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KURAMOTO-SIVASHINSKY EQUATION
IN DOMAINS WITH MOVING BOUNDARIES

A.T. CousiN and N.A. LARKIN *

Presented by H. Beirao da Veiga

Abstract: In the non-cylindrical domain @ = {(x,t); a1(t) <z < a2(t), t € (0,T)}
we consider the initial-boundary value problem for the one-dimensional Kuramoto—Siva-
shinsky equation

Up + Uy + BUzz + 0 Uggee = 0.

We prove the existence and uniqueness of global weak, strong and smooth solutions.

The exponential decay of the solutions is also proved.

1 — Introduction

The Kuramoto—Sivashinsky (K-S) equation describes the thermo-diffusive in-
stability in flame fronts and was derived independently by Sivashinsky [8] and
Kuramoto [6]. The largest part of publications concerned with the K-S equation
was devoted to its physical aspects. Recently appeared papers where some re-
sults on the existence and uniqueness of global solutions to the Cauchy problem
were obtained, see Biagioni, Bona, Iorio and Scialom [2]. Controllability and
stabilization results for the K-S equation with periodic boundary conditions were
obtained by He, Glowinski, Gorman and Periaux [5].

The Cauchy problem for the multi-dimensional analogue of the K-S equation
was discussed by Biagioni and Gramchev [3].
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In the paper of Tadmor [9] the well-posedness of the Cauchy problem was
proved for the one-dimensional K-S equation. It was shown that the Cauchy
problem admits a unique smooth solution continuously depending on initial data.

Concerning moving boundaries problems we address the reader to Limaco
Ferrel and Medeiros [7] where the nonlinear Kirchhoff equation with moving ends
is investigated.

Here we study the one-dimensional K-S equation in a bounded domain with
moving boundaries. We prove the existence and uniqueness of global weak, strong
and smooth solutions and prove that the weak solutions are smooth for ¢ > 0.
Finally, we prove the exponential decay of the solutions as t — 4oc0.

2 — Statement of the problem

Let
Oél(t) <z < Oéz(t), te [O,T] , ’}/(t) = Oég(t) — ozl(t) >6p>0;

and
ap,az € CH0,00)  with |a)(t)] + |eb(t)] < 01 < oo .

We denote through

Q={(@t); m(t) <z <as(t), te(0,T)}.
In @ we consider the Kuramoto—Sivashinsky equation:
(2.1) Lu=u;+uty + Buze +0Ugzze =0 in Q,
where (3,9 > 0, with the initial data,
(2.2) u(z,0) =up(r), a1(0) <z < az(0).
On the moving boundaries the following conditions are specified

u(aq(t),t) = u(aa(t),t) =0,

(2.3)
Upg (1(t), 1) = Ugz(2(t),t) =0, te€][0,T].

Changing variables,

(.CL‘,t) A (yat)7 u('r(%t)?t) = U(yat) )
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where
x — ay(t)

V(@)
we transform @ into the rectangle Q = (0,1) x (0,7), and (2.1)-(2.3) into the
following problem,

y:

yy'(H) + i (t) g 0

1
(2.4) vavt—i-wvvy— Ty vy+72—(t)vyy+74—(t)vyyyy =0,
(2.5) v(0,t) = v(1,t) = vyy(0,1) = vyy(1,t) =0,
(2.6) v(y,0) = vo(y) = uo(a(0) +17(0)) -

Because the transformation (x,t) < (y,t) is a diffeomorphism, then, solving
(2.4)—(2.6), we solve also problem (2.1)—(2.3). To solve (2.4)—(2.6), we use the
method of Faedo—Galerkin.

3 — Strong solutions

Let y € (0,1), t € (0,T) and Q = (0,1) x (0,T). We define W;(0,1) as the
subspace of those functions g from H¥(0,1) such that

% g ] k
Y y=0,1

Theorem 3.1. Let vg € W5(0,1). Then there exists a function v(y,t),
v e L0, T; Wy(0,1)) N L0, T; W4(0,1)), v, € L*(Q)
which is a unique strong solution to (2.4)—(2.6).

