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Presented by H. Beirão da Veiga

Abstract: In the non-cylindrical domain Q = {(x, t); α1(t) < x < α2(t), t ∈ (0, T )}
we consider the initial-boundary value problem for the one-dimensional Kuramoto–Siva-
shinsky equation

ut + uux + β uxx + δ uxxxx = 0 .

We prove the existence and uniqueness of global weak, strong and smooth solutions.

The exponential decay of the solutions is also proved.

1 – Introduction

The Kuramoto–Sivashinsky (K-S) equation describes the thermo-diffusive in-

stability in flame fronts and was derived independently by Sivashinsky [8] and

Kuramoto [6]. The largest part of publications concerned with the K-S equation

was devoted to its physical aspects. Recently appeared papers where some re-

sults on the existence and uniqueness of global solutions to the Cauchy problem

were obtained, see Biagioni, Bona, Iorio and Scialom [2]. Controllability and

stabilization results for the K-S equation with periodic boundary conditions were

obtained by He, Glowinski, Gorman and Periaux [5].

The Cauchy problem for the multi-dimensional analogue of the K-S equation

was discussed by Biagioni and Gramchev [3].
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In the paper of Tadmor [9] the well-posedness of the Cauchy problem was

proved for the one-dimensional K-S equation. It was shown that the Cauchy

problem admits a unique smooth solution continuously depending on initial data.

Concerning moving boundaries problems we address the reader to Limaco

Ferrel and Medeiros [7] where the nonlinear Kirchhoff equation with moving ends

is investigated.

Here we study the one-dimensional K-S equation in a bounded domain with

moving boundaries. We prove the existence and uniqueness of global weak, strong

and smooth solutions and prove that the weak solutions are smooth for t > 0.

Finally, we prove the exponential decay of the solutions as t→ +∞.

2 – Statement of the problem

Let

α1(t) < x < α2(t), t ∈ [0, T ] , γ(t) = α2(t)− α1(t) ≥ δ0 > 0 ;

and

α1, α2 ∈ C1[0,∞) with |α′1(t)|+ |α
′
2(t)| ≤ δ1 <∞ .

We denote through

Q =
{

(x, t); α1(t) < x < α2(t), t ∈ (0, T )
}

.

In Q we consider the Kuramoto–Sivashinsky equation:

(2.1) Lu = ut + uux + β uxx + δ uxxxx = 0 in Q ,

where β, δ > 0, with the initial data,

(2.2) u(x, 0) = u0(x) , α1(0) < x < α2(0) .

On the moving boundaries the following conditions are specified

(2.3)
u(α1(t), t) = u(α2(t), t) = 0 ,

uxx(α1(t), t) = uxx(α2(t), t) = 0 , t ∈ [0, T ] .

Changing variables,

(x, t)↔ (y, t) , u(x(y, t), t) = v(y, t) ,
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where

y =
x− α1(t)

γ(t)
,

we transform Q into the rectangle Q̃ = (0, 1) × (0, T ), and (2.1)–(2.3) into the

following problem,

(2.4) Lv = vt +
1

γ(t)
v vy −

y γ′(t) + α′1(t)

γ(t)
vy +

β

γ2(t)
vyy +

δ

γ4(t)
vyyyy = 0 ,

(2.5) v(0, t) = v(1, t) = vyy(0, t) = vyy(1, t) = 0 ,

(2.6) v(y, 0) = v0(y) = u0

(

α(0) + yγ(0)
)

.

Because the transformation (x, t) ↔ (y, t) is a diffeomorphism, then, solving

(2.4)–(2.6), we solve also problem (2.1)–(2.3). To solve (2.4)–(2.6), we use the

method of Faedo–Galerkin.

