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Abstract: We study the stability of the branch of minimal solutions (uλ)0<λ<λ∗ of

−∆u = λ g(u) for a nonlinearity g which is neither concave nor convex. We show that it is

related to the regularity of the map λ 7→ uλ. We then show that in dimensions N = 1 and

N = 2, discontinuities in the branch of minimal solutions can be produced by arbitrarilly

small perturbations of the nonlinearity g. In dimensions N ≥ 3 the perturbation has to

be large enough. We also study in detail a specific one-dimensional example.

1 – Introduction

Let Ω ⊂ RN be a bounded, smooth domain. Consider a C1, positive, increas-

ing function g : [0,∞) → (0,∞). It is well-known that there exists λ∗ ∈ (0,∞]
such that for 0 < λ < λ∗ there is a minimal solution of

(1.1)

{ −∆u = λ g(u) in Ω ,

u = 0 in ∂Ω ,

and for λ > λ∗ there is no solution (we consider only positive, smooth solutions).

The branch (uλ)0<λ<λ∗ is increasing. (See e.g. Amann [1], Theorem 21.1.) More-

over, λ1(−∆−λg′(uλ)) ≥ 0 for all 0 < λ < λ∗. (Indeed, if λ1(−∆−λg′(uλ)) < 0,
and if ϕ1 is a corresponding positive eigenvector, then uλ−εϕ1 is a supersolution
for ε > 0 sufficiently small. Since 0 is a subsolution, there exists a solution below

the minimal one, which is absurd.)
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It is also well-known that if g is convex, or if it is concave, then the minimal

branch is stable in the sense that λ1(−∆ − λg′(uλ)) > 0 for all 0 < λ < λ∗.

We sketch the proof for completeness. Assume by contradiction that λ1(−∆ −
λg′(uλ)) = 0 and fix µ ∈ (0, λ∗). We have

−∆ϕ1 = λ g′(uλ)ϕ1 ,(1.2)

−∆uλ = λ g(uλ) ,(1.3)

−∆uµ = µ g(uµ) .(1.4)

Multiply (1.2) by uλ, (1.3) by ϕ1 and make the difference. Next, multiply (1.2)

by uµ, (1.4) by ϕ1 and make the difference. Forming the difference of the two

relations thereby obtained, we see that

(1.5)

∫

Ω

(
g(uµ)− g(uλ)− (uµ − uλ) g′(uλ)

)
ϕ1 =

λ− µ
λ

∫

Ω
g(uµ)ϕ1 .

If g is convex, the left-hand side of (1.5) is nonnegative and we get a contradiction

by choosing µ > λ; if g is concave, the left-hand side of (1.5) is nonpositive and

we get a contradiction by choosing µ < λ.

The property λ1(−∆ − λg′(uλ)) > 0 implies in particular that the solutions

(uλ)0<λ<λ∗ on the minimal branch are also stable for the evolution problem

(1.6)




ut −∆u = λ g(u) for t > 0, x ∈ Ω ,

u(x, t) = 0 for t > 0, x ∈ ∂Ω ,

in the following sense: for every 0 < λ < λ∗, there exists ε > 0 such that if

ϕ ∈ L∞(Ω) satisfies 0 ≤ ϕ ≤ uλ + ε, then the unique positive solution of (1.6)

with the initial condition u(0) = ϕ is global and satisfies u(t)→ uλ as t→∞.
We are interested in investigating under what conditions on the nonlinearity

g, the stability property λ1(−∆ − λg′(uλ)) > 0 holds or fails along the minimal

branch of solutions of (1.1).

Our first result is a general criteria, established in Section 2. It says that the

property λ1(−∆ − λg′(uλ)) > 0 is equivalent to the property that the mapping

λ 7→ uλ is C
1. More precisely, we have the following result.

Theorem 1.1. Let g be a C2, positive, increasing function [0,∞)→ (0,∞)
and let (uλ)0<λ<λ∗ be the maximal branch of minimal, positive solutions of (1.1).

Given λ ∈ (0, λ∗), the following properties are equivalent.
(i) λ1(−∆− λg′(uλ)) > 0.
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(ii) The mapping µ 7→ uµ is C
1 from a neighborhood of λ to L∞(Ω).

(iii)

∫

Ω
|uλ − uµ|2 dΩ(x) dx = o(|λ− µ|), as µ→ λ, where dΩ is the distance

to ∂Ω.

Our second observation is that it is quite easy to introduce discontinuities in

the branch of minimal solutions by modifying the nonlinearity g. The following

results are established in Section 3.

Theorem 1.2. Suppose N = 1 or N = 2. Let g be a C1, positive, increasing

function [0,∞)→ (0,∞) and let (uλ)0<λ<λ∗ be the maximal branch of minimal,
positive solutions of (1.1). Let λ ∈ (0, λ∗) and set M = ‖uλ‖L∞ . Given ε > 0,
there exists a C1, increasing function g̃ : [0,∞) → (0,∞), with the following
properties.

(i) The branch of minimal solutions ũλ of (1.1) associated with g̃ is defined

on the maximal interval (0, λ̃∗) with λ̃∗ > λ, and ũλ = uλ for 0 < λ ≤ λ.

(ii) g − g̃ is supported in [M,M + ε] and ‖g − g̃‖L∞ ≤ ε.

(iii) The map λ 7→ ũλ has a discontinuity in [λ, λ+ ε].

Theorem 1.3. Suppose N ≥ 3. Let g, λ and M be as in Theorem 1.2.

