 3.3 i), page 95).

Lemma 2.10. ([7], pg. 286) Let ζ : R+0 → R be a nonnegative function,

absolutely continuous in any compact subinterval of R+0 , Φ ∈ L1loc(0,+∞) a non-

negative function and λ a positive constant such that

ζ ′(t) + λ ζ(t) ≤ Φ(t) , ∀ t ∈ R+0 .(18)

Then

∀ s, t ∈ R+0 ζ(t+ s) ≤ e−λt +
1

1− e−λ

[

sup
τ≥s

∫ τ+1

τ
Φ(ξ) dξ

]

.(19)
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Theorem 2.11. Suppose that (f, g, h) satisfy the assumption (3) with

T = +∞ and (f∞, g∞) satisfy the assumption (15). Suppose, in addition, that
∫ t+1

t

∫

Ω
[f(τ)− f∞]2 dτ dx −→ 0, when t→ +∞ ,

∃D > 0 ∃ γ > 1

2
: ‖g(t)− g∞‖L∞(Ω) ≤

D

tγ
.

(20)

Then we have

u(t) −→ u∞ in C0,α(Ω), (0 < α < 1) when t→ +∞ .(21)

Proof: Let, once more, θ(t) = ‖g(t) − g∞‖L∞(Ω), m0 = min{m,m∞} and

ψ(t) = 1+
θ(t)

m0
. Then we have that v(t) =

1

ψ(t)
u∞ ∈ Kg(t) and v∞ =

1

ψ(t)
u(t) ∈

Kg∞ , for a.e. t ∈ R+. Substitute v by v(t) in (2) and w by v∞ in (16). Then, we

obtain,
∫

Ω
ut(t)

(

1

ψ(t)
u∞ − u(t)

)

+

∫

Ω
∇u(t)·∇

(

1

ψ(t)
u∞ − u(t)

)

≥

≥
∫

Ω
f(t)

(

1

ψ(t)
u∞ − u(t)

)

and
∫

Ω
∇u∞ ·∇

(

1

ψ(t)
u(t)− u∞

)

≥
∫

Ω
f∞

(

1

ψ(t)
u(t)− u∞

)

and so,
∫

Ω
(u(t)− u∞)t (u(t)− u∞) +

∫

Ω
|∇(u(t)− u∞)|2 ≤

≤
∫

Ω
(f(t)− f∞) (u(t)− u∞)

+

∫

Ω

(

1− 1

ψ(t)

)

[

ut(t)u
∞ + 2∇u(t)·∇u∞ − f(t)u∞ − f∞ u(t)

]

.

Using Poincaré’s inequality (denoting by C the Poincaré constant) and denot-

ing w(t) = u(t)− u∞, we obtain

1

2

d

dt

∫

Ω
w2(t) +

1

2

∫

Ω
|∇w(t)|2 ≤

≤ C2

2
‖f(t)− f∞‖2L2(Ω) + C1

∣

∣

∣

∣

1− 1

ψ(t)

∣

∣

∣

∣

[

‖ut(t)‖L2(Ω) + 1
]

.

(22)
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since u∞, f∞ ∈ L∞(Ω), u ∈ L∞(0,+∞;W 1,∞(Q∞)), ut ∈ L2loc(R+0 ;L2(Ω)) and

f ∈ L∞(Q∞). Looking at the estimate of ‖uεt‖2L2(Ω×[0,T ]) presented in the proof

of Lemma 2.5, we see that there exist constants D0, D1, such that

‖ut‖2L2(Ω×[0,t]) ≤ D0 t+D1 ,

where D0 and D1 are independent of t.

Calling ζ(t) = ‖w(t)‖2L2(Ω) and

Φ(t) = C2 ‖f(t)− f∞‖2L2(Ω) + 2
C1
m
‖g(t)− g∞‖L∞(Ω)

[

‖ut(t)‖L2(Ω) + 1
]

we see that, in fact, Φ ∈ L1loc(0,+∞) and ζ and Φ satisfy (18). So, for this choice

of ζ and Φ, (19) is verified.

Applying Lemma 2.10, the result is proved, since

∫ t+1

t
‖g(τ)− g∞‖L∞(Ω) ‖ut(τ)‖L2(Ω) dτ ≤

≤ ‖g(τ)− g∞‖L∞(Ω×]t,t+1[)
(
∫

Ω×]t,t+1[
|ut|2

)
1
2

≤ DD̃0

tγ−
1
2

+
DD̃1
tγ

−→ 0 when t→ +∞ ,

being D̃0 and D̃1 constants (independent of t).

3 – Other problems with gradient constraint

There are problems with gradient constraint, well known in the literature, and

which are related with this one.

We are going to define now three other problems related with the variational

problem (2). It is our aim in this section to study whether this problem is

equivalent to each one of the three problems defined here.

In this section we impose the additional assumptions on f and g:

f = f(t) (i.e. f is independent of x), f ∈ L∞(0, T ) ,

g ∈ L∞(0, T ;C2(Ω)) ∩W 1,∞(0, T ;L∞(Ω)), ∂Ω is of class C2 .
(23)

There are two main reasons for the choice of the function f depending only

on t. The first one is a historical reason. In fact, the first problem with gradient
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constraint known in the literature is the elastic-plastic torsion problem, the el-

liptic variational inequality considered in (16), with gradient constraint g∞ ≡ 1

and f a positive constant. For this first problem, with a clear physical meaning,

equivalence with a double obstacle problem, with obstacles ϕ(x) = d(x, ∂Ω) and

ϕ(x) = −d(x, ∂Ω), was proved by Caffareli and Friedman in [3]. Equivalence of

this specific problem with a Lagrange multiplier problem was also proved, for

simply connected domains, by Brèzis in [2], and for multiply connected domains

by Gerhardt, in [6]. Even in the case of the equation with gradient constraint,

Evans ([5]) refers, without proving, the truth of the equivalence, when the gradi-

ent constraint is one, of the equation with gradient constrain and the variational

elastic-plastic torsion problem, alerting to the fact that this equivalence is not

true, in the general case. The second and more important reason to consider f

depending only on the time parameter is that any natural way to establish equiv-

alence among all these problems depends on the application of the maximum

principle and on the obtainance of very precise estimates on the gradient of the

solutions of each of these problems. Considering f not constant in x would allow

us to obtain gradient bounds but not the necessary ones to prove equivalence

among the problems.

We consider first the double obstacle problem. To define it, let, for x, z ∈ Ω,

Lt(x, z) = inf

{
∫ δ

0
g(ξ(s), t) ds : δ > 0, ξ : [0, δ]→ Ω, ξ smooth,

ξ(0) = x, ξ(δ) = z, |ξ′| ≤ 1

}

,

ϕ(x, t) =
∨

{w(x) : w ∈ Kg(t)} ,(24)

ϕ(x, t) =
∧

{w(x) : w ∈ Kg(t)} .(25)

The function Lt is a metric and it can be shown (see [15], theorem 5.1, page

117) that

ϕ(x, t) = inf
z∈∂Ω

{Lt(x, z)} = Lt(x, ∂Ω)

and that

ϕ(x, t) = sup
z∈∂Ω

{−Lt(x, z)} = −Lt(x, ∂Ω) .

In the special case where g ≡ 1, then Lt is the geodesic distance to ∂Ω and,

if Ω is convex, Lt is the usual distance to ∂Ω.

Consider the following closed convex set with two obstacles

K(t) =
{

w ∈ H1
0 (Ω): ϕ(x, t) ≤ w(x) ≤ ϕ(x, t) for a.e. x in Ω

}

.(26)
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The double obstacle problem is defined as follows:

To find u ∈ L∞(0, T ;H1
0 (Ω)) such that



























u(t) ∈ K(t) for a.e. t ∈ I , u(0) = h ,

∫

Ω
ut(t) (v(t)− u(t)) +

∫

Ω
∇u(t)·∇(v(t)− u(t)) ≥

∫

Ω
f(t) (v(t)− u(t)) ,

∀ v ∈ L∞(0, T ;H1
0 (Ω)) : v(t) ∈ K(t), for a.e. t ∈ I .

(27)

It was shown by Caffarelli and Friedman in [3], that the elliptic formulation of

the variational inequality with constant gradient constraint is equivalent to the

double obstacle problem. The equivalence is still true for the parabolic case and

constant gradient constraint (see [20]). We intend to prove here the equivalence

between these two problems, with non-constant gradient constraint g, as long as

g satisfy suitable assumptions.

The following Lagrange multiplier problem is also related with the problem

(2):

To find (u, λ)∈
[

L∞(0, T ;W 1,∞
0 (Ω)) ∩W 1,∞(0, T ;L2(Ω))

]

×L∞(QT ) such that



















ut −∇·(λ∇u) = f in QT ,

λ ∈ k(|∇u|2 − g2) ,

u(0) = h in Ω0 , u|Σ = 0 ,

(28)

where k is the maximal monotone graph defined by k(s)=1 if s<0, k(0)=[1,+∞[.