Proof: Let w;(y) be the eigenfunctions of

{wjyyﬂjwj =0, ye(0,1),

(3.1)
wj|y:071 =0.

It is known that the w;(y) generate a basis in W} (0, 1) which is orthonormal
in L2(0,1). We seek the approximate solutions to (2.4)—(2.6) in the form,

N
Ny, t) =gl (1) w;(y)
j=1
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where g}v (t) are solutions to the following Cauchy problem for the normal system
of N ordinary differential equations,

(LY )0 =0, (we)(t) = [yt ol 1) dy
0

9N (0) = (vo,wj), j=1,..,N.

(3.2)

Solutions to (3.2) exist on some interval (0, 7). To extend them to any interval
(0,T) and to pass to the limit as N — +o0, we need a priori estimates.

From now on C' represents any positive constants and C. any positive con-
stants depending on € > 0.

Estimate 1: Substituting in (3.2) w; for v, we obtain the following in-
equality,

1d
2dt

W (1) < ﬁ\v;V(t)r|vN<t>r+%\vﬁ,<t>r|vN<t>r |

o
N 2
WY@+ :

70

Due to the Ehrling inequalities, (see Adams [1]), for any € > 0,

(3.3)

oy (8)] < elog, (O] + Celo™ ()]

and
o) ()] [N ()] < elofy, ()] + Celo™ (2)]? .

Using the Young inequality, we rewrite (3.3) for any € > 0 as follows,

1d 4] 5 8
4) ==V N2<{_12_}N2 N2

B4) GO+ gl OF < |55+ e 0P + C™ (@)
Choosing € > 0 such that

) 01 9 I} ] )

— | el >

v4(t) {2606 MR I
we obtain from (3.4)

d

(3.5) N (@)1 + oy W) < CRM @),

dt

where C' > 0 is a constant independent of N,v" and t.
Integrating (3.5) over [0,¢], ¢t < T, we have by the Gronwall lemma

39 NOP+ [yl dr < Ol
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This estimate permits us to extend the local solution to the whole interval
[0,7]. On the other hand, by Rolle’s theorem,

Yy
0 (t) = [[oN(s.t)ds
3

for some £ € (0,1). Then
N2 N (42
oy (D)7 < Jogy (D)7 -

This and (3.6) imply

t
(3.7) / W ()2 dr < Clugl? .
0

Estimate 2: To obtain higher estimates, we multiply Lo by )\5 gév (t), sum
over j =1,..., N, and come to the inequality

1d y

5
(3.8) §%vyy(t)|2+fy4(t) Oy (D <
20 N N 1 N, N N g N N
< Sy 10 Oy O+ 5100y vy O + S5 10 (O] gy ()] -

By the Ehrling inequalities,

vy ()] < € vgyyy (O] + Celp™ (O], €>0

and
oy (D] < € lvgy (D] + Celo™ ()] -

Using this, the Gagliardo—Nirenberg inequalities and (3.6), the terms of (3.8) may
be estimated as follows,

1 N, N N N N 1N 1, N
(3.9) % (V™ 0y Uy ()] < C o™ ()] vy ()]2 [0y (D)]2 [0y, (1)

< Ce(1+ logy (1)1%) + €lvgyy, (D -

Choosing ¢ sufficiently small in (3.9) we come from (3.8) to the inequality,

d
T 10 OF + Ty, (D7 < CO+ Jug, (D) -

By the Gronwall lemma,

T
(3.10) o OF + [ omun (PP dr < Cllonliag) -
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From estimates (3.6) and (3.10), we conclude that
(3.11) vV is bounded in L°°(0,T;W2(0,1) N L2(07T; Wy(0,1) .

On the other hand, from (3.2), we deduce

o () < !( Moy’ ol )(t )|+2751| AGIAG]
(3.12) ﬁ N N 5 N
+ % ’(vyy?vt )(t)| + 573 |vyyyy(t)| |Ut (t)‘ :

The first term in the right hand side of (3.12) is estimated as follows

(3.13) 5—10|( Yol o) (0] < C o) )12 oy )12 [N (0)] [o (1)]

Taking into account (3.6), (3.7) and (3.13), we get from (3.12)

/|v |2d7<5/ WwN(n)Pdr + C., €>0.
Then, for € > 0 sufficiently small,
v is bounded in L*(0,T; L*(0,1))

and, consequently, vV is bounded in 5 uniformly in N.
Using (3.11) and compactness arguments, we can pass to the limit in (3.2) as
N — 00, therewith to prove the existence result of Theorem 3.1. n

Uniqueness of strong solutions follows from uniqueness of weak solutions
proved in Theorem 4.1.