3 – Strong solutions

Let y ∈ (0, 1), t ∈ (0, T ) and Q̃ = (0, 1) × (0, T ). We define Wk(0, 1) as the

subspace of those functions g from Hk(0, 1) such that

∂2jg

∂y2j

∣

∣

∣

∣

∣

y=0,1

= 0 , j = 0, ...,

[

k

2

]

− 1 .

Theorem 3.1. Let v0 ∈W2(0, 1). Then there exists a function v(y, t),

v ∈ L∞(0, T ;W2(0, 1)) ∩ L2(0, T ;W4(0, 1)) , vt ∈ L2(Q̃)

which is a unique strong solution to (2.4)–(2.6).

Proof: Let wj(y) be the eigenfunctions of

(3.1)

{

wjyy + λjwj = 0, y ∈ (0, 1) ,

wj |y=0,1 = 0 .

It is known that the wj(y) generate a basis in Wk(0, 1) which is orthonormal

in L2(0, 1). We seek the approximate solutions to (2.4)–(2.6) in the form,

vN (y, t) =
N
∑

j=1

gNj (t)wj(y) ,
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where gNj (t) are solutions to the following Cauchy problem for the normal system

of N ordinary differential equations,

(3.2)











(LvN , wj)(t) = 0 , (u, v)(t) =

∫ 1

0
u(y, t) v(y, t) dy ,

gNj (0) = (v0, wj) , j = 1, ..., N .

Solutions to (3.2) exist on some interval (0, TN ). To extend them to any interval

(0, T ) and to pass to the limit as N → +∞, we need a priori estimates.

From now on C represents any positive constants and Cε any positive con-

stants depending on ε > 0.

Estimate 1: Substituting in (3.2) wj for vN , we obtain the following in-

equality,

(3.3)
1

2

d

dt
|vN (t)|2 +

δ

γ4(t)
|vNyy(t)|

2 ≤
δ1

δ0
|vNy (t)| |v

N (t)|+
β

δ2
0

|vNyy(t)| |v
N (t)| .

Due to the Ehrling inequalities, (see Adams [1]), for any ε > 0,

|vNy (t)| ≤ ε|vNyy(t)|+ Cε|v
N (t)|

and

|vNy (t)| |v
N (t)| ≤ ε|vNyy(t)|

2 + Cε|v
N (t)|2 .

Using the Young inequality, we rewrite (3.3) for any ε > 0 as follows,

(3.4)
1

2

d

dt
|vN (t)|2 +

δ

γ4(t)
|vNyy(t)|

2 ≤

[

δ1

2 δ0
ε2 +

β

δ2
0

ε

]

|vNyy(t)|
2 + Cε|v

N (t)|2 .

Choosing ε > 0 such that

δ

γ4(t)
−

[

δ1

2 δ0
ε2 +

β

δ2
0

ε

]

≥
δ

2 γ4(t)
,

we obtain from (3.4)

(3.5)
d

dt
|vN (t)|2 + |vNyy(t)|

2 ≤ C|vN (t)|2 ,

where C > 0 is a constant independent of N, vN and t.

Integrating (3.5) over [0, t], t < T, we have by the Gronwall lemma

(3.6) |vN (t)|2 +

∫ t

0
|vNyy(τ)|

2 dτ ≤ C(|v0|
2) .
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This estimate permits us to extend the local solution to the whole interval

[0, T ]. On the other hand, by Rolle’s theorem,

vNy (y, t) =

∫ y

ξ
vNss(s, t) ds

for some ξ ∈ (0, 1). Then

|vNy (t)|
2 ≤ |vNyy(t)|

2 .

This and (3.6) imply

(3.7)

∫ t

0
|vNy (τ)|

2 dτ ≤ C |v0|
2 .

Estimate 2: To obtain higher estimates, we multiply LvN by λ2
j g

N
j (t), sum

over j = 1, ..., N, and come to the inequality

(3.8)
1

2

d

dt
|vNyy(t)|

2 +
δ

γ4(t)
|vNyyyy(t)|

2 ≤

≤
2 δ1

δ0
|vNy (t)| |v

N
yyyy(t)| +

1

δ0
|(vNvNy , vNyyyy)(t)| +

β

δ2
0(t)

|vNyy(t)| |v
N
yyyy(t)| .