The existence of solution for the elliptic case was proved by Gerhardt ([6]) in

the case where f is constant, the boundary condition is zero and g ≡ 1, as well as

its equivalence with the elastic-plastic torsion problem. The parabolic case with

non-homogeneous boundary condition was considered in [20].

Let us consider also the following parabolic equation with gradient constraint:

to find u ∈W 1,∞(0, T ;L∞(Ω)) ∩ L∞(0, T ;W 1,∞(Ω)) ∩W 2,1
p,loc(QT ) such that







max
{

ut −∆u− f, |∇u| − g
}

= 0 in QT ,

u(0) = h in Ω0 , u|Σ = 0 .
(29)

It is easily seen that, when g is constant and f = f(t), problems (2) and (29)

are equivalent.
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Zhu ([23]) has proved existence and (additional) regularity of solution for a

similar problem, if f ≥ 0 (depending on (x, t)). More precisely, he studied the

problem










min
{

ut + Lu+ f, −|∇u|+ g
}

= 0 in RN× R+0 ,

u(x, T ) = 0 ∀x ∈ RN ,

where L is an elliptic operator and T is a fixed instant.

3.1. Equivalence with the double obstacle problem

In this subsection, we present firstly a brief proof of existence of solution of

problem (27). The equivalence between problem (2) and problem (27) is obtained

when

(g2)t −∆(g2) ≥ 0 .(30)

Theorem 3.1. With the assumption (3), problem (27) has a unique

solution.

In order to prove this theorem, we are going to present some auxiliary propo-

sitions first.

Proposition 3.2. Let ϕ and ϕ be the obstacles defined, respectively, in (24)

and in (25). We have

ϕ, ϕ ∈ L∞(0, T ;W 1,∞(Ω)) ∩W 1,∞(0, T ;L∞(Ω)) ,

for a.e. (x, t) ∈ QT |∇ϕ(x, t)| = |∇ϕ(x, t)| = g(x, t) ,(31)

for a.e. t ∈ I ∀x0 ∈ ∂Ω |∇ϕ(x0, t)| = |∇ϕ(x0, t)| = g(x0, t) ,(32)

∃C > 0: ∆ϕ ≤ C, ∆ϕ ≥ −C, in L∞(0, T ;D′(Ω)) .(33)

Proof: Since ϕ(x, t) = Lt(x, ∂Ω), Lt is continuous and ∂Ω is compact, there

exists z ∈ ∂Ω such that ϕ(x, t) = Lt(x, z). So,

∀ ε > 0 ∃ δε0 > 0 ∃ ξε : [0, δε0]→ Ω: ξε(0) = x, ξε(δ
ε
0) = z, |ξ′ε| ≤ 1 ,

∫ δε
0

0
g(ξε(s), t) ds− ε ≤ ϕ(x, t) ≤

∫ δε
0

0
g(ξε(s), t) ds .
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Since, obviously, given h > 0, we have Lt+h(x, z) ≤
∫ δε

0

0
g(ξε(s), t+ h) ds, then

Lt+h(x, z)− Lt(x, z)

h
≤
∫ δε

0

0

g(ξε(s), t+ h)− g(ξε(s), t)
h

ds +
ε

h

=

∫ δε
0

0

[

gt(ξε(s), η(h))
]

ds + ε/h ≤ C ,

where t < η(h) < t + h and C is a constant, if we choose, for instance, ε = h2,

noticing that gt ∈ L∞(QT ) and that δε0 is bounded from above independently of

h (depending on ‖g‖L∞(QT ) and on Ω).

Analogously,

∀h>0 ∀ ε>0 ∃ δε,h0 >0 ∃ ζhε : [0, δε,h0 ]→Ω: ζhε (0)=x, ζ
h
ε (δ

ε,h
0 )=z, |(ζhε )′|≤1 ,

∫ δε,h
0

0
g(ζhε (s), t+ h) ds − ε ≤ ϕ(x, t+ h) ≤

∫ δε,h
0

0
g(ζhε (s), t+ h) ds

and, of course, Lt(x, z) ≤
∫ δε,h

0

0
g(ζhε (s), t) ds, so,

Lt+h(x, z)− Lt(x, z)

h
≥
∫ δε,h

0

0

g(ζhε (s), t+ h)− g(ζhε (s), t)
h

ds − ε

h

=

∫ δε,h
0

0

[

gt(ζ
h
ε (s), α(h))

]

ds − ε/h ≥ C ,

being t < α(h) < t + h and, for a choice of ε = h2, C is, as above, independent

of h. Then ϕt ∈ L∞(QT ) and so, ϕ ∈W 1,∞(0, T ;L∞(Ω)).

By theorem 5.1, page 117 of [15], we know that, for a.e. t ∈ I, ϕ(t) ∈W 1,∞(Ω)

and that (31) is verified.

By theorem 8.2, page 179 of [15], we know that, if Ωδ = {x ∈ Ω: d(x, ∂Ω)≥δ}
(where δ > 0), then

∃ δ0 > 0 for a.e. t ∈ I ϕ(t) ∈ C2(Ω\Ωδ0) .(34)

So, we have (32) and, using again theorem 5.1, page 117 of [15], we also have

that

∀ δ > 0 ∃Cδ > 0 for a.e. t ∈ I : ∆ϕ(t) ≤ Cδ in D′(Ωδ) .(35)

So, (33) follows immediately for ϕ from (34) and (35). The proof for the

function ϕ is analogous.
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Consider the following family of penalized problems











zεt −∆zε +
1

ε

(

zε − (zε∧ ϕ) ∨ ϕ
)

= f in QT ,

zε(0) = h , zε|Σ = 0 .

(36)

Proposition 3.3. Problem (36) has a unique solution zε ∈W 2,1
p (QT ), for

any p ∈ [1,+∞[ and

i) the set
{1

ε
(zε− (zε∧ ϕ) ∨ ϕ) : ε ∈ ]0, 1[

}

is bounded in L∞(QT );

ii) the set {zε : ε ∈ ]0, 1[ } is bounded in W 2,1
p (QT ), for any p ∈ [1,+∞[.

Proof: Let wε = zε − h. Then






wε
t −∆wε + 1

ε

(

(wε + h)− ((wε + h) ∧ ϕ) ∨ ϕ
)

= f −∆h in QT ,

wε = 0 on Σ ∪ Ω0 .

This problem has a unique solution w ∈ L2(0, T ;H1
0 (Ω)) (see [14], pg. 162)

and so, problem (36) has a unique solution zε ∈ L2(0, T ;H1(Ω)).

Let ψ = ϕ + Mε, where M is a positive constant to be chosen later. By

(33), we know that ∆ϕ(x, t) ≤ C in L∞(0, T ;D′(Ω)) and we also know that

ϕt ∈ L∞(QT ). Then, ψ is a supersolution of problem (36), i.e., if Lξ = ξt −
∆ξ + 1

ε

(

ξ − (ξ ∧ ϕ) ∨ ϕ
)

, then

Lψ − f ≥ 0 in L∞(0, T ;D′(Ω)) ,(37)

as long as we impose M ≥ ‖ϕt‖L∞(QT ) + C + ‖f‖L∞(0,T ). And, for M ≥
‖ϕ

t
‖L∞(QT ) + C + ‖f‖L∞(0,T ), ψ = ϕ −Mε is a subsolution of problem (36).

So

(Lzε − Lψ) Φ+ ≤ 0 ∀Φ ∈ L∞(0, T ;D(Ω))

and, consequently, as we can approximate zε−ψ by functions in L∞(0, T ;D(Ω)),
we have

(Lzε − Lψ) (zε − ψ)+ ≤ 0 .

Easy calculations show that

1

2

∫

Ω

[

(ψ(t)− zε(t))+
]2

+

∫

Qt

|∇(ψ − zε)+|2 ≤ 0

and, as a consequence, zε ≤ ψ a.e. in QT .
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Analogously we prove that zε ≥ ψ a.e. in QT .

In particular, we conclude that

−M ≤ 1

ε

(

zε − (zε ∧ ϕ) ∨ ϕ)
)

≤ M ,

which proves i).

From the classical theory for parabolic equations (see [12], theorem 9.1, page

341), since f − 1

ε

(

zε − (zε ∧ ϕ) ∨ ϕ)
)

is bounded in L∞(QT ) independently of ε,

∀ p ∈ [1,+∞[ ∃C > 0, C independent of ε : ‖zε‖
W 2,1

p (QT )
≤ C .

Proof of Theorem 3.1: By the preceding proposition, we know that

{zε : ε ∈ ]0, 1[ } is a bounded subset in W 2,1
p (QT ), for any p ≥ 1. So, there exists

a subsequence converging weakly to some function u∗, in this space. This conver-

gence is strong in L2(0, T ;H1(Ω)) (see, for instance, [13], pg. 58). On the other

hand, zεt ⇀ u∗t weakly in L2(QT ).