4 — Weak solutions

In this section we prove that if vg € L?(0,1), that is ug € L?(a1(0), a2(0)),
then system (2.4)—(2.6) has a unique weak solution. This implies the uniqueness
of a strong solution.

Theorem 4.1. Let vy € L?(0,1). Then there exists a unique weak solution
v(y,t) to the problem

Lv=0 in L*0,T;H%0,1),
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0(0,8) = v(1,t) = v,y (0,£) = vy, (1,1) =0, t€(0,T),
v(y,0) =vo(y), ye€(0,1)

such that

v e L>®(0,T,L*0,1)) N L*(0,T; H*(0,1)), v € L*(0,T; H2(0,1)) .

Proof: Taking into account classical density results, we can find a sequence
{v§} in Wo(0,1) which converges to vy in L2(0,1).
From Theorem 3.1, for each v we have a solution v” to the problem,

(4.1) Lvy =0 in O,
(4.2) v (0,8) = v (1,8) = v, (0,8) = v, (1,1) =0,  t€[0,T],
(4.3) v (y,0) =v5(y), ye€(0,1).

Multiplying (4.1) by v¥(t), and acting as in Section 3, we obtain the estimate

T
VR + [ R dr < C(ug)
Therefore,
(4.4) v is bounded in L*>(0,T; L?(0,1)) N L*(0,T; H(0,1))

uniformly in v. Now we can estimate the derivative v} directly from (4.1) and
get that

(4.5) v/ is bounded in L*(0,T, H %(0,1)) .

Taking into account compactness arguments and embedding results, we can see
that v¥ converges strongly in L2(Q), therefore, there exists a subsequence which
converges a.e. in Q. Then v” vy converges to vv, in the sense of distribuitions in
Q. From (4.4) and (4.5), we conclude that v is a weak solution to the problem,
"(t) + o (t )
in L*(0,T; H2(0,1)),

w6 TR0

VUy —

(4.7) v(y,0) =vo(y), ye(0,1).
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Proof of uniqueness: Let v;, v2 be two solutions of system (4.6)-(4.7),
corresponding to the same initial data vy, and z = v — va.
Obviously,

2 € L0, T;L*(0,1)) N L*(0,T; H*(0,1)), 2z € L*(0,T; H 2(0,1))

and

/ (zT, dT +/ Uﬂ)ly - U2U2y]7w) (7') dr —

_/Ot([(yv’(fv)(:)al(f) 2y — 726 )Zyy] ) ) dr +/ 5 Gy (7) dr = 0,

where w is an arbitrary function from L2(0,T’; (W(0, 1)) Replacing w by z, we
come to the equality,

(4.8) |z(t)|2—|—/0t([v%— T)dT —I—/ gl \QdT —
/0 ()|zy( |d¢+2/ S (F)2dr = 0.
Since
([ — 3]y, 2) ()] = ([ — v3], 2)(2)]

= |(2[v1 + va], 2) (1)
Jnax o1 () +va ()] [2(8) |24 (1)

<

< C (g (O] + vy (D) [2(0)] 2 ()]
we obtain from (4.8)
(4.9) |2+25/ ()P <

<C / (lorg (D) + [03y (T)[2) [2(7)] 2 (7)  d
—|——/|’y =P dr + 2 /yzy )2 dr .