By the Ehrling inequalities,

|vNy (t)| ≤ ε |vNyyyy(t)|+ Cε|v
N (t)| , ε > 0

and

|vNyyy(t)| ≤ ε |vNyyyy(t)|+ Cε|v
N (t)| .

Using this, the Gagliardo–Nirenberg inequalities and (3.6), the terms of (3.8) may

be estimated as follows,

(3.9)

1

δ0
|(vNvNy , vNyyyy)(t)| ≤ C |vN (t)| |vNy (t)|

1

2 |vNyy(t)|
1

2 |vNyyyy(t)|

≤ Cε(1 + |v
N
yy(t)|

2) + ε |vNyyyy(t)|
2 .

Choosing ε sufficiently small in (3.9) we come from (3.8) to the inequality,

d

dt
|vNyy(t)|

2 + |vNyyyy(t)|
2 ≤ C(1 + |vNyy(t)|

2) .

By the Gronwall lemma,

(3.10) |vNyy(t)|
2 +

∫ T

0
|vyyyy(τ)|

2 dτ ≤ C(|v0|
2
H2(0,1)) .
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From estimates (3.6) and (3.10), we conclude that

(3.11) vN is bounded in L∞(0, T ;W2(0, 1) ∩ L2(0, T ;W4(0, 1) .

On the other hand, from (3.2), we deduce

(3.12)

|vNt (t)|
2 ≤

1

δ0
|(vNvNy , vNt )(t)|+

2 δ1

δ0
|vNy (t)| |v

N
t (t)|

+
β

δ0
|(vNyy, v

N
t )(t)| +

δ

δ4
0

|vNyyyy(t)| |v
N
t (t)| .

The first term in the right hand side of (3.12) is estimated as follows

(3.13)
1

δ0
|(vNvNy , vNt )(t)| ≤ C |vNy (t)|

1

2 |vNyy(t)|
1

2 |vN (t)| |vNt (t)| .

Taking into account (3.6), (3.7) and (3.13), we get from (3.12)

∫ t

0
|vNτ (τ)|

2 dτ ≤ ε

∫ t

0
|vNτ (τ)|

2 dτ + Cε , ε > 0 .

Then, for ε > 0 sufficiently small,

vNt is bounded in L2(0, T ;L2(0, 1))

and, consequently, vN is bounded in Q̃ uniformly in N .

Using (3.11) and compactness arguments, we can pass to the limit in (3.2) as

N →∞, therewith to prove the existence result of Theorem 3.1.

Uniqueness of strong solutions follows from uniqueness of weak solutions

proved in Theorem 4.1.

4 – Weak solutions

In this section we prove that if v0 ∈ L2(0, 1), that is u0 ∈ L2(α1(0), α2(0)),

then system (2.4)–(2.6) has a unique weak solution. This implies the uniqueness

of a strong solution.

Theorem 4.1. Let v0 ∈ L2(0, 1). Then there exists a unique weak solution

v(y, t) to the problem

Lv = 0 in L2(0, T ;H−2(0, 1) ,
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v(0, t) = v(1, t) = vyy(0, t) = vyy(1, t) = 0 , t ∈ (0, T ) ,

v(y, 0) = v0(y) , y ∈ (0, 1)

such that

v ∈ L∞(0, T, L2(0, 1)) ∩ L2(0, T ;H2(0, 1)) , vt ∈ L2(0, T ;H−2(0, 1)) .

Proof: Taking into account classical density results, we can find a sequence

{vν0} in W2(0, 1) which converges to v0 in L2(0, 1).