Multiplying the first equation of problem (36) by v− zε, being v(t) a function

belonging to K(t), for a.e. t ∈ I, integrating over QT , and using the fact that
∫

QT

1

ε

(

zε − (zε ∧ ϕ) ∨ ϕ
)

(v − zε) ≤ 0 ,

we obtain
∫

QT

zεt (v − zε) +

∫

QT

∇zε ·∇(v − zε) ≥
∫

QT

f(v − zε) ,

∀ v : v(t) ∈ K(t) for a.e. t ∈ [0, T ] .

Letting ε→ 0, we see that
∫

QT

u∗t (v − u∗) +

∫

QT

∇u∗ ·∇(v − u∗) ≥
∫

QT

f(v − u∗) ,

∀ v : v(t) ∈ K(t) for a.e. t ∈ [0, T ] .

Since

ϕ(x, t)−Mε ≤ zε(x, t) ≤ ϕ(x, t) +Mε, for a.e. (x, t) ∈ QT ,

letting ε→ 0, we obtain

ϕ(x, t) ≤ u∗(x, t) ≤ ϕ(x, t), for a.e. (x, t) ∈ QT ,

which means that u∗(t) ∈ K(t) for a.e. t ∈ I.
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Given v such that v(t) ∈ K(t) for a.e. t ∈ I and given t0 ∈ I, δ > 0 such that

Iδ = ]t0 − δ, t0 + δ[ ⊂ I, define

w(t) =







u∗(t) if t ∈ I\Iδ ,

v(t) if t ∈ Iδ .

Obviously, w(t) ∈ K(t) for a.e. t ∈ I and so,
∫

QT

u∗t (w − u∗) +

∫

QT

∇u∗ ·∇(w − u∗) ≥
∫

QT

f(w − u∗) ,

and, dividing the inequality by δ, we obtain

1

δ

∫ t0+δ

t0−δ

∫

Ω
u∗t (v − u∗) +

1

δ

∫ t0+δ

t0−δ

∫

Ω
∇u∗ ·∇(v − u∗) ≥ 1

δ

∫ t0+δ

t0−δ

∫

Ω
f(v − u∗) ,

and, letting δ → 0, where t0 is a Lebesgue point, we have
∫

Ω
u∗t (t0) (v(t0)− u∗(t0)) +

∫

Ω
∇u∗(t0)·∇(v(t0)− u∗(t0)) ≥

≥
∫

Ω
f(t0) (v(t0)− u∗(t0)) .

So, u∗ is solution of problem (27).

The uniqueness of solution follows immediately from the fact that, if u1 and u2
are two solutions of problem (27) then, substituting v = u2(t) in the variational

inequality when u1 is considered as a solution and reciprocally and subtracting

the inequalities obtained, one from the other, we get
∫

Ω
(u1(t)− u2(t))2 +

∫

Qt

|∇(u1 − u2)|2 ≤ 0

and so u1 = u2 a.e. in QT .

Proposition 3.4. Suppose that the assumptions (3) and (23) are verified.

Then

∃M > 0 ∀ (x, t) ∈ Σ ∪ Ω0 |∇zε(x, t)| ≤ g(x, t) +M
√
ε .(38)

Proof: Since ∂Ω is of class C2, it satisfies the exterior sphere condition, i.e.

∃R > 0 ∀x0 ∈ ∂Ω ∃ y0 ∈ RN DR(y0) ∩ Ω = {x0} ,

where DR(y0) = {x ∈ RN : d(x, y0) ≤ R}. Fixed x0 ∈ ∂Ω we can, with a linear

change of variables, suppose that y0 = 0.
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Let ξε(s) = e
− s√

ε and define

ψ(x, t) = ϕ(x, t) +M ε
(

1− ξε(‖x‖ −R)
)

,

ψ(x, t) = ϕ(x, t)−M ε
(

1− ξε(‖x‖ −R)
)

.

We are going to prove that ψ and ψ are, respectively, a supersolution and a

subsolution of problem (36), in the same sense as in (37).

Notice that

ψ|Σ ≥ 0 = zε|Σ ≥ ψ|Σ , ψ(x0, t) = 0 = zε(x0, t) = ψ(x0, t) ,

ψ|Ω0
≥ ϕ|Ω0

≥ h ≥ ϕ|Ω0
≥ ψ|Ω0

.

Let us denote ξε(‖x‖ −R) simply by ξε(−). Easy calculations show that

ψt = ϕt ,
1

ε

(

ψ − (ψ ∧ ϕ) ∨ ϕ
)

=M(1− ξε(−)) ,

∆ψ = ∆ϕ−M ξε(−) +M
√
ε ξε(−)

n− 1

‖x‖ .

Then,

ψt −∆ψ +
1

ε

(

ψ − (ψ ∧ ϕ) ∨ ϕ
)

=

= ϕt −∆ϕ+M ξε(−)−M
√
ε ξε(−)

n− 1

‖x‖ +M(1− ξε(−))

≥ ϕt −∆ϕ+M

(

1−
√
ε
n− 1

R

)

.

Choosing ε such that
√
ε n−1

R ≤ 1
2 andM ≥ 2

(

‖ϕt‖L∞(QT ) + C + ‖f‖L∞(0,T )
)

,

we verify that ψ is a supersolution of problem (36). Analogously, for M ≥
2
(

‖ϕ
t
‖L∞(QT ) + C + ‖f‖L∞(0,T )

)

, ψ is a subsolution, so ψ ≤ zε ≤ ψ.

In particular, recalling that zε ∈W 2,1
p (QT ), for any p ∈ [1,+∞[ and the in-

clusionW 2,1
p (QT ) ↪→ C1,0α (Ω× [0, T ]), if p > n (and α = 1−n/p), then, ∇zε(x0, t)

exists for every (x0, t) ∈ Σ ∪ Ω0 and

|∇zε(x0, t)| ≤ max
{

|∇ψ(x0, t)|, |∇ψ(x0, t)|
}

.

But,

|∇ψ(x0, t)| =
∣

∣

∣

∣

∇ϕ(x0, t) +M
√
ε ξε(−)

x0
‖x0‖

∣

∣

∣

∣

≤ g(x0, t) +M
√
ε ,

and also |∇ψ(x0, t)| ≤ g(x0, t) +M
√
ε.

Besides that, |∇zε(x, 0)| = |∇h(x)| ≤ g(x, 0), which completes the proof.
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Theorem 3.5. Suppose that the assumptions (3), (23) and (30) are verified.

Then problem (2) is equivalent to problem (27).

Proof: Differentiate the first equation of problem (36) with respect to xk,

multiply by zεxk
and sum over k, denoting v = |∇zε|2. Since 1

2 vt = zεxk
zεxkt

and
1
2 ∆v = (zεxixk

)2 + zεxk
∆zεxk

, we get then

1

2
vt −

1

2
∆v +

1

ε

(

v −∇z̃ε ·∇zε
)

≤ 0 ,

where z̃ε = (zε ∧ ϕ) ∨ ϕ and using the Cauchy–Schwartz inequality,

1

2
vt −

1

2
∆v +

1

ε
(v − |∇z̃ε| v 1

2 ) ≤ 0 .(39)

Since we have proved in Proposition 3.4 that v(x, t) ≤ (g(x, t) +M
√
ε)
2
, for

(x, t) ∈ Σ∪Ω0, there exists N independent of ε such that v(x, t) ≤ g2(x, t)+N
√
ε

on Σ ∪ Ω0. Then (v − (g2 +N
√
ε))+ is zero on Σ ∪ Ω0.

Notice that the expression
2

ε
(v − |∇z̃ε| v 1

2 ) (v − (g2 +N
√
ε))+ is always non-

negative. In fact,

|∇z̃ε(x, t)| =







v(x, t) if ϕ(x, t) < zε(x, t) < ϕ(x, t) ,

g(x, t) if zε(x, t) ≥ ϕ(x, t) or zε(x, t) ≤ ϕ(x, t) .

Then, at a given point (x, t) ∈ QT ,

v ≤ g2 +N
√
ε =⇒ 2

ε
(v − |∇z̃ε| v 1

2 )
(

v − (g2 +N
√
ε)
)+

= 0 ,

v > g2 +N
√
ε and ϕ < zε < ϕ =⇒ v − |∇z̃ε| v 1

2 = 0

=⇒ 2

ε
(v − |∇z̃ε| v 1

2 )
(

v − (g2 +N
√
ε)
)+

= 0 ,

v > g2 +N
√
ε and zε ≥ ϕ or zε ≤ ϕ =⇒

=⇒ v − |∇z̃ε| v 1
2 = v

1
2 (v

1
2 − g) > 0

=⇒ 2

ε
(v − |∇z̃ε| v 1

2 )
(

v − (g2 +N
√
ε)
)+

> 0 .