Using Ehrling and Young inequalities, we obtain

|2+25/ S HPdr <

< / P dr + Co [ (14 oy (D + o)) (P



KURAMOTO-SIVASHINSKY EQUATION 343

where ¢ is an arbitrary positive number. Choosing ¢ < ngt), t € [0,T], we come

to the inequality,

207 < € [ (1 oy (0 + ez, (7)) ()

Since v1 and v9 are solutions to (4.6)—(4.7), by Gronwall’s lemma we conclude
that |w(t)] =0. n

5 — Smooth solutions

In this section we prove that if vy is more regular, then solutions of system
(2.4) — (2.6) are also more regular. We introduce the notation,

ok = a_k ol = a_l
y ayk ’ t ott -

Theorem 5.1. Let k > 4 be a natural number, vy € Wy(0,1) and aq,ay €
crli] [0,00). Then there exists a unique solution to (2.4)—(2.6) such that

(5.1) v € L®(0,T;W;(0,1)) N L*(0,T; Wy12(0,1)) ,
(5.2) v € L0, T; Wi_41(0,1)) N L*(0, T; Wi_4142(0,1)) ,
forl =0,..., {ﬂ

Proof: Considering approximate solutions to (2.4)—(2.6), we can suppose by
induction that

v™ is bounded in L%°(0,T; Wi_1(0,1)) N L?(0,T; Wj41(0,1)), k>4.

By Theorem 4.1, the hypothesis of induction is true for k = 3, and we
must prove it for & = k 4+ 1. Exploiting the basis {w;}, we multiply (3.2) by
(—1)k )\f g;-V (t). Summing over j, we come to the inequality,

5
v4(t)
(052 (N o)), o 2N (1) + %s?laﬁvN(t)l\a’;*lvN(t)l

1d

(5.3) > €

—loye™ (6 +
L

37()

0 <

52 ‘ak—O—l (t)|2 ]
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The first term in the right-hand side of (5.3) is estimated as follows,
1

r (072 (v, 0™ (#)] <

IN

k—2
C Z Kaglijfsta;JrlvN7 8§+2vN)(t)|
s=0
k—2
< CY 195 0N (1) oo 0,0y 1052 0N ()] |0y 20 (1))
5=0

k—2
O3 o oN (1)]2 (052N (1)]7 |92 (1) |9k 2N (1))
s=0

IN

By the induction hypothesis,
o5 N (1) < C, §=0,.,k—2,
’8;+21)N(t)‘ <C, s=0,...,k—=3,

oy 2N <C, s=0,.,k—2,

where C does not depend on N. Then

) |8y 72(0™u), 0y 2o M) ()] < Ce(1+ [95™ (1)) + el gy PPN (1)

where ¢ is an arbitrary positive number. On the other hand,

p 51) k41, N \2 N2 k42 N\ 2
L < .
<5§ + 5o ’ay v (t)| > Ca|v (t)| +ée ’ay v (t)‘

Using the two last inequalities, we reduce (5.3) to the form,

1d
5 7O (OF + 8o, oY (O < C(1+ (050" (D) + 32 |0y (1)

Choosing € > 0 sufficiently small, we have

d

%\3§vN(t)l2 +ay PPN ()] < oL+ |y (1)) -
Integrating from 0 to ¢ and exploiting the Gronwall lemma, we obtain

T
o5 (0 + [ 10520 (1P < Cllunlion)
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This implies that
vV is bounded in  L*°(0,T; W (0,1)) N L?(0,T; Wi42(0,1)), Y Ek>2.
Passing to the limit as N — oo in (3.2), we obtain that

(5.4) v e L®0,T;Wi,(0,1)) N L30,T; Wi12(0,1)), k>2,

and satisfies the equation

1
(5.5) v = —vay—{—

and the initial condition
v(y,0) =voy), ye(0,1),
If k£ > 4, we obtain directly from (5.4) and (5.5) that
vy € L(0,T; Wy_4(0,1)) N L*(0,T; Wi_2(0,1)) .

From this and (5.4) we can rewrite (5.5) as the following ordinary differential
equation
vy = F(x,t) ,

where

F € L>®(0,T;Wi_4(0,1)) N L*(0, T; Wy _2(0,1)) .
It follows that
Fy € L™®(0,T;W;_g(0,1)) N L*(0, T; Wy,_g(0,1)) ,

hence
vy € L°°(0,T; Wy_g(0,1)) N L2(0,T; Wy_6(0,1)) .