From Theorem 3.1, for each ν we have a solution vν to the problem,

(4.1) Lvν = 0 in Q̃ ,

(4.2) vν(0, t) = vν(1, t) = vνyy(0, t) = vνyy(1, t) = 0 , t ∈ [0, T ] ,

(4.3) vν(y, 0) = vν0 (y) , y ∈ (0, 1) .

Multiplying (4.1) by vν(t), and acting as in Section 3, we obtain the estimate

|vν(t)|2 +

∫ T

0
|vνyy(τ)|

2 dτ ≤ C(|vν0 |
2) .

Therefore,

(4.4) vν is bounded in L∞(0, T ;L2(0, 1)) ∩ L2(0, T ;H2(0, 1))

uniformly in ν. Now we can estimate the derivative vν
t directly from (4.1) and

get that

(4.5) vνt is bounded in L2(0, T,H−2(0, 1)) .

Taking into account compactness arguments and embedding results, we can see

that vν converges strongly in L2(Q̃), therefore, there exists a subsequence which

converges a.e. in Q̃. Then vνvνx converges to vvx in the sense of distribuitions in

Q̃. From (4.4) and (4.5), we conclude that v is a weak solution to the problem,

(4.6)
vt +

1

γ(t)
v vy −

(y γ′(t) + α′1(t)

γ(t)
vy +

β

γ2(t)
vyy +

δ

γ4(t)
vyyyy = 0,

in L2(0, T ;H−2(0, 1)) ,

(4.7) v(y, 0) = v0(y) , y ∈ (0, 1) .
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Proof of uniqueness: Let v1, v2 be two solutions of system (4.6)–(4.7),

corresponding to the same initial data v0, and z = v1 − v2.

Obviously,

z ∈ L∞(0, T ;L2(0, 1)) ∩ L2(0, T ;H2(0, 1)) , zt ∈ L2(0, T ;H−2(0, 1))

and
∫ t

0
(zτ , w)(τ) dτ +

∫ t

0

1

γ(τ)
([v1v1y − v2v2y], w) (τ) dτ −

−

∫ t

0

([

(y γ′(τ) + α′1(τ)

γ(τ)
zy −

β

γ2(τ)
zyy

]

, w

)

(τ) dτ +

∫ t

0

δ

γ4(τ)
(zyy, wyy)(τ) dτ = 0 ,

where w is an arbitrary function from L2(0, T ; (W2(0, 1)). Replacing w by z, we

come to the equality,

(4.8) |z(t)|2 +

∫ t

0
([v2

1 − v2
2]y, z)(τ) dτ +

∫ t

0

γ′(τ)

γ(τ)
|z(τ)|2 dτ −

− 2

∫ t

0

β

γ2(τ)
|zy(τ)|

2 dτ + 2

∫ t

0

δ

γ4(τ)
|zyy(τ)|

2 dτ = 0 .

Since
|([v2

1 − v2
2]y, z)(t)| = |([v2

1 − v2
2], zy)(t)|

= |(z[v1 + v2], zy)(t)|

≤ max
y∈[0,1]

|v1(t) + v2(t)| |z(t)| |zy(t)|

≤ C (|v1y(t)|+ |v2y(t)|) |z(t)| |zy(t)| ,

we obtain from (4.8)

(4.9) |z(t)|2 + 2 δ

∫ t

0

1

γ4(τ)
|zyy(τ)|

2 dτ ≤

≤ C

∫ t

0

(

|v1y(τ)|
2 + |v2y(τ)|

2
)

|z(τ)| |zy(τ)| dτ

+
1

δ0

∫ t

0
|γ′(τ)| |z(τ)|2 dτ +

β

δ2
0

∫ t

0
|zy(τ)|

2 dτ .