Multiplying the inequality (39) by (v − (g2 + N
√
ε))+ and integrating over

Qt= Ω× [0, t], we have
∫

Qt

vt
(

v − (g2 +N
√
ε)
)+

+

∫

Qt

∇v ·∇
(

v − (g2 +N
√
ε)
)+
≤ 0
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and so

1

2

∫

Ω

[

(

v(t)− (g2(t) +N
√
ε)
)+
]2

− 1

2

∫

Ω

[

(

v(0)− (g2(0) +N
√
ε)
)+
]2

+

∫

Qt

∣

∣

∣

∣

∇
(

v − (g2 +N
√
ε)
)+
∣

∣

∣

∣

2

≤

≤
∫

Qt

−
[

(g2 +N
√
ε)t −∆(g2 +N

√
ε)
] (

v − (g +N
√
ε)2
)+

≤ 0 ,

using the assumption (30).

Since (v(0)− (g2(0)+N
√
ε))+ ≡ 0, we conclude that (v− (g2+N

√
ε))+ ≡ 0,

which means that

|∇zε|2 ≤ g2 +N
√
ε a.e. in QT ,

and so, if u∗ is the solution of problem (27), since u∗ is the limit in L∞(0, T ;H1
0 (Ω))

of zε, when ε → 0, we have |∇u∗| ≤ g a.e. in QT . In particular, u∗(t) ∈ Kg(t).

Since Kg(t)⊆ K(t), then u∗ (by uniqueness) is also the solution of problem (2).

3.2. Equivalence with the Lagrange multiplier problem

We begin this subsection by proving existence of a solution for the Lagrange

multiplier problem (28), when the following assumption is verified:

(g2)t ≥ 0 , ∆(g2) ≤ 0 .(40)

We would like to refer that the proof of existence of solution of this problem

is very technical, even in the case where g ≡ 1. As we have done in the first

section, the problem is approximated by a family of quasilinear parabolic prob-

lems (depending on a parameter ε) and the necessary estimates to pass to the

limit are obtained. The more difficult estimates are the uniform boundedeness of

the gradient and the uniform (local) estimate in L2(0, T ;H2(Ω)). Although the

procedure for both cases (g constant and non-constant) is the same, these two

estimates are more difficult in the second case, since the partial derivatives of g

are not zero.

Afterwards, with the same assumptions, we prove that if (u, λ) is a solution

of (28) then u solves the variational inequality (2).

Consider the approximated problem (4), with kε(s)= e
Ns
ε if s ≥ ε, where N

is a constant to be chosen later. In addition to the conditions imposed in the

definition of the problem, we impose that kε is a C2,1 function.
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Recall that problem (4) has a solution uε ∈ C2,1α,α/2(QT ), 0 < α < 1.

Proposition 3.6. Suppose that the assumptions (3) and (23) are verified.

Then

∃C > 0 |∇uε(x, t)|2 ≤ g2ε(x, t) + C for a.e. (x, t) ∈ Σ ∪ Ω0 .(41)

Proof: Let ϕε and ϕ
ε
be defined as in (24) and (25), respectively, with g

replaced by
√

g2ε + ε.

Let, for s ∈ R, ηε(s) = s+ ε(1− e−Bs), where B is a positive constant, to be

chosen later, depending on the given data and independent of ε.

We are going to prove that ψ = ηε(ϕε) and ψ = ηε(ϕε
) are, respectively, a

supersolution and a subsolution of problem (4).

Define Lψ = ψt −∇·(kε(|∇ψ|2 − g2ε)∇ψ). Due to the monotonicity of kε, it

is enough to prove that

Lψ ≥ f = Luε in QT , ψ|Σ∪Ω0
≥ uε|Σ∪Ω0

,(42)

and

Lψ ≤ f = Luε in QT , ψ|Σ∪Ω0
≤ uε|Σ∪Ω0

.(43)

We present here only the calculations for the supersolution, since the calcula-

tions for the subsolution are similar.

Obviously, since ηε is an increasing function and ηε(0) = 0, we have:

• for (x, t) ∈ Σ, ψ(x, t) = ηε(ϕε(x, t)) = ηε(0) = 0 ;

• for (x, t) ∈ Ω0, ψ(x, 0) = ηε(ϕε(x, 0)) ≥ ϕε(x, 0) ≥ hε(x) = uε(x, 0) .

Easy calculations show that

ψxi
= η′ε(ϕ

ε)ϕε
xi , |∇ψ| = η′ε(ϕ

ε)
√

g2ε + ε ,

ψxixj
= η′′ε (ϕ

ε)ϕε
xi
ϕε
xj

+ η′ε(ϕ
ε)ϕε

xixj
,

∆ψ = η′′ε (ϕ
ε) (g2ε + ε) + η′ε(ϕ

ε)∆ϕε ,

ψxi
ψxj

ψxixj
= (η′ε(ϕ

ε))3 ϕε
xi
ϕε
xj
ϕε
xixj

+ (η′ε(ϕ
ε))2 η′′ε (ϕ

ε) |∇ϕε|4

and, noticing that ϕε
xi
ϕε
xixj

= gεgεxj
, then ϕε

xi
ϕε
xj
ϕε
xixj

= gε∇gε ·∇ϕε.

Denoting ξ(s) = e−Bs, we have

η′ε(s) = 1 + εB ξ(s) , η′′ε (s) = −εB2 ξ(s) .
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Calculate now Lψ (to simplify, we will omit the argument ϕε in η′ε and in ξ):

Lψ = ψt − k′ε(|∇ψ|2 − g2ε) (2ψxi
ψxj

ψxixj
− 2 gε gεxi

ψxi
)− kε(|∇ψ|2 − g2ε)∆ψ

= η′ε ϕ
ε
t + 2 k′ε

(

(

η′ε
)2

(g2ε + ε)− g2ε
)

·
{

[

−
(

η′ε
)2
η′′ε (g

2
ε + ε)2−

(

η′ε
)3
gε∇gε ·∇ϕε

]

+ η′ε gε∇gε ·∇ϕε
}

+ kε
(

(

η′ε
)2

(g2ε + ε)− g2ε
) [

− η′ε ∆ϕε − η′′ε (g2ε + ε)
]

.

Notice that:

• for s ≥ ε we have k′ε(s) =
N
ε kε(s) and (η′ε)

2 (g2ε + ε)− g2ε ≥ ε ;

• ∃C0 > 0 (depending only on ‖ϕ‖∞) such that 1 ≥ ξ = ξ(ϕε) ≥ e−BC0 ;

• kε ≥ 1, g2ε ≥ m2 ;

• ϕε
t is bounded independently of ε, ∆ϕε ≤ C, C positive constant indepen-

dent of ε ;

• 1 ≤ η′ε(ϕ
ε) = 1 + εB ξ(ϕε) ≤ 1 + εB ;

• η′ε
1− (η′ε)

2

ε
gε∇gε · ∇ϕε = −(2B η′ε ξ + εB2 η′ε ξ

2) gε∇gε ·∇ϕε .

To prove (42) we only need to find B and N sufficiently large, independent of

ε, such that

kε

{

2N

[

B2(η′ε)
2 ξ(g2ε + ε)2+ η′ε

1−(η′ε)
2

ε
gε∇gε ·∇ϕε

]

− η′ε ∆ϕ
ε − η′′ε (g

2
ε+ ε)

}

≥

≥ η′ε(ϕ
ε) ‖ϕε

t‖L∞(QT ) + ‖f‖L∞(0,T ) ,

The second term is bounded from above by a positive constant C1 independent

of ε. Working with ε such that ε ≤ 1
B and noting that ‖gε∇gε·∇ϕε‖∞ ≤ X0, X0

not depending on ε, we see that

−η′ε ∆ϕε ≥ −(1 + εB)C ≥ −2C ,

−η′′ε (g2ε + ε) ≥ 0 ,

B2(η′ε)
2 ξ(g2ε+ ε)2+ η′ε

1−(η′ε)
2

ε
gε∇gε ·∇ϕε ≥ B2 ξ m4− (2B η′ε ξ + εB2 η′ε ξ

2)X0

= B ξ
(

Bm4 − η′ε(2 + εB ξ)X0
)

≥ B ξ (Bm4 − 6X0) .
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Choose B = (1 + 6X0)/m
4 (this choice comes from imposing that

Bm4 − 6X0 = 1). So,

2N

[

B2(η′ε)
2 ξ(g2ε + ε)2 + η′ε

1−(η′ε)
2

ε
gε∇gε ·∇ϕε

]

− η′ε ∆ϕ
ε − η′′ε (g

2
ε + ε) ≥

≥ 2N B ξ(Bm4 − 6X0)− 2C

≥ 2N B e−BC0 − 2C ≥ C1 ≥ 0 ,

as long as N ≥ C1 + 2C

2B e−BC0
.