Suppose further that g(u) → ∞ as u → ∞. Given ε > 0, there exists a C1,

increasing function g̃ : [0,∞)→ (0,∞), with the following properties.
(i) The branch of minimal solutions ũλ of (1.1) associated with g̃ is defined

on the maximal interval (0, λ̃∗) with λ̃∗ > λ, and ũλ = uλ for 0 < λ ≤ λ.

(ii) g − g̃ is compactly supported in [M,∞).
(iiii) The map λ 7→ ũλ has a discontinuity in [λ, λ+ ε].

We observe that in Theorem 1.2 (i.e. if N ≤ 2), the perturbation of g can be
arbitrarily small, while in Theorem 1.3 the perturbation may be large. This is

motivated by the following examples.

A one-dimensional example. Consider the equation

(1.7)




− u′′ = λg(u) in (0, 1) ,

u(0) = u(1) = 0 .

In the elementary case g(u) = a > 0, the equation (1.7) has the unique nonnega-

tive solution uλ(x) = λax(1− x)/2 for every λ > 0.
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Given 0 < a < b and α > 0, let now g be defined by

(1.8) g(u) =




a if 0 ≤ u ≤ α ,

b if u > α .

Even though the nonlinearity g is not continuous, it displays some interesting

properties. One can calculate all solutions of (1.7). They may be of two types:

those for which maxu ≤ α, and those for which maxu > α. The first ones are

obtained by solving the equation −u′′ = λa and requiring maxu ≤ α. They exist

if and only if λ ≤ 8α/a and they are given by u(x) = λax(1 − x)/2. The

second ones exist whenever there exists 0 < x < 1/2 such that the C1 function

u satisfies u(0) = u(1) = 0, −u′′ = λa on (0, x) ∪ (1 − x, 1) and −u′′ = λb on

(x, 1− x). It is not difficult to see that this amounts in finding x ∈ (0, 1/2) such
that (2b−a)x2−bx+2α/λ = 0. Therefore, we can draw the following conclusions.
If 0 < λ < 8α(2b− a)/b2, then there is one positive solution of (1.7), which is of
the first type. If λ = 8α(2b−a)/b2, then there are two positive solutions of (1.7),
one of the first type and one of the second type. If 8α(2b− a)/b2 < λ < 8α/a,

then there are three positive solutions of (1.7), one of the first type and two of the

second type. If λ = 8α/a, then there are two positive solutions of (1.7), one of

the first type and one of the second type. If λ > 8α/a, then there is one positive

solution of (1.7), of the second type. In other words, the branch of solutions

is S-shaped. It is easy to verify that, whenever there are multiple solutions,

they are ordered. Moreover, there is a discontinuity of the branch of minimal

solutions at λ = 8α/a. Indeed, at that particular value of λ the minimal solution

is u(x) = 4αx(1− x), while the second one is

u(x) =





4αx

(
2b2 − 2ab+ a2
a(2b− a) − x

)
for 0 < x <

a

2(2b− a) ,

α− α b(4b− 3a)
(2b− a)2 +

4α b

a
x(1− x) for

a

2(2b− a) < x < 1/2 .

The branch of minimal solutions uλ is continuous for λ < 8α/a and converges to

u as λ ↑ 8α/a; it is continuous for λ > 8α/a and converges to u as λ ↓ 8α/a.

A three-dimensional example. We now consider the problem

(1.9)




−∆u = λg(u) in Ω ,

u|∂Ω = 0 ,

where Ω is the unit ball of R3 and λ > 0. We consider spherically symmetric solu-
tions, so that, with the usual change of variables v(r) = r u(r), the equation (1.9)
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reduces to

(1.10)





− v′′ = λ r g

(
v

r

)
for 0 < r < 1 ,

v(0) = v(1) = 0 .

As in the previous example, we consider g defined by (1.8) with 0 < a < b and

α > 0. We easily see that any solution of (1.10) is positive and concave on (0, 1)

and that v(r)/r is decreasing. Therefore, the solutions of (1.10) are of one of two

types. Either v(r) < αr and −v′′ = λar for all 0 < r < 1; or else, there exists

0 < r < 1 such that v(r) > αr and −v′′ = λbr for 0 < r < r and v(r) < αr

and −v′′ = λar for r < r < 1. Solutions of the first type exist if and only if

0 < λ ≤ 6α/a and they are given by v(r) = aλr(1− r2)/6. Second type solutions
exist whenever there exists a solution r ∈ (0, 1) of the equation

α− λa

6
− λ

(
b

3
− a

2

)
r2 +

λ(b− a)
3

r3 = 0 .

Analysing the above equation, we see that the situation depends on the jump

in the nonlinearity. If 2b ≤ 3a, i.e. if the jump is not too large, then for all
λ > 0 there is only one radial solution of (1.9). The solution is of the first type

if λ ≤ 6α/a and of the second type otherwise. It is not too difficult to check
that the branch of solutions is continuous. If 2b > 3a, i.e. if the jump is suffi-

ciently large, then the situation is similar to the one-dimensional case. For

λ < 6α
a

(
1 + (2b−3a)3

27 a(b−a)2

)−1
, there is one radial solution of (1.9), which is of the

first type. For λ = 6α
a

(
1 + (2b−3a)3

27 a(b−a)2

)−1
, there are two radial solutions of (1.9),

one of the first type, one of the second type, the second one being larger. For
6α
a

(
1 + (2b−3a)3

27 a(b−a)2

)−1
< λ < 6α/a, there are three radial solutions of (1.9), one of

the first type, the other two of the second type. For λ = 6α/a, there are two radial

solutions of (1.9), one of the first type, the other of the second type. If λ > 6α/a,

there is one radial solution of (1.9), which is of the second type. Solutions are

ordered, the first-type solution being the smallest. The branch of minimal solu-

tions is discontinuous at λ = 6α/a. As opposed to the one-dimensional case, the

jump in the nonlinearity must be large enough to produce multiple solutions and

discontinuity of the minimal branch.