By induction, we obtain
Ohv € L0, T3 Wy—ua(0,1)) N L2(0, T; Wi_ai12(0,1)),  I=1,..., [5] .
This proves Theorem 5.1. n

Being solutions to a parabolic problem, solutions of (2.4)—(2.6) are smooth
for t > 0. Exploiting Galerkin approximations and the mean value theorem for
integrals, we can prove the following result:
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Theorem 5.2. Let vy € L?(0,1). Then there exists a unique weak solution
to problem (2.4)—(2.6)

v € L(0,T;L*0,1) N L*(0,T; H%(0,1)) ,

v, € L*(0,T; H%(0,1)) ,

such that for any 8 > 0 and any natural k,

v e Loo(e’ T Wk—4l(0¢ 1)) n L2(9> T Wk—4l+2(07 1)) ) l=0,.., [%} :

Proof: If vg € L?(0,1), then acting as in Section 3, we obtain the estimate,
t
(5.6) |v(t)|2+/0 gy ()2 dr < Cllwol?),  te(0,7).
Hence, for any v € (0,7) and t € (0,v),

[ wtnar < .
By the mean value theorem for integrals, there exists ¢; € (0, ) such that
(5.7) V|Uyy(t1)|2 <C.
Multiplying (5.5) by vyyyy, we get

5 11 OF + 25 (00 ) 0 — LI

— i v 2 L v 2 _
72(?5) ’ yy(t)‘ + 74@) ‘ yyyy(t)‘ 0.

(Vys Vyyyy) (1) —

Taking into account (5.6), we obtain the inequality

1d
§%|”yy(t)|2 + Coluyyyy (1) < C.
Hence,
| |53i1enF + Colep ()| dr < Cle—t),  t>t,
1
that is,

1 1 ¢
5 [0y (D)7 — 5 [0y (1)[? + CO/t |oyyyy (7)) 2T < C(t —t1) .
1
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Then (5.7) implies that
(58) 3 lon®F + C“/t opy(T)Pdr < S+ C(t—t1),  te(t.T)
1
Let 11 > v. From (5.8), we get

V1
2
/t [Vyyyy (T)|7dT < C'.
1
By the mean value theorem for integrals, there exists to € [t1, 1] such that

(1 = t1) [oyyyy (B2)]* < C .

Repeating this procedure, we prove Theorem 5.2. n

6 — Stability
It is well-known that solutions of a parabolic equation
u + Au = 0

are stable as t — +oo provided that A is a positive operator. In our case, A is
nonlinear and depends on parameters 7(t), 3, 6. But it is possible to find sufficient
conditions which guarantee asymptotic decay of v(y,t) :

Theorem 6.1. Let v(y,t) be a strong solution to (2.4)-(2.6) and for large t
the following conditions hold:

1) supep+(7(t)) < oo,

2) 6 — By (t) > 0 > 0,

3) 2M1(0 — BY2(1)) = (1) 7' (t) = o1 > 0,

where A is the first eigenvalue in (3.1). Then there exists a constant 6 > 0 such
that

lw)|? < |vol?e™?  as t —o0.

Proof: Multiplying (2.4) by v, we obtain

d 7' (t) 20 0 _
T (b)) + WW@)’Z - ,yg—(t)|vy(t)|2 + 74—(t)|vyy|2 =0.



348 A.T. COUSIN and N.A. LARKIN

Using (3.7), we get

4 YO e 2
GO + T OF +

If 6 — By%(t) > 0 >0, Vt € RT, then

(6 =728 = v(tm) loyy O < 0.

d v (t) 20
(6.1) T o(t)|* + WW@)F + )

Because )\ is the first eingenvalue in (3.1), we have

‘”yy(t)|2 <0.

[ogy () > Mlv()

and we obtain from (6.1) that

d 2 20’)\1 ’7,(75) 2
P Or+ (5755 + 3 ) P < 0.

From conditions 2), 3) of Theorem 6.1, it follows

Ll +oP <0, 650,

therefore,
lwt)? < vgl2e™?, t>0.m

We proved our results on the existence, uniqueness and stability of solutions
for the transformed problem (2.4)—(2.6). Since the transformation (z,t) < (y,t)
is a diffeomorphism, the same results hold for the original problem (2.1)—(2.3).
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