Then, since kε ≥ 1, C1 ≥ 0

kε

{

2N

[

B2(η′ε)
2 ξ(g2ε+ ε)2+ η′ε

1−(η′ε)
2

ε
gε∇gε ·∇ϕε

]

− η′ε ∆ϕε− η′′ε (g2ε + ε)

}

≥

≥ kεC1 ≥ C1 ,

as we wanted to prove.

Since we have

ψ ≤ uε ≤ ψ in QT , ψ(x, t) = uε(x, t) = ψ(x, t) = 0 if (x, t) ∈ Σ ,

then

∀ (x, t) ∈ Σ |∇uε(x, t)| ≤ max
{

|∇ψ(x, t)|, |∇ψ(x, t)|
}

.

But, for (x, t) ∈ Σ,

|∇ψ(x, t)|2 =
(

η′ε(ϕε(x, t))
)2
|∇ϕε(x, t)| ≤ (1+εB)2 (g2ε(x, t)+ε) ≤ g2ε(x, t)+C ε ,

where C is a constant independent of ε. Analogously, |∇ψ(x, t)|2 ≤ g2ε(x, t)+Cε.

Since |∇uε(x, 0)| = |∇hε(x)| ≤ gε(x, 0), the proof is concluded.

Proposition 3.7. Suppose that the assumptions (3), (23) and (40) are ver-

ified. Then

∃C > 0 ∀ (x, t) ∈ QT |∇uε(x, t)|2 ≤ g2ε(x, t) + C ε .(44)

Proof: Let v = |∇uε|2 and w = v−g2ε . Since g satisfies (40), we may assume

that the approximations gε of g also verify
(

g2ε
)

t ≥ 0 and ∆g2ε ≤ 0. Differentiate

the first equation of problem (4) with respect to xk. Then,

uεxkt
− k′′ε (w)wxk

wxi
uεxi

− k′ε(w)wxixk
uεxi

− k′ε(w)wxi
uεxixk

−

− k′ε(w)wxk
uεxixi

− kε(w)u
ε
xixixk

= 0 .
(45)
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Multiplying (45) by uεxk
, summing over k, we obtain

uεxk
uεxkt

− k′′ε (w)u
ε
xi
uεxk

wxi
wxk

− k′ε(w)u
ε
xi
uεxk

wxixk
− k′ε(w)u

ε
xk
uεxixk

wxi
−

− k′ε(w)u
ε
xk
uεxixi

wxk
− kε(w)u

ε
xk
uεxixixk

= 0 .

Notice that

uεxk
uεxixixk

=
1

2
vxixi

− (uεxkxi
)2 .

Then

1

2
vt +

(

−k′′ε (w)uεxi
uεxk

wxi
− k′ε(w)

(

uεxi
uεxkxi

+ uεxixi
uεxk

))

wxk
−

(

k′ε(w)u
ε
xi
uεxk

)

wxixk
− 1

2
kε(w)∆v + kε(w) (u

ε
xixk

)2 = 0

and, denoting

aik = k′ε(w)u
ε
xi
uεxk

+
1

2
kε(w) δij ,

bk = −k′ε(w)
(

uεxi
uεxixk

+ uεxixi
uεxk

)

− k′′ε (w)u
ε
xi
uεxk

wxi

and recalling that v = w + g2ε , we obtain

1

2
wt − aik wxixk

− bk wxk
≤ −1

2

[

(g2ε)t − kε(w)∆(g2ε)
]

,

and, by the assumption (40) and the previous proposition, we have, in fact,











1

2
wt − aik wxixk

− bk wxk
≤ 0 .

w|Σ∪Ω0
≤ C ε ,

(46)

where C is a constant independent of ε.

Since uε is a function belonging to the class C2,1α,α/2(QT ) and kε is also a C2,α

function, the coefficients aik and bk are Hölder continuous functions. On the

other hand, we have
∑

i,k

aik ξi ξk ≥ 0 for all ξ ∈ Rn. So, by the weak maximum

principle for parabolic equations, if z = w − Cε,

z(x, t) ≤ max
Σ∪Ω0

{z} ≤ 0 ,

by the previous proposition. Since |∇uε|2 = v = z+ g2ε +Cε, we conclude (44).
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Proposition 3.8. Suppose that the assumption (23) is verified. Then

{

uε : ε ∈ ]0, 1[
}

is bounded in L2(0, T ;H2
loc(Ω)) .(47)

Proof: In this proof, since there is no risk of confusion, we are going to omit

the subscripts and the superscripts ε.

Given Ω′ ⊂⊂ Ω, let η belonging to D(Ω) be such that η|Ω′ ≡ 1. Multiply the

equation of problem (4) by −uxkxk
η2 and integrate over Qt = Ω×]0, t[. Then

∫

Qt

−ut uxkxk
η2 +

∫

Qt

(

k (|∇u|2 − g2)uxi

)

xi

uxkxk
η2 =

∫

Qt

f uxkxk
η2 .

We are going to consider each term of the equality above separately.

Notice that

∫

Qt

−ut uxkxk
η2 =

∫

Qt

(ut η
2)xk

uxk
(48)

=

∫ t

0

∫

Ω

1

2

[

(uxk
)2
]

t
η2 +

∫ t

0

∫

Ω
2ut uxk

η ηxk

=
1

2

∫

Ω

[

(uxk
)2(t)− (uxk

)2(0)
]

η2 +

∫

Qt

2ut uxk
η ηxk

.

The second term of the equality above is treated as follows:

∫

Qt

(

k (|∇u|2 − g2)uxi

)

xi

uxkxk
η2 = −

∫

Qt

k(|∇u|2 − g2)uxi

(

uxkxk
η2
)

xi

= −
∫

Qt

k(|∇u|2 − g2)uxi

(

uxkxkxi
η2 + uxkxk

2 η ηxi

)

=

∫

Qt

(

k(|∇u|2 − g2)uxi
η2
)

xk

uxkxi
−
∫

Qt

k(|∇u|2 − g2)uxi
2 η ηxi

uxkxk

=

∫

Qt

k′(|∇u|2 − g2)
(

2uxj
uxjxk

− 2 g gxk

)

uxi
η2 uxixk

+

∫

Qt

k(|∇u|2 − g2) (uxixk
)2 η2

+

∫

Qt

k(|∇u|2 − g2)uxi
uxixk

2 η ηxk
−
∫

Qt

k(|∇u|2 − g2)uxi
2 η ηxi

uxkxk

(49)
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=

∫

Qt

k′(|∇u|2 − g2)
(

2uxj
uxjxk

− 2 g gxk

) (

(uxi
uxixk

− g gxk
) + g gxk

)

η2

+

∫

Qt

k(|∇u|2 − g2) (uxixk
)2 η2 +

∫

Qt

k(|∇u|2 − g2)uxi
uxixk

2 η ηxk

−
∫

Qt

k(|∇u|2 − g2)uxi
2 η ηxi

uxkxk

= 2

∫

Qt

k′(|∇u|2− g2)
(

uxj
uxjxk

− g gxk

)2
η2 +

1

2

∫

Qt

[

k(|∇u|2− g2)
]

xk

[g2]xk
η2

+

∫

Qt

k(|∇u|2 − g2) (uxixk
)2 η2 +

∫

Qt

k(|∇u|2 − g2)uxi
uxixk

2 η ηxk

−
∫

Qt

k(|∇u|2 − g2)uxi
2 η ηxi

uxkxk
.

So, we have

1

2

∫

Ω

[

(uxk
)2(t)− (uxk

)2(0)
]

η2 +

∫

Qt

2ut uxk
η ηxk

+

∫

Qt

k′(|∇u|2 − g2)
(

2uxj
uxjxk

− 2 g gxk

)2
η2

+
1

2

∫

Qt

[

k(|∇u|2 − g2)
]

xk

[g2]xk
η2

+

∫

Qt

k(|∇u|2 − g2) (uxixk
)2 η2 +

∫

Qt

k(|∇u|2 − g2)uxi
uxixk

2 η ηxk

−
∫

Qt

k(|∇u|2 − g2)uxi
2 η ηxi

uxkxk
η2 = −

∫

Qt

f uxkxk
η2 .

(50)

Notice that

∫

Ω
(uxk

)2(t) η2 ≥ 0 ,

∫

Ω
(uxk

)2(0) =

∫

Ω
(hxk

)2 η2 ,

∫

Qt

2ut uxk
η ηxk

≤ C0 , C0 constant independent of ε ,

∫

Qt

k′(|∇u|2 − g2)
(

2uxj
uxjxk

− 2 g gxk

)2
η2 ≥ 0 ,

∫

Qt

k(|∇u|2 − g2) (uxixk
)2 η2 ≥

∫

Qt

(uxixk
)2 η2 ,
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using Hölder and Young inequalities, we see that

∫

Qt

k(|∇u|2 − g2)uxi
uxixk

2 η ηxk
≤

≤
∫

Qt

k(|∇u|2 − g2) (uxi
)2 η2xk

+
1

4

∫

Qt

k(|∇u|2 − g2) (uxixk
)2 η2 ,

and, obviously,

∫

Qt

k(|∇u|2 − g2) (uxi
)2 η2xk

≤ C1 , C1 constant independent of ε .