On the other hand, one may look for a necessary condition on the nonlinearity

g in order that λ1(−∆− λg′(uλ)) > 0. That problem seems to be more delicate
and we do not have a general answer. In Section 4 we consider the example

g(u) = up + uq , 0 < q < 1 < p ,
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which is neither convex nor concave. Nevertheless we show that in the case

N = 1, the minimal branch of solutions satisfies the stability condition

λ1(−∆ − λg′(uλ)) > 0. (See Proposition 4.1 and Corollary 4.2.) Whether or

not this is true in higher dimensions is an open question.

Similar problems have previously been considered in the litterature. The most

closely related reference is probably the work by K.J. Brown, M.M.A. Ibrahim and

R. Shivaji [3]. These authors are interested in determining whether the branch of

solutions is “S-shaped”. They consider general elliptic operators but their results

are less precise than ours in particular in dimensions N ≥ 2. Previous examples
of discontinuous minimal branches may be found in the work by M.G. Crandall

and P.H. Rabinowitz [5].

2 – Proof of Theorem 1.1

We proceed in three steps.

Step 1. (ii)⇒(iii). This is immediate.

Step 2. (iii)⇒(i). We already know that λ1(−∆ − λg′(uλ)) ≥ 0, so we
assume by contradiction that λ1(−∆ − λg′(uλ)) = 0. Fix λ < λ < λ∗ and let

M = ‖u
λ
‖L∞ . For 0 ≤ x, y ≤M , we have |g(x)−g(y)− (x−y) g′(y)| ≤ C|x−y|2

since g is C2. Therefore, we deduce from (1.5) that for all λ < µ < λ

(2.1) |λ− µ| g(0) ≤ |λ− µ|
∫

Ω
g(uµ)ϕ1 ≤ C λ

∫

Ω
|uλ − uµ|2 ϕ1 ,

where ϕ1 is the first eigenfunction of −∆ − λg′(uλ) normalized by
∫
Ω ϕ1 = 1.

Since ϕ1 ≤ C dΩ, we deduce from (iii) and (2.1) that |λ − µ| g(0) = o(|λ − µ|).
Letting µ ↓ λ, we obtain that g(0) = 0, which is absurd.

Step 3. (i)⇒(ii). We first show that

(2.2) ‖uµ − uλ‖L∞ −→
µ→λ

0 .

Note that the mapping µ → uµ is increasing on (0, λ
∗). More precisely, if µ > ν

then uµ ≥ uν and uµ 6≡ uν , so that by the strong maximum principle uµ ≥
uν + ε dΩ for some ε > 0. Set

u = lim
µ↑λ

uµ and u = lim
µ↓λ

uµ .
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It is clear that u ≤ uλ and that u is a solution of (1.1); and so, u = uλ. We claim

that u = uλ. Indeed, since (i) holds, there exists a unique solution of




−∆ψ − λ g′(uλ)ψ = 1 in Ω ,

ψ = 0 on ∂Ω .

We set v = uλ + δψ for δ > 0, so that

−∆v − (λ+ θ) g(v) = δ − θ g(v)− λ
[
g(v)− g(uλ)− (v − uλ) g′(uλ)

]
.

Since g(v) ≤ g(‖uλ‖L∞ + δ‖ψ‖L∞) and |g(v)− g(uλ)− (v−uλ) g′(uλ)| = o(δ), we

deduce that

−∆v − (λ+ θ) g(v) ≥ δ − θ g(‖uλ‖L∞ + δ‖ψ‖L∞)− o(δ) .

Therefore, we see that for δ sufficiently small, there exists θ = θ(δ) > 0 such that

−∆v− (λ+ θ) g(v) ≥ 0. This implies in particular that uλ+θ ≤ v; and so, u ≤ v.

Letting δ ↓ 0, we obtain u ≤ uλ, thus u = uλ. So we see that uµ(x) → uλ(x) as

µ → λ, for all x ∈ Ω. Since uµ is increasing in µ and uµ ∈ C(Ω) for all µ < λ∗,

the convergence is uniform and (2.2) holds. It then follows easily from (2.2) that

λ1(−∆ − µg′(uµ)) → λ1(−∆ − λg′(uλ)) as µ → λ. In particular, we deduce

from (i) that there exist δ, η > 0 such that

(2.3) λ1(−∆− µ g′(uµ)) > η ,

for |µ− λ| < δ. This means that (i) holds with λ replaced by µ such that

|µ− λ| < δ; and so we deduce from (2.2) that

(2.4) the mapping µ 7→ uµ is continuous (λ− δ, λ+ δ)→ L∞(Ω) .