Using Ehrling and Young inequalities, we obtain

|z(t)|2 + 2 δ

∫ t

0

1

γ4(τ)
|zyy(τ)|

2 dτ ≤

≤ ε

∫ t

0
|zyy(τ)|

2 dτ + Cε

∫ t

0

(

1 + |v1y(τ)|
2 + |v2y(τ)|

2
)

|z(τ)|2 dτ ,
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where ε is an arbitrary positive number. Choosing ε ≤ 2δ
γ4(t)

, t ∈ [0, T ], we come

to the inequality,

|z(t)|2 ≤ C

∫ t

0

(

1 + |v1y(τ)|
2 + |v2y(τ)|

2
)

|z(τ)|2 dτ .

Since v1 and v2 are solutions to (4.6)–(4.7), by Gronwall’s lemma we conclude

that |w(t)| = 0.

5 – Smooth solutions

In this section we prove that if v0 is more regular, then solutions of system

(2.4)− (2.6) are also more regular. We introduce the notation,

∂k
y =

∂k

∂yk
, ∂l

t =
∂l

∂tl
.

Theorem 5.1. Let k ≥ 4 be a natural number, v0 ∈ Wk(0, 1) and α1, α2 ∈

C1+[ k4 ][0,∞). Then there exists a unique solution to (2.4)–(2.6) such that

(5.1) v ∈ L∞(0, T ;Wk(0, 1)) ∩ L2(0, T ;Wk+2(0, 1)) ,

(5.2) ∂l
tv ∈ L∞(0, T ;Wk−4l(0, 1)) ∩ L2(0, T ;Wk−4l+2(0, 1)) ,

for l = 0, ...,
[

k
4

]

.

Proof: Considering approximate solutions to (2.4)–(2.6), we can suppose by

induction that

vN is bounded in L∞(0, T ;Wk−1(0, 1)) ∩ L2(0, T ;Wk+1(0, 1)) , k ≥ 4 .

By Theorem 4.1, the hypothesis of induction is true for k = 3, and we

must prove it for k = k + 1. Exploiting the basis {wj}, we multiply (3.2) by

(−1)k λk
j gNj (t). Summing over j, we come to the inequality,

(5.3)
1

2

d

dt
|∂k

yv
N (t)|2 +

δ

γ4(t)
|∂k+2

y vN (t)|2 ≤

≤
1

γ(t)
|(∂k−2

y (vNvNy ), ∂
k+2
y vN )(t)| +

2 δ1

δ0
|∂k

yv
N (t)| |∂k+1

y vN (t)|

+
β

δ2
0

|∂k+1
y vN (t)|2 .
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The first term in the right-hand side of (5.3) is estimated as follows,

1

γ(t)
|(∂k−2

y (vNvNy ), ∂
k+2
y vN )(t)| ≤

≤ C
k−2
∑

s=0

|(∂k−2−s
y vN∂s+1

y vN , ∂k+2
y vN )(t)|

≤ C
k−2
∑

s=0

|∂s+1
y vN (t)|L∞(0,1) |∂

k−2−s
y vN (t)| |∂k+2

y vN (t)|

≤ C
k−2
∑

s=0

|∂s+1
y vN (t)|

1

2 |∂s+2
y vN (t)|

1

2 |∂k−2−s
y vN (t)| |∂k+2

y vN (t)| .

By the induction hypothesis,

|∂s+1
y vN (t)| ≤ C, s = 0, ..., k − 2 ,

|∂s+2
y vN (t)| ≤ C, s = 0, ..., k − 3 ,

|∂k−2−s
y vN (t)| ≤ C , s = 0, ..., k − 2 ,

where C does not depend on N . Then

1

γ(t)
|(∂k−2

y (vNvNx ), ∂
k+2
y vN )(t)| ≤ Cε(1 + |∂

k
yv

N (t)|2) + ε|∂k+2
y vN (t)|2 ,

where ε is an arbitrary positive number. On the other hand,

(

β

δ2
0

+
δ1

δ0

)

|∂k+1
y vN (t)|2 ≤ Cε|v

N (t)|2 + ε |∂k+2
y vN (t)|2 .