Analogously,

∫

Qt

k(|∇u|2 − g2)uxi
2 η ηxi

uxkxk
≤

≤
∫

Qt

k(|∇u|2 − g2) (uxi
)2 η2xi

+
1

4

∫

Qt

k(|∇u|2 − g2) (uxkxk
)2 η2

and
∫

Qt

k(|∇u|2 − g2) (uxi
)2 η2xi

≤ C1 , C1 defined above .

On the other hand,

∫

Qt

f uxkxk
η2 ≤ 1

4

∫

Qt

(uxkxk
)2 η2 +

∫

Qt

f2 η2

and

∫

Qt

[

k(|∇u|2 − g2)
]

xk

[

g2
]

xk

η2 = −
∫

Qt

k(|∇u|2 − g2)
([

g2
]

xk

η2
)

xk

≤ C2 ,

C3 constant independent of ε.

Then,

1

4

∫

QT

(uxixk
)2 η2 ≤

∫

Ω
(hxk

)2 η2 + C0 + 2C1 + 2C2 +

∫

QT

f2 η2

and the proof is concluded.

Theorem 3.9. With the assumptions (3), (23) and (40), problem (28) has a

solution.
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Proof: We have proved that
{

uε : ε ∈ ]0, 1[
}

is uniformly bounded

in W =
{

v ∈ L2(0, T ;H2
loc(Ω)) : vt ∈ L2(QT )

}

.

If we consider W with the weak topology, we know that {uε : ε ∈ ]0, 1[}
belongs to a compact subset of W (see [13], pg. 58). So, there exists u ∈W such

that, for the weak topology, uε ⇀ u in this space, when ε→ 0.

So, uε −→ u strongly in L2(0, T ;H1
0 (Ω

′)), for all Ω′ with smooth boundary

and compactly included in Ω and ∇uε(x, t) −→ ∇u(x, t) for a.e. (x, t) ∈ QT .

Recalling that

∃C > 0 ∀ (x, t) ∈ QT |∇uε(x, t)|2 ≤ g2ε(x, t) + C ε ,

we have

1 ≤ kε(|∇uε|2 − g2ε) ≤ eNC .

So, with the additional assumptions introduced in this subsection,

kε(|∇uε|2 − g2ε) is uniformly bounded not only in L1(QT ), as we have proved

in section 1, but also in L∞(QT ). So, there exists λ ∈ L∞(QT ) such that

kε(|∇uε|2 − g2ε)⇀ λ in L∞(QT ) weak- ∗ when ε→ 0

and so

kε(|∇uε|2 − g2ε)∇uε ⇀ λ∇u weakly in L2(QT ) when ε→ 0 .

Since ‖uεt‖L2(QT ) ≤ C, C independent of ε, we also have uεt ⇀ ut weakly in

L2(QT ) and so, passing to the limit in problem (4), we see that, in fact,






ut −∇·(λ∇u) = f in QT ,

u|Σ = 0 , u(0) = h ,

and it only remains to prove that λ ∈ k(|∇u|2 − g2ε) to conclude that the pair

(u, λ) is solution of problem (28).

Since Λ = {(x, t) ∈ QT : |∇u(x, t)| − g(x, t) < 0} is a measurable set and

kε
(

|∇uε(x, t)|2 − g2ε(x, t)
)

−→ 1 when ε→ 0, for a.e. (x, t) ∈ Λ ,

kε
(

|∇uε(x, t)|2 − g2ε(x, t)
)

≥ 1 for a.e. (x, t) ∈ QT

we conclude that λ = 1 in Λ and λ ≥ 1 in QT . So, λ ∈ k(|∇u|2 − g2ε), as we

wanted to prove.
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Theorem 3.10. Suppose that the assumptions (3), (23) and (40) are verified.

Then, if (u, λ) is a solution of problem (28), then u is solution of problem (2).

Remark 3.11. From this theorem we may conclude that, under the assump-

tions (3), (23) and (40), if (u, λ) is a solution of problem (28), then u is unique,

but nothing is established about the uniqueness of λ. Uniqueness for λ was proved

by Brézis in [1], for the elliptic case, with g ≡ 1 and homogeneous boundary con-

dition. In [20], examples of non-uniqueness of λ can be found, when the boundary

consition is not homogeneous.

Proof of Theorem 3.10: Multiply the equation ut − ∇· (λ∇u) = f by

v(t) − u(t), with v ∈ L∞(0, T ;H1
0 (Ω)), v(t) ∈ Kg(t) for a.e. t ∈ I, and integrate

over Ω, to obtain

∫

Ω
ut(t) (v(t)−u(t))+

∫

Ω

(

(λ(t)−1)+1
)

∇u(t)·∇(v(t)−u(t)) =
∫

Ω
f(t) (v(t)−u(t)) .

Notice that

(λ(t)− 1)∇u(t)·∇(v(t)− u(t)) ≤ (λ(t)− 1) |∇u(t)|
[

|∇v(t)| − |∇u(t)|
]

≤ (λ(t)− 1) |∇u(t)|
[

g(t)− |∇u(t)|
]

= 0 ,

since λ(x, t) = 1 whenever |∇u(x, t)| < g(x, t).

Then,

∫

Ω
ut(t) (v(t)− u(t)) +

∫

Ω
∇u(t)·∇(v(t)− u(t)) ≥

∫

Ω
f(t) (v(t)− u(t)) ,

∀ v ∈ Kg(t), for a.e. t ∈ I ,

as we wanted to prove. Besides that, u(t) ∈ Kg(t) for a.e. t ∈ I.

3.3. Equivalence with the equation with gradient constraint

In this subsection, the equation with gradient constraint (29) is considered.

We begin proving existence of solution of problem (29) if assumptions (3) and

∆h ∈ L∞(Ω) , f ∈W 1,∞(0, T ;L∞(Ω)) ,

−∆h(x) ≤ f(x, t) for a.e. (x, t) ∈ QT , (g2)t ≤ 0 ,
(51)
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are verified. We would like to remark that, in order to prove existence of solution,

we don’t need to assume that f is independent of the spatial variable x. The proof

has many similarities with the proof presented by Zhu in [23], where a general

linear parabolic equation with gradient constraint is considered in an unbounded

domain and for arbitrarily large times, with a zero condition given at a fixed

instant T , as well as with the proof of Evans ([5]), for the elliptic case.

The proof of equivalence between the variational inequality (2) and problem

(29) is presented if assumptions (3), (40) and (51) are verified (which implies, in

particular, that g is independent of t).

Theorem 3.12. Suppose that the assumptions (3) and (51) are verified.

Then problem (29) has a solution.

Proof: Consider the following family of problems







wε
t −∆wε + γε(|∇wε|2 − g2) = f ε in QT ,

wε
|Σ = 0 , wε(0) = hε ,

(52)

where γε : R → R is a C2, nondecreasing, convex function such that γε(s) = 0 if

s ≤ 0 and γε(s) =
s−ε
ε

for s ≥ 2 ε, f ε ∈ C2,1α,α/2(QT ), and hε ∈ C2α(Ω) are

approximations of f and h, respectively, satisfying −∆hε ≤ f ε and |∇hε|2 ≤
g2 + ε.

Problem (52) has a unique solution wε ∈ C2,1α,α/2(QT ), by the classical theory

of quasilinear parabolic equations (see [12], theorem 4.1, page 558).

Since γε ≥ 0, we have wε
t −∆wε ≤ f ε and so, by the maximum principle for

parabolic equations,

∃C > 0 independent of ε : ‖wε‖L∞(QT ) ≤ C .

Let us prove now that wε
t is bounded in L∞(QT ) independently of ε: differ-

entiate the first equation of problem (52) in order to t and call z = wε
t . Then







zt −∆z + γ′ε(|∇wε|2 − g2) (2wε
xi
zxi
− (g2)t) = f ε

t in QT ,

z|Σ = 0 , z(0) = ∆hε + f ε(0) ,

Since γ′ε ≥ 0 and
(

g2
)

t ≤ 0, we have, in fact that

zt −∆z + bizxi
≤ f ε

t , where bi = 2 γ′ε(|∇wε|2 − g2)wε
xi
.
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So, by the maximum principle

∃C1 > 0 independent of ε : ‖wε
t ‖L∞(0,T ;L2(Ω)) ≤ C1.(53)

The next step consists in obtaining uniform gradient estimates (independent

of ε) for ∇wε. Let ϕε be defined as in (24) such that |∇ϕε|2 = g2 +Mε, where

M is a constant to be chosen later. It is easy to verify that, for M sufficiently big

(M ≥ ‖ϕε
t‖L∞(QT ) + supQT

{∆ϕε}+ ‖f ε‖L∞(QT )), independent of ε, then ϕ
ε is a

supersolution of problem (52). On the other hand, hε is obviously a subsolution

of the same problem. Then

hε ≤ wε ≤ ϕε in QT , hε|Σ = wε
|Σ = ϕε

|Σ , hε = wε(0) ≤ ϕε(0) ,

and so

|∇wε(x, t)|2 ≤ max
{

|∇hε(x)|2, |∇ϕε(x, t)|2
}

≤ g2(x, t) + ε+Mε for (x, t) ∈ Σ ∪ Ω0 .