We next show that there exists C such that

(2.5) ‖uµ − uν‖L∞ ≤ C|µ− ν| ,

for |µ− λ|, |ν − λ| < δ. Indeed, it follows from (2.3) that

η‖uµ− uν‖2L2 ≤
∫

Ω
|∇(uµ− uν)|2 − µ

∫

Ω
g′(uµ) (uµ − uν)2

=

∫

Ω
(uµ − uν)

[
−∆(uµ − uν)− µ g′(uµ) (uµ − uν)

]

=

∫

Ω
(uµ− uν)

(
µ
[
g(uµ)− g(uν)− g′(uµ) (uµ− uν)

]
+ (µ−ν) g(uν)

)
.
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Since, by (2.4), µ|g(uµ)− g(uν)− g′(uµ)(uµ− uν)| ≤ ε(|µ− ν|)|uµ− uν | with
ε(t)→ 0 as t→ 0, we obtain

η‖uµ − uν‖2L2 ≤ ε(|µ− ν|) ‖uµ − uν‖2L2 + C|µ− ν| ‖uµ − uν‖L2 ,

so that ‖uµ − uν‖L2 ≤ C|µ− ν|. Since

−∆(uµ − uν) = µ
(
g(uµ)− g(uν)

)
+ (µ− ν) g(uν) ,

and |µ(g(uµ)−g(uν))+(µ−ν)g(uν)| ≤ C|uµ−uν |+C|µ−ν|, (2.5) now follows from
the L2 estimate and an obvious bootstrap argument. Suppose now |µ − λ| < δ.

It follows from (2.3) that there exists a unique solution wµ of



−∆wµ − µ g′(uµ)wµ = g(uµ) in Ω ,

wµ = 0 on ∂Ω .

By (2.3), wµ is bounded in H
1(Ω), and by standard regularity wµ is bounded in

C1(Ω). Using (2.5), we deduce that wµ is continuous (λ − δ, λ + δ) → L∞(Ω).

Property (ii) follows if we show that wµ =
d
dµ
uµ. This means that

ψ =
uσ − uµ − (σ − µ)wµ

σ − µ −→
σ→µ

0 ,

in L∞(Ω). We have

−∆ψ−µg′(uµ)ψ = (uσ−uµ) g′(uµ)+σ
uσ− uµ
σ − µ

g(uσ)− g(uµ)− (uσ− uµ) g′(uµ)
uσ − uµ

,

and it follows from (2.5) that the right-hand side converges to 0 in L∞(Ω) as

σ → µ. Using (2.3), we conclude that ‖ψ‖L∞ → 0 as σ → µ.

Remark 2.1. Step 2 of the proof of Theorem 1.1 shows that if λ 7→ uλ
is any branch of solutions of (1.1) which satisfies property (iii), then

λ1(−∆− g′(uλ)) 6= 0.

3 – Construction of discontinuities

In this section, we prove Theorems 1.2 and 1.3. We consider g as in the

statement of these results, and the minimal branch (uλ)0<λ<λ∗ . Fix λ ∈ (0, λ∗)
and set

M = ‖uλ‖L∞ = sup
0<λ≤λ

‖uλ‖L∞ .
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We want to modify g(u) for u > M in order to produce a discontinuity near λ of

the branch corresponding to the modified nonlinearity. The following observation

is crucial for our proof. Given r > 0, we denote by Br the ball of RNof radius r

and center 0. For 0 < ρ < R, we consider the problem

(3.1)




−∆ψρ = 1Bρ in BR ,

(ψρ)|∂BR
= 0 .

We have the following estimates.

Lemma 3.1. For 0 < ρ < R/2,

(3.2) inf
B2ρ

ψρ = ρ2K(ρ) ,

where the behavior of K(ρ) as ρ ↓ 0 is of the form

K(ρ) ≈





R/ρ if N = 1 ,

|log ρ|/2 if N = 2 ,

22−N/N(N−2) if N ≥ 3 .

Proof: If N= 2, ψρ is given by

ψρ(x) =





ρ2

2
(logR− log ρ) + ρ2 − |x|2

4
for |x| ≤ ρ ,

ρ2

2
(logR− log |x|) for ρ ≤ |x| ≤ R .

If N 6= 2, ψρ is given by

ψρ(x) =





ρN

N(N− 2) (ρ
−N+2 −R−N+2) + ρ2 − |x|2

2N
if |x| ≤ ρ ,

ρN

N(N− 2) (|x|
−N+2 −R−N+2) if ρ ≤ |x| ≤ R ,

and the result follows.

Corollary 3.2. Let c, µ > 0 and x0 ∈ Ω. If N ≥ 3 suppose, in addition, that
µ/c < 22−N/N(N− 2). There exists δ > 0 such that if

(3.3)




−∆w ≥ c 1{w>µ|x−x0|2} , x ∈ Ω ,

w ≥ 0 , x ∈ ∂Ω ,

and w 6≡ 0, then w ≥ δdΩ.
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Proof: We may assume x0 = 0. Consider R > 0 such that BR ⊂ Ω.
Since w > 0 by the strong maximum principle, there exists 0 < ρ < R such that

{w > µ|x|2} ⊃ Bρ. Set

ρ = sup
{
0 < ρ < R; {w > µ|x|2} ⊃ Bρ

}
> 0 .

We deduce from (3.3) that if ρ < ρ, then w ≥ c ψρ, where ψρ is defined by (3.1).

Letting ρ ↑ ρ, we obtain, w ≥ c ψρ. If ρ ≥ R/2, we deduce that w ≥ c ψR
2

.

Otherwise, it follows from Lemma 3.1 that w ≥ c ρ2K(ρ) for |x| < 2 ρ. In par-
ticular, w > µ|x|2 for |x| < ρ min{2,

√
cK(ρ)/µ}. This implies, by definition of

ρ, that ρ ≥ ρmin{2,
√
cK(ρ)/µ}, i.e. K(ρ) ≤ µ/c. By Lemma 3.1, this implies

that ρ ≥ ρ1 for some ρ1 > 0, and we have w ≥ c ψρ1
. Setting ρ̃ = min{ρ1, R/2},

we have w ≥ c ψρ̃. We observe that ρ̃ is independent of w, so the result follows

from (3.3) and the strong maximum principle.