Using the two last inequalities, we reduce (5.3) to the form,

1

2

d

dt
|∂k

yv
N (t)|2 + β|∂k+2

y vN (t)|2 ≤ Cε(1 + |∂
k
yv

N (t)|2) + 3 ε |∂k+2
y vN (t)|2 .

Choosing ε > 0 sufficiently small, we have

d

dt
|∂k

yv
N (t)|2 + |∂k+2

y vN (t)|2 ≤ C(1 + |∂k
yv

N (t)|2) .

Integrating from 0 to t and exploiting the Gronwall lemma, we obtain

|∂k
yv

N (t)|2 +

∫ T

0
|∂k+2

y vN (τ)|2dτ ≤ C(|v0|
2
Wk(0,1)) .
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This implies that

vN is bounded in L∞(0, T ;Wk(0, 1)) ∩ L2(0, T ;Wk+2(0, 1)), ∀ k ≥ 2 .

Passing to the limit as N →∞ in (3.2), we obtain that

(5.4) v ∈ L∞(0, T ;Wk(0, 1)) ∩ L2(0, T ;Wk+2(0, 1)) , k ≥ 2 ,

and satisfies the equation

(5.5) vt = −
1

γ(t)
v vy +

(γ′(t) + α′1(t))

γ(t)
vy −

β

γ2(t)
vyy −

δ

γ4(t)
vyyyy in Q̃

and the initial condition

v(y, 0) = v0(y) , y ∈ (0, 1) .

If k ≥ 4, we obtain directly from (5.4) and (5.5) that

vt ∈ L∞(0, T ;Wk−4(0, 1)) ∩ L2(0, T ;Wk−2(0, 1)) .

From this and (5.4) we can rewrite (5.5) as the following ordinary differential

equation

vt = F (x, t) ,

where

F ∈ L∞(0, T ;Wk−4(0, 1)) ∩ L2(0, T ;Wk−2(0, 1)) .

It follows that

Ft ∈ L∞(0, T ;Wk−8(0, 1)) ∩ L2(0, T ;Wk−6(0, 1)) ,

hence

vtt ∈ L∞(0, T ;Wk−8(0, 1)) ∩ L2(0, T ;Wk−6(0, 1)) .

By induction, we obtain

∂l
tv ∈ L∞(0, T ;Wk−4l(0, 1)) ∩ L2(0, T ;Wk−4l+2(0, 1)) , l = 1, ...,

[

k
4

]

.

This proves Theorem 5.1.

Being solutions to a parabolic problem, solutions of (2.4)–(2.6) are smooth

for t > 0. Exploiting Galerkin approximations and the mean value theorem for

integrals, we can prove the following result:
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Theorem 5.2. Let v0 ∈ L2(0, 1). Then there exists a unique weak solution

to problem (2.4)–(2.6)

v ∈ L∞(0, T ;L2(0, 1) ∩ L2(0, T ;H−2(0, 1)) ,

vt ∈ L2(0, T ;H−2(0, 1)) ,

such that for any θ > 0 and any natural k,

v ∈ L∞(θ, T ;Wk−4l(0, 1)) ∩ L2(θ, T ;Wk−4l+2(0, 1)) , l = 0, ...,
[

k
4

]

.

Proof: If v0 ∈ L2(0, 1), then acting as in Section 3, we obtain the estimate,

(5.6) |v(t)|2 +

∫ t

0
|vyy(τ)|

2 dτ ≤ C(|v0|
2) , t ∈ (0, T ) .

Hence, for any ν ∈ (0, T ) and t ∈ (0, ν),

∫ ν

0
|vyy(τ)|

2 dτ ≤ C .

By the mean value theorem for integrals, there exists t1 ∈ (0, ν) such that

(5.7) ν|vyy(t1)|
2 ≤ C .