Let v = |∇wε|2 − wε. The maximum of v may be attained at the parabolic

boundary Σ∪Ω0 or at QT \(Σ∪Ω0). If the first case happens, since |∇wε| and wε

are bounded independently of ε on Σ∪Ω0, then the bound of v, and consequently,

the bound of |∇wε| is independent of ε. Let us consider now the second case, i.e.

the maximum of v is attained at a point (x0, t0) 6∈ Σ ∪ Ω0. Then, at this point

(x0, t0), we have

vxi
= 0 , vt = 0 , vt −∆v ≥ 0 .

Since

vt = 2wε
xj
wε

xjt − w
ε
t , ∆v = 2(wε

xixj
)2 + 2wε

xj
∆wε

xj
−∆wε ,

and
∆wε = wε

t + γε(|∇wε|2 − g2)− f ε ,

∆wε
xj

= wε
xjt + γ′ε(|∇wε|2 − g2) (|∇wε|2 − g2)xj

,

omitting the argument of γε to simplify, we get at (x0, t0),

0 ≤ vt −∆v = 2wε
xj
wε

xjt − wε
t − 2 (wε

xi
wε

xj
)2

− 2wε
xj

[

wε
xjt + γ′ε(−) (|∇wε|2 − g2)xj

]

+
[

wε
t + γε(−)− f ε

]

≤ − 2 γ′ε(−)wε
xj
(|∇wε|2 − g2)xj

+
[

γε(−) + ‖f ε‖L∞(QT )

]

.
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Since γε is convex, we have, ∀ s ∈ R γε(s) ≤ γ′ε(s)s and, since vxi
= 0, we have

(

|∇wε|2
)

xi
= wε

xi
. On the other hand, we may suppose that γε(−) ≥ 2 ‖f ε‖L∞(QT )

at the point (x0, t0), because, otherwise, we would have already obtained the

bound for |∇wε|. So,

[

γε(−) + ‖f ε‖L∞(QT )

]

≤ γε(−) +
γε(−)

2 ‖f ε‖L∞(QT )
‖f ε‖L∞(QT )

=
3

2
γε(−) ≤ 3

2
γ′ε(−) (|∇wε|2 − g2)

and so, at (x0, t0)

0 ≤ vt −∆v ≤ γ′ε(−)
[

−2 |∇wε|2 + 2∇g2 ·∇wε +
3

2

(

|∇wε|2 − g2
)

]

.

Then, −12 |∇wε|2 + 2∇
(

g2
)

·∇wε − 3
2 g

2 ≥ 0 and we get

|∇wε(x0, t0)|2 ≤ 16 |∇g2(x0, t0)|2 − 6 g2(x0, t0) ≤ 16 |∇g2(x0, t0)|2

and, since

v(x, t) = |∇wε(x, t)|2 − wε(x, t) ≤ v(x0, t0) = |∇wε(x0, t0)|2 − wε(x0, t0) ,

because |∇wε(x, t)|2 = v(x, t) + wε(x, t) we get that

|∇wε(x, t)|2 ≤ v(x0, t0) + wε(x, t) ≤ 16 max
(x,t)∈QT

|∇g2(x, t)|2 + 2 ‖wε‖L∞(QT ) ,

concluding then that ∇wε is bounded in QT , independently of ε.

Remark 3.13. Notice that, if g ≡ 1, then the maximum of v is attained at

the parabolic boundary.

The next step consists in proving that γε(|∇wε|2 − g2) is locally bounded

independently of ε: given Ω′ ⊂⊂ Ω, let ζ belong to D(Ω) be such that ζ|Ω′ ≡ 1.

Define v = ζ2 γε(|∇wε|2 − g2). As before, if maxQT
v is attained at (x0, t0) ∈ Ω0

(notice that on Σ we have v(x0, t0)=0) then maxQT
v ≤ ζ2(x0, t0) γε(g

2(x0, t0)+

Mε− g2(x0, t0)) = ζ2(x0, t0) (M−1) is independent of ε. If the maximum of v is

attained at (x0, t0) ∈ QT \Σ ∪ Ω0 then, at this point, we have vt − ∆v ≥ 0 and

also vxi
= 0.



242 LISA SANTOS

Remarking that all the calculations below are done in the point (x0, t0), we

have

vt = ζ2 γ′ε(−) (2wε
xj
wε

xjt −
(

g2
)

t)

∆v = ζ2 γ′′ε (−)
[

(|∇wε|2 − g2)xi

]2
+ 2 (ζ2)xi

γ′ε(−) (|∇wε|2 − g2)xi
+∆ζ2 γε(−)

+ ζ2 γ′ε(−)
[

2 (wε
xjxi

)2 + 2wε
xj

∆wε
xj
−∆

(

g2
)

]

,

and, since ζ2 γ′′ε (−)
[

(|∇wε|2 − g2)xi

]2 ≥ 0, using the calculations presented above

for ∆wε
xj
,

0 ≤ vt −∆v

≤ ζ2 γ′ε(−)
[

2wε
xj
wε

xjt −
(

g2
)

t

]

− 2 (ζ2)xi
γ′ε(−) (|∇wε|2 − g2)xi

−∆ζ2 γε(−)

− ζ2 γ′ε(−)
[

2 (wε
xjxi

)2 + 2wε
xj

(

wε
xjt + γ′ε(−) (|∇wε|2 − g2)xj

)

−∆(g2)
]

.

Recall that, since γε is a convex function, we have, ∀ s ∈ R, γ ′ε(s) s ≥ γε(s).

So, since |∆ζ2| ≤ C, C independent of ε,

0 ≤ γ′ε(−)
[

−ζ2(g2)t − 2 (ζ2)xi
(|∇wε|2 − g2)xi

+ C(|∇wε|2 − g2)

− 2 ζ2(wε
xixj

)2 − 2 ζ2 γ′ε(−)wε
xi
(|∇wε|2 − g2)xi

+ ζ2∆g2
]

and, since vxi
= 0 at the point considered, then, at that point, ζ2 γ′ε(−) (|∇wε|2−

g2)xi
= −(ζ2)xi

γε(−) and we get

− ζ2(g2)t − 2 (ζ2)xi
(|∇wε|2 − g2)xi

+ C (|∇wε|2 − g2) − 2 ζ2(wε
xixj

)2

+ 2 (ζ2)xi
wε

xi
γε(−) + ζ2∆g2 ≥ 0 .

But

−2 (ζ2)xi
(|∇wε|2 − g2)xi

= −4 ζ ζxi

(

2wε
xj
wε

xjxi
− (g2)xi

)

≤ ζ2 (wε
xixj

)2 + 16 (wε
xj
)2 (ζxi

)2 + 4 ζ∇ζ ·∇g2
(54)

and

2 (ζ2)xi
wε

xi
γε(−) = 4 ζ∇ζ ·∇wε γε(−) ≤

1

4
ζ2 γ2ε (−) + 16 |∇ζ|2 |∇wε|2 .

Then,

− ζ2(g2)t + ζ2 (wε
xixj

)2 + 16 (wε
xj
)2 (ζxi

)2 + 4 ζ∇ζ ·∇g2 + C(|∇wε|2 − g2)

− 2 ζ2(wε
xixj

)2 +
1

4
ζ2 γ2ε (−) + 16 |∇ζ|2 |∇wε|2 + ζ2∆g2 ≥ 0 .
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So, there exists a constant C0 , independent of ε, such that

ζ2(wε
xixj

)2 ≤ C0 +
1

4
ζ2 γ2ε (|∇wε|2 − g2)

and then, at (x0, t0), we have

∃C1 > 0 independent of ε : ζ
∣

∣

∣wε
xixj

∣

∣

∣ ≤ C1 +
1

2
ζ γε (|∇wε|2 − g2) .

Then, since ζ γε(|∇wε|2 − g2) = ζ f − ζ wε
t + ζ∆wε, we have, at the point

(x0, t0),

ζ γε(|∇wε|2 − g2) ≤ ζ ‖f‖L∞(QT ) + ζ ‖wε
t ‖L∞(QT ) + C1 +

1

2
ζ γε (|∇wε|2 − g2)

and so

1

2
ζ(x, t) γε

(

|∇wε(x, t)|2 − g2(x, t)
)

≤ 1

2
ζ(x0, t0) γε

(

|∇wε(x0, t0)|2 − g2(x0, t0)
)

≤ C2 ,

where C2 is a constant independent of ε.