We now define the modified nonlinearity ĝ by

(3.4) ĝ(u) =




g(u) if 0 ≤ u ≤M ,

g(M) + s if u > M ,

where s > 0 is to be chosen later. We observe that ĝ is discontinuous at M , but

left-continuous.

Lemma 3.3. For every λ > 0, there exists a minimal solution ûλ of the

equation

(3.5)




−∆û = λ ĝ(û) in Ω ,

û = 0 in ∂Ω .

In addition, ûλ = uλ for all 0 < λ ≤ λ. Furthermore, if λ(g(M) + s)/g(M) < λ∗,

then ûλ ≤ uµ with µ = λ(g(M) + s)/g(M).

Proof: Since ĝ is nondecreasing, the result for λ ≤ λ is obvious. We now

assume λ > λ. We apply the usual increasing iteration method, i.e. we solve




−∆un+1 = λ ĝ(un) , x ∈ Ω ,

un+1 = 0 , x ∈ ∂Ω ,

starting from u0 = 0. It is clear that u0 ≤ u1 ≤ · · · ≤ un ≤ · · · ≤ λ(g(M) + s)ψ,

where ψ is the solution of the equation −∆ψ = 1 in Ω with Dirichlet boundary
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condition. Therefore, (un)n≥0 converges in C(Ω) to a function u, which is clearly

a solution of (3.5) by left-continuity of ĝ.

Next, if w is a nonnegative supersolution of (3.5), then u0 ≤ w and by iter-

ation (since ĝ is nondecreasing), un ≤ w for all n ≥ 0. Therefore, u ≤ w and in

particular, u is the minimal solution. Finally, if µ = λ(g(M) + s)/g(M), then

λĝ ≤ µg; and so, if λ(g(M) + s)/g(M) < λ∗, then uµ is a supersolution of (3.5).

The last statement follows.

Lemma 3.4. Suppose s > 0. If N≥ 3 suppose, in addition, that s is suffi-
ciently large. There exists δ > 0 such that if




−∆u ≥ λ ĝ(u) , x ∈ Ω ,

u ≥ 0 , x ∈ ∂Ω ,

and u 6≡ uλ, then u ≥ uλ + δ dΩ.

Proof: Set w = u− uλ. We have

−∆w ≥ λ
(
ĝ(uλ + w)− g(uλ)

)
≥ λ s 1{uλ+w>M} .

Let x0 ∈ Ω satisfy uλ(x0) = M . Since uλ ∈ C2(Ω), there exists µ > 0 such that
uλ(x) ≥ M − µ|x − x0|2 for all x ∈ Ω. Therefore, 1{uλ+w>M} ≥ 1{w>µ|x−x0|2},

and the result follows from Corollary 3.2.

Corollary 3.5. Suppose s>0. If N≥3 suppose, in addition, that s is suffi-
ciently large. It follows that the mapping λ 7→ ûλ is discontinuous at λ. More

precisely, there exists δ > 0 such that ûλ ≥ uλ + δ dΩ for all λ > λ.

We now consider a local modification of g. Given s, ` > 0, such that

(3.6) g(M) + s < lim
u→∞

g(u) ,

let g satisfy

(3.7) g(u) =





g(u) if u ≤M ,

g(M) + s if M < u ≤M + ` ,

g(u) if u ≥M + 2 ` ,

and be C1 and increasing on [M + `,M +2`]. In other words, g is nondecreasing,

coincides with g on [0,M ] ∪ [M + 2`,∞), and has a discontinuity at M . Note
also that g coincides with ĝ on [0,M + `].
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Lemma 3.6. Suppose

(3.8) ` > lim
λ↓λ
‖ûλ‖L∞ −M ,

where ûλ is defined in Lemma 3.3. It follows that there exists λ > λ such that

for every λ ∈ (0, λ), there exists a minimal solution uλ of the equation

(3.9)




−∆u = λ g(u) in Ω ,

u = 0 in ∂Ω .

In addition, uλ = uλ for all 0 < λ ≤ λ. Moreover, uλ = ûλ for all 0 < λ < λ+ ε

if ε > 0 is small enough.

Proof: The result is a consequence of Lemma 3.3, since g ≥ ĝ and g coincides

with ĝ on [0,M + `]. Note that the assumption (3.8) clearly implies the last

statement.

Corollary 3.7. Let s > 0. If N≥ 3 suppose, in addition, that s is sufficiently
large. If (3.8) holds, then that the mapping λ 7→ uλ is discontinuous at λ. More

precisely, there exists δ > 0 such that uλ ≥ uλ + δ dΩ for all λ < λ < λ.

Proof: The result follows from Lemma 3.6 and Corollary 3.5.

Proof of Theorems 1.2 and 1.3: Let g be as in (3.7) and consider a

sequence gn ∈ C1([0,∞)) of positive, increasing nonlinearities such that gn(u) =
g(u) for u ≤M and u ≥M +2` and such that gn(u) ↑ g(u) for M < u < M +2`.