Multiplying (5.5) by vyyyy, we get

1

2

d

dt
|vyy(t)|

2 +
1

γ4(t)
(vvy, vyyyy)(t)−

y γ′(t) + α′1(t)

γ(t)
(vy, vyyyy)(t)−

−
β

γ2(t)
|vyy(t)|

2 +
δ

γ4(t)
|vyyyy(t)|

2 = 0 .

Taking into account (5.6), we obtain the inequality

1

2

d

dt
|vyy(t)|

2 + C0|vyyyy(t)|
2 ≤ C .

Hence,

∫ t

t1

[

1

2

d

dt
|vyy(τ)|

2 + C0|vyyyy(τ)|
2
]

dτ ≤ C(t− t1) , t > t1 ,

that is,

1

2
|vyy(t)|

2 −
1

2
|vyy(t1)|

2 + C0

∫ t

t1

|vyyyy(τ)|
2dτ ≤ C(t− t1) .
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Then (5.7) implies that

(5.8)
1

2
|vyy(t)|

2 + C0

∫ t

t1

|vyyyy(τ)|
2dτ ≤

C

ν
+ C(t− t1) , t ∈ (t1, T ) .

Let ν1 > ν. From (5.8), we get

∫ ν1

t1

|vyyyy(τ)|
2dτ ≤ C .

By the mean value theorem for integrals, there exists t2 ∈ [t1, ν1] such that

(ν1 − t1) |vyyyy(t2)|
2 ≤ C .

Repeating this procedure, we prove Theorem 5.2.

6 – Stability

It is well-known that solutions of a parabolic equation

ut +Au = 0

are stable as t → +∞ provided that A is a positive operator. In our case, A is

nonlinear and depends on parameters γ(t), β, δ. But it is possible to find sufficient

conditions which guarantee asymptotic decay of v(y, t) :

Theorem 6.1. Let v(y, t) be a strong solution to (2.4)–(2.6) and for large t

the following conditions hold:

1) supt∈R+(γ(t)) <∞,

2) δ − βγ2(t) ≥ σ > 0,

3) 2λ1(δ − βγ2(t))− γ3(t) γ′(t) ≥ σ1 > 0,

where λ1 is the first eigenvalue in (3.1). Then there exists a constant θ > 0 such

that

|v(t)|2 ≤ |v0|
2 e−θt as t→∞ .

Proof: Multiplying (2.4) by v, we obtain

d

dt
|v(t)|2 +

γ′(t)

γ(t)
|v(t)|2 −

2β

γ2(t)
|vy(t)|

2 +
δ

γ4(t)
|vyy|

2 = 0 .
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Using (3.7), we get

d

dt
|v(t)|2 +

γ′(t)

γ(t)
|v(t)|2 +

2

γ4(t)

(

δ − γ2(t)β − γ(t)η
)

|vyy(t)|
2 ≤ 0 .

If δ − βγ2(t) ≥ σ > 0, ∀t ∈ R+, then

(6.1)
d

dt
|v(t)|2 +

γ′(t)

γ(t)
|v(t)|2 +

2σ

γ4(t)
|vyy(t)|

2 ≤ 0 .

Because λ1 is the first eingenvalue in (3.1), we have

|vyy(t)|
2 ≥ λ1|v(t)|

2 ,

and we obtain from (6.1) that

d

dt
|v(t)|2 +

(

2σλ1

γ4(t)
+

γ′(t)

γ(t)

)

|v(t)|2 ≤ 0 .

From conditions 2), 3) of Theorem 6.1, it follows

d

dt
|v(t)|2 + θ|v(t)|2 ≤ 0 , θ > 0 ,

therefore,

|v(t)|2 ≤ |v0|
2 e−θt , t > 0 .

We proved our results on the existence, uniqueness and stability of solutions

for the transformed problem (2.4)–(2.6). Since the transformation (x, t)↔ (y, t)

is a diffeomorphism, the same results hold for the original problem (2.1)–(2.3).
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