Now, if w̃ = ζ wε, we have,






w̃t −∆w̃ = ζ f − ζ γε(|∇wε|2 − g2)− (∆ζ)wε − 2∇ζ ·∇wε = Φ ,

w̃|Σ = 0 , w̃(0) = ζ h

and so, since Φ is bounded in L∞(QT ), independently of ε, then w̃ is bounded in

W 2,1
p (QT ), 1 < p < +∞, independently of ε (see [12], theorem 9.1, page 341).

Since {wε : ε ∈ [0, 1[} is bounded in W 2,1
p,loc(QT ), let u be the weak limit of

(wε)ε in this space (at least for a subsequence), when ε→ 0. Of course, we also

have

wε
t ⇀ ut when ε→ 0, in L∞(QT ) weak-* ,

wε−→ u when ε→0, in Lp(0, T ;W 1,p(Ω′)) for any Ω′⊂⊂ Ω, 1<p<+∞ ,

and, since ‖wε‖W 1,∞(Ω×[0,T ]) ≤ C, C independent of ε, we also have, due to the

compact inclusion W 1,∞(QT ) ↪→ C0,1(QT ),

wε −→ u uniformly in QT

and, in particular, wε(x, 0) = h(x) −→ u(x, 0) = h(x), when ε→ 0.

Since γε(|∇wε|2 − g2) is locally bounded, independently of ε , we must have

|∇u| ≤ g a.e. in QT . On the other hand, γε(|∇wε|2 − g2)⇀ χ, in L∞(Ω′×[0, T ])
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weak-∗, for every Ω′⊂⊂ Ω, when ε → 0. Letting ε → 0 in problem (52), we see

that

ut −∆u+ χ = f , |∇u| ≤ g , u|Σ = 0 , u(0) = h .

It only remains to prove that, whenever |∇u| < g we have χ = 0. Given

x0 ∈ Ω, let Ω′ be such that x0 ∈ Ω′⊂⊂ Ω. Since wε ⇀ u in W 2,1
p (Ω′×[0, T ]), for

1 < p < +∞, when ε → 0, and W 2,1
p (Ω′×[0, T ]) ↪→ C1,0α,α/2(Ω

′×[0, T ]), if p > n

(being this inclusion compact) then, if (x0, t0) is such that |∇u(x0, t0)| < g(x0, t0),

we have, for ε sufficiently small, γε(|∇wε(x0, t0)|2 − g2(x0, t0)) = 0. So, letting

ε→ 0, we conclude that χ(x0, t0) = 0 and the result follows.

Proposition 3.14. Suppose that the assumptions (3), (40) and (51) are ver-

ified. Then problems (2) and (29) are equivalent.

Proof: Let u denote a solution of problem (29) and u∗ the solution of problem

(27).

Recall the family of penalized problems (36) for the double obstacle variational

inequality problem:











zεt −∆zε +
1

ε

(

zε − (zε ∧ ϕ) ∨ ϕ
)

= f in QT ,

zε(0) = h , zε|Σ = 0 .

Let us call Φε(v) = γε(|∇v|2 − g2) and Ψε(v) =
1
ε (v − (v ∧ ϕ) ∨ ϕ)).

Notice that:

• since |∇u| ≤ g then ϕ ≤ u ≤ ϕ and so Ψε(u) = 0 ;

• ut −∆u ≤ f , since u is solution of problem (29).

So, u is a subsolution of the problem (36) and, due to the monotonicity of Ψε,

we have u ≤ zε and, passing to the limit when ε→ 0,

u ≤ u∗ .

On the other hand

• since problems (2) and (27) are equivalent, we have |∇u∗| ≤ g ;

• −∆h ≤ f and |∇h| ≤ g (and consequently ϕ ≤ h ≤ ϕ) implies that h is a

subsolution of the problem (36) and consequently, ϕ ≤ h ≤ zε ;
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• passing to the (weak) limit when ε → 0 in the equation of problem (36),

we conclude that u∗t −∆u∗+χ∗ = f ; notice that χ∗= limε Ψε(z
ε) ≥ 0, since

zε ≥ ϕ ;

• since u∗t − ∆u∗ ≤ f and |∇u∗| ≤ g we know that u∗ is a subsolution of

problem (52)

The monotonicity of Φε implies that u∗ ≤ wε and so, letting ε→ 0,

u∗ ≤ u .

So u = u∗ and both problems are equivalent.

In particular, since u∗ is unique, we proved that problem (29) has a unique

solution.

3.4. A counter-example

This subsection is dedicated to present a counter-example. We prove that

problem (2) is not always equivalent to problem (27), as well as to problem

(29), presenting data for which the solutions of problems (2), (27) and (29) are

different. Detailing more, we are going to present an example to show that,

if (g2)t − ∆(g2) 6≥ 0, then the problems considered in section 3 may not be

equivalent.

It is important to note that the data chosen here do not satisfy completely the

assumption (3), since the (very smooth) gradient constraint is zero in one point.

Nevertheless, the nonzero gradient constraint condition is used in the previous

sections only to prove existence of solution and not the equivalence among these

problems. Since the solution of problem (2), for the chosen data, will be calculated

here explicitly, there is no question about the existence of solution.

Let

f : ]−1, 1[× ]0, T [ → R g : ]−1, 1[× ]0, T [ → R
x 7→ 2 x 7→ 3x2

Remark 3.15. In fact
(

g2
)

t (x, t)−∆
(

g2
)

(x, t) = −108x2 6≥ 0.

Easy calculations show that the two obstacles (with respect to this function g)

are

ϕ(x, t) =







x3 + 1 if x ∈ [−1, 0[ ,

1− x3 if x ∈ [0, 1] ,
and ϕ(x, t) =







−x3 − 1 if x ∈ [−1, 0[ ,

x3 − 1 if x ∈ [0, 1] .
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Let

h(x) =















1− x2 if |x| ≥ 2

3
and |x| ≤ 1 ,

ϕ(x, 0)− 4

27
otherwise .

We would like to remark that the function h is a C1 function. Defining

w(x, t) ≡ h(x), we see that |∇w(x, t)| = 2 |x| ≤ g(x, t), if |x| > 2
3 and |∇w(x, t)| =

3x2 = g(x, t) if |x| < 2
3 . So, w(t) ∈ Kg(t) for all t ∈ [0, 1] and w(0) = h. We are

going to prove that w is, in fact, the solution of problem (2), for the given data

(f, g, h). Recalling that w is of class C1, we have

∫ 1

−1
wt(t) (v(t)− w(t)) dx+

∫ 1

−1
wx(t) (v(t)− w(t))x dx−

∫ 1

−1
2 (v(t)− w(t)) dx =

=

∫ 1

−1
h′(x) (vx(x, t)− h′(x)) dx −

∫ 1

−1
2 (v(t)− h) dx

= −
∫ 1

−1
h′′(x) (v(x, t)− h(x)) dx −

∫ 1

−1
2 (v(t)− h) dx

=

∫

{|x|≤ 2
3
}
(−h′′(x)− 2) (v(x, t)− h(x)) dx

+

∫

{|x|≥ 2
3
}
(−h′′(x)− 2) (v(x, t)− h(x)) dx

=
[

(−3x2 − 2x) (v(x, t)− h(x))
]0

− 2
3

−
∫ 0

− 2
3

(−3x2 − 2x) (vx(x, t)− h′(x))

+
[

(3x2 − 2x) (v(x, t)− h(x))
]

2
3

0
−
∫ 2

3

0
(3x2 − 2x) (vx(x, t)− h′(x)) dx

=

∫ 0

− 2
3

(3x2 + 2x) (vx(x, t)− 3x2) +

∫ 2
3

0
(−3x2 + 2x) (vx(x, t) + 3x2) dx

≥ 0 ,

as long as v is such that v(t) ∈ Kg(t) for a.e. t ∈ [−1, 1], since, in that case, we

have −3x2 ≤ vx(x, t) ≤ 3x2.

If u denotes the solution of problem (27), it is easy to verify that u(t)→ u∞,

when t→ +∞, in L2(Ω), where u∞ is the solution of the problem

∫ 1

−1
u∞x (v − u∞)x ≥

∫ 1

−1
2 (v − u∞) , ∀ v ∈ K ,
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where K = {v ∈ H1
0 (−1, 1) : ϕ ≤ v ≤ ϕ a.e.}. Since z(x) = 1 − x2 is such that

z ∈ K and z′′ = −2, obviously, z = u∞.

Now, if problems (2) and (27) were equivalent, we should have limt→+∞w(t) =

u∞ in L2(Ω), which obviously does not happen.

On the other hand, w is not a solution of problem (29) since, although |∇w|≤g
a.e., the function w does not verify wt −∆w ≤ 2 a.e. in QT .

It was then shown that, for the given data, problem (2) is not equivalent to

problem (27) nor to problem (29).
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Centro de Matemática, University of Minho,

Campus of Gualtar, 4700-030 Braga – PORTUGAL