In particular, gn ≤ g so that the branch of minimal solutions for gn exists at least

for λ < λ. If unλ is the corresponding minimal solution, then u
n
λ is nondecreasing

in n and unλ = uλ if λ ≤ λ. Since g is left-continuous, it is not difficult to

show that unλ ↑uλ as n→∞. Suppose that the assumptions of Corollary 3.7 are
satisfied. Given ε > 0, we claim that if n is large enough, then the mapping

λ 7→ unλ has a discontinuity in [λ, λ + ε]. Indeed, assume by contradiction that

for some sequence nk→∞, unkλ is continuous on [λ, λ + ε]. Since unkλ = uλ for

all k, we have ‖unkλ ‖L∞ =M . On the other hand, it follows from Corollary 3.7
that there exists γ > 0 such that ‖uλ‖L∞ ≥ M + γ for λ > λ. Therefore, if we

consider λ < λ < λ+ ε, we have ‖unkλ ‖L∞ ≥M + γ/2 for k large enough. It then

follows from the contradiction assumption that if 0 < ν < γ/2, then there exists

a sequence (λk)k≥0 such that λk ↓ λ and ‖unkλk‖L∞ = M + ν. Since gnk(u
nk
λk
) is

bounded in L∞(Ω), we may assume (up to a subsequence) that unkλk → w in C(Ω)
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for some w ∈ C(Ω). Now we observe that if w(x) 6=M , then gnk(u
nk
λk
(x))→ g(w)

as k →∞. If w(x) =M , then

lim inf
k→∞

gnk(u
nk
λk
(x)) ≥ g(M) = g(w(x)) .

Therefore, lim inf
k→∞

gnk(u
nk
λk
) ≥ g(w), so that −∆w ≥ λg(w) ≥ λĝ(w). Since

‖w‖L∞ =M + ν, this is absurd by Lemma 3.4 if ν is sufficiently small.

In the case N ≥ 3 and g(u) → ∞ as u → ∞, we just choose s large enough
and the ` satisfying (3.8), so that the assumptions of Corollary 3.7 are satisfied.

Theorem 1.3 follows by choosing g̃ = gn with n sufficiently large.

Finally, suppose N = 1 or N = 2. If the mapping λ 7→ uλ is discontinuous

at λ, then we may let g̃ = g. So we now assume that the mapping λ 7→ uλ is

continuous at λ. It then follows from the last statement in Lemma 3.3 that

lim inf
λ↓λ

‖ûλ‖L∞ ≤ ‖uµ‖L∞ ,

where µ = λ g(M)+s
g(M) → λ as s ↓ 0. Thus we may choose ` satisfying (3.8) and

such that ` ↓ 0 as s ↓ 0. In particular, we may assume by choosing s sufficiently
small that ‖g − g‖L∞ ≤ ε/2 and that g − g is supported in [M,M + ε]. We then

let g̃ = gn for n sufficiently large, and the conclusions of Theorem 1.2 follow.

4 – A one-dimensional concave-convex nonlinearity

In this section, we consider positive solutions of the equation

(4.1)




−∆u = λ(uq + up) , x ∈ Ω ,

u = 0 , x ∈ ∂Ω ,

where 0 < q < 1 < p and λ > 0. The nonlinearity g(u) = uq + up is not positive

at the origin. However, the singularity of g′ at the origin allows the existence of a

branch of minimal, positive solutions uλ defined for 0 < λ < λ∗ with 0 < λ∗ <∞.
For λ = λ∗, there is a (possibly singular) minimal, positive weak solution uλ∗ .

For λ > λ∗, there is no solution, even in a weak sense. See [2,4](1). We now

consider positive solutions of the related heat equation

(4.2)




ut −∆u = λ(uq + up) , x ∈ Ω ,

u = 0 , x ∈ ∂Ω .

(1) In the papers [2,4], the nonlinearity is λuq+up rather than λ(uq+up). The two problems,
however, are equivalent by an obvious scaling.
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The initial value problem for (4.2) is studied in [4]. If 0 < λ ≤ λ∗, the minimal

solution uλ is stable from below, in the sense that if ϕ ∈ L∞(Ω), ϕ ≥ 0 and
ϕ ≤ uλ, then the (unique) positive solution of (4.2) with the initial condition

u(0) = ϕ is global and satisfies u(t) → uλ as t → ∞. The convergence holds in
L∞(Ω) if λ < λ∗ and in Lp+1(Ω) if λ = λ∗ (see [4]). The stability from above is

related to whether or not λ1(−∆ − λg′(uλ)) > 0. Since g is neither concave nor

convex, none of the usual criteria apply. In the one-dimensional case, we have

the following result, based on ODE techniques.

Proposition 4.1. Suppose N = 1. Given 0 < λ < λ∗, there exist exactly

two positive solutions of (4.1), uλ and vλ > uλ. The mapping λ 7→ uλ is C
1 and

increasing (0, λ∗)→ L∞(Ω). The mapping λ 7→ vλ is C
1 : (0, λ∗)→ L∞(Ω),

and the mapping λ 7→ ‖vλ‖L∞ is decreasing (0, λ∗)→ R. Furthermore,

(uλ − uµ)/dΩ → 0 and (vλ − vµ)/dΩ → 0 uniformly in Ω as µ → λ ∈ (0, λ∗).
In addition, λ1(−∆− λg′(uλ)) > 0 and λ1(−∆− λg′(vλ)) < 0 for all λ ∈ (0, λ∗).

Proof: We may assume without loss of generality that Ω = (−1, 1). We
proceed in three steps.

Step 1. An auxiliary equation. Given µ > 0, consider the solution w = wµ

of the equation −w′′ = wq + wp with the initial conditions w(0) = µ, w′(0) = 0.

w is even and is given by

x =
1√
2

∫ µ

w(x)

dξ√
µq+1−ξq+1

q+1 + µp+1−ξp+1

p+1

,

for 0 ≤ x ≤ θ(µ), with

θ(µ) =
1√
2

∫ µ

0

dξ√
µq+1−ξq+1

q+1 + µp+1−ξp+1

p+1

.

In particular, w is decreasing on [0, θ(µ)] and w(θ(µ)) = 0. We now study the

behavior of θ(µ) and, for further convenience, we write θ(µ) in three different

forms:

θ(µ) =
1√
2

∫ 1

0

dξ√
µq−1 1−ξ

q+1

q+1 + µp−1 1−ξ
p+1

p+1

(4.3)

=
µ

1−q

2√
2

∫ 1

0

dξ√
1−ξq+1

q+1 + µp−q 1−ξ
p+1

p+1

(4.4)

=
µ−

p−1

2√
2

∫ 1

0

dξ√
µ−(p−q) 1−ξ

q+1

q+1 + 1−ξp+1

p+1

.(4.5)
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We deduce from (4.4) and from (4.5), respectively, that

(4.6) θ(µ)−→
µ↓0
0 , θ(µ) −→

µ→∞
0 .

We now claim that there exists µ∗ > 0 such that

(4.7) θ′(µ) > 0 for 0 < µ < µ∗ ; θ′(µ) < 0 for µ > µ∗ .

Indeed, we deduce from (4.3) that

(4.8) θ′(µ) =
1

µ
q+1

2 2
3

2

∫ 1

0

1−q
q+1(1− ξq+1) −

p−1
p+1(1− ξp+1)µp−q

[
1−ξq+1

q+1 + µp−q 1−ξ
p+1

p+1

] 3

2

dξ .

We now observe that for all 0 < ξ < 1,

(4.9) 1 >
1− ξq+1
1− ξp+1 >

q + 1

p+ 1
,

so that we deduce from (4.8) that

∫ 1

0

[
1−q
q+1 −

p−1
p+1 µ

p−q
]
(1− ξp+1)

[
1−ξq+1

q+1 + µp−q 1−ξ
p+1

p+1

] 3

2

dξ > µ
q+1

2 2
3

2 θ′(µ)

>

∫ 1

0

[
(1− q)− (p− 1)µp−q

]
(1− ξp+1)

(p+1)
[
1−ξq+1

q+1 + µp−q 1−ξ
p+1

p+1

] 3

2

dξ .

It follows in particular that if

µ < µ1 =
(1− q
p− 1

) 1

p−q ,

then θ′(µ) > 0 and if

µ > µ2 =

(
(1− q) (1+ p)
(1+ q) (p− 1)

) 1

p−q

,

then θ′(µ) < 0. The claim will now be proved if we show that for every ξ ∈ (0, 1),
the integrand in (4.8) is a decreasing function of µ ∈ (µ1, µ2). Letting τ = µp−q,

we set

h(τ) =

1−q
q+1(1− ξq+1) −

p−1
p+1(1− ξp+1)τ

[
1−ξq+1

q+1 + τ 1−ξ
p+1

p+1

] 3

2

,
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so that

h′(τ) =
(p− 1) (1− ξp+1)2

2 (p+ 1)2

[
τ − 1−ξq+1

1−ξp+1

(
2 p+1
q+1 + 3

(1−q) (p+1)
(q+1) (p−1)

)]

[
1−ξq+1

q+1 + τ 1−ξ
p+1

p+1

] 5

2

.

It follows from (4.9) that

1− ξq+1
1− ξp+1

(
2
p+ 1

q + 1
+ 3

(1− q) (p+ 1)
(q + 1) (p− 1)

)
>
(p+ 1)

[
(1− q) + 2 (p− q)

]

(q + 1) (p− 1)

>
(p+ 1) (1− q)
(q + 1) (p− 1) = sup

µ1<µ<µ2

τ .

Thus h′(τ) < 0, which proves the claim (4.7).

Step 2. The solutions uλ and vλ. Given µ > 0 and w as in Step 1, set

(4.10) u(x) = w(x θ(µ)) .

We see that u is a positive solution of (4.1) if and only if

(4.11) λ = θ(µ)2 .

In this case, we have

(4.12) ‖u‖L∞(Ω) = u(0) = µ .

Setting

λ∗ = θ(µ∗)2 ,

it follows from (4.6)–(4.7) that (4.1) has a positive solution if and only if 0<λ≤λ∗.
Given 0 < λ < λ∗, let 0 < µ− < µ+ be the two solutions of λ = θ(µ)2, and let

uλ and vλ be the corresponding solutions of (4.1) given by (4.10). It follows that

uλ and vλ are the only positive solutions of (4.1). Moreover, ‖uλ‖L∞ < ‖vλ‖L∞
by (4.12). Thus uλ must be the minimal solution; and so vλ> uλ. Since θ is C

1

on (0,∞), the mappings λ 7→ µ± are C
1 on (0, λ∗), and one deduces easily that

the mappings λ 7→ uλ and λ 7→ vλ are C
1 (0, λ∗) → L∞(Ω). It follows easily

that (uλ− uµ)/dΩ → 0 and (vλ− vµ)/dΩ → 0 uniformly in Ω as µ → λ 6= 0.
(uλ)0<λ<λ∗ being the minimal branch is increasing. Finally, by (4.7) and (4.12),

vλ(0) is decreasing.

Step 3. λ1(−∆− λg′(uλ)) > 0 and λ1(−∆− λg′(vλ)) < 0 for all λ ∈ (0, λ∗).
We first show that λ1(−∆− λg′(uλ)) > 0. (Note that we may not apply
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Theorem 1.1 because g is not smooth at the origin.) We already know that

λ1(−∆− λg′(uλ)) ≥ 0 by Remark 3.2 in [2], so we assume by contradiction that
λ1(−∆−λg′(uλ)) = 0 and fix λ < λ < λ∗. Given λ < µ < λ, we deduce from (1.5)

that

(µ− λ)
∫

Ω
g(uλ)ϕ1 ≤ λ

∫

Ω
|g(uµ)− g(uλ)− g′(uλ) (uµ − uλ)|ϕ1 .

Since uλ < uµ < u
λ
, we see that there exists C such that

|g(uµ)− g(uλ)− g′(uλ) (uµ − uλ)| ≤ C |uµ − uλ|2 + C
|uµ − uλ|2
u2−qλ

≤ C
|uµ − uλ|2
ϕ2−q1

;

and so,

(µ−λ)
∫

Ω
g(uλ)ϕ1 ≤ C

∫

Ω

|uµ − uλ|2

ϕ1−q1

≤ C ‖uµ−uλ‖2L∞
∫

Ω
ϕ−1+q1 ≤ C |µ−λ|2 ,

since uλ is C
1. A contradiction follows by letting µ ↓ λ. We finally show that

λ1(−∆ − λg′(vλ)) < 0. We observe that an obvious modification of the above

argument (taking µ < λ) shows that λ1(−∆− λg′(vλ)) 6= 0. We then assume by
contradiction that λ1(−∆−λg′(vλ)) > 0. Given 0<θ<1, set ϕ = (1−θ)uλ+θ vλ
and let u be the positive solution of (4.2) with the initial value u(0) = ϕ (see [4]).

It follows from the maximum principle that uλ ≤ u(t) ≤ vλ. In particular, the

ω-limit set of ϕ is well-defined and is either {uλ} or {vλ}. On the other hand, since
λ1(−∆ − λg′(uλ)) > 0, it follows from standard techniques that ω(ϕ) = {uλ} if
θ is small enough; and since λ1(−∆−λg′(vλ)) > 0, ω(ϕ) = {vλ} if θ is sufficiently
close to 1. Also the set of θ such that ω(ϕ) = {uλ} is open and so is the set
of θ such that ω(ϕ) = {vλ}. It follows that there exists θ ∈ (0, 1) such that
ω(ϕ) 6= {uλ} and ω(ϕ) 6= {vλ}, which is absurd.

Corollary 4.2. Suppose N = 1. Given 0 < λ < λ∗, let ϕ ∈ L∞(Ω), ϕ ≥ 0
and let u be the positive solution of (4.2) with the initial condition u(0) = ϕ.

The following properties hold.

(i) There exists ε > 0 such that if ϕ ≤ uλ + ε or if ϕ ≤ vλ, ϕ 6≡ vλ, then

u is globally defined and u(t)→ uλ uniformly as t→∞.
(ii) If ϕ ≥ vλ, ϕ 6≡ vλ, then u blows up in finite time.

Proof: (i) Since λ1(−∆ − λg′(uλ)) > 0, it follows easily that there exists

ε > 0 such that if ‖ϕ − uλ‖L∞ ≤ ε, then u(t) → uλ in L
∞(Ω) as t → ∞. Since
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uλ is stable from below, we see that if ϕ ≤ uλ + ε, then u(t) → uλ in L
∞(Ω)

as t → ∞. Suppose now ϕ ≤ vλ, ϕ 6≡ vλ. It follows from the strong maximum

principle that there exists δ > 0 such that u(1) ≤ vλ − δ dΩ; and so, there exists
λ < µ < λ∗ such that u(1) ≤ vµ. Since vµ is clearly a supersolution of (4.2), we

have u(t) ≤ vµ for all t ≥ 1. Now the ω-limit set ω(ϕ) of ϕ is either {uλ} or {vλ}.
Since u(t, 0) ≤ vµ(0) < vλ(0), we deduce that ω(ϕ) = {uλ}.

(ii) It follows from the strong maximum principle that there exist δ, ε > 0

such that u(ε) ≥ vλ + δ dΩ; and so, there exists 0 < µ < λ such that u(ε) ≥ vµ.

It thus remains to show that the positive solution z of (4.2) with the initial

condition z(0) = vµ blows up in finite time. We assume by contradiction that z is

globally defined. Since vµ is a subsolution of (4.2), z(t) is nondecreasing. Using

the technique of [4] (see in particular the proof of Lemma 3.1), it follows that

z(t) converges as t → ∞ to a positive weak solution of (4.1), which is either uλ
or vλ. This is absurd since z(t, 0) ≥ vµ(0) > vλ(0) > uλ(0).

Remark 4.3. If λ = λ∗, then the stability of uλ can be studied in any

dimension. Note first that uλ∗ is stable from below, see [4]. Using the techniques

of Martel [6], one then shows that uλ∗ is the unique, positive weak solution

of (4.1) for λ = λ∗. (The nonlinearity is not convex, but it is convex for u

large, and one can proceed as in [4] to construct the appropriate supersolutions.)

If uλ∗ ∈L∞(Ω) (which is the case in particular if p is not too large), then uλ∗ is
unstable in the sense that if ϕ∈L∞(Ω), ϕ ≥ uλ∗ , ϕ 6= uλ∗ , then the corresponding

solution u of (4.2) blows up in finite time. (See the proof of Corollary 4.2 (ii).)

If uλ∗ 6∈ L∞(Ω), then uλ∗ is unstable (by “instantaneous blow up”) in the sense
that if ϕ ≥ uλ∗ , ϕ 6= uλ∗ , then there does not exist any positive weak solution

of (4.2) satisfying u(0) = uλ∗ . This follows from the techniques of Martel [7].
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