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Abstract: A transmission problem for a class of dynamic coupled system of hyper-

bolic equations having piecewise constant coefficients in a bounded three-dimensional

domain is considered. Assuming that in the entire boundary, dissipative mechanisms

are present and that suitable geometric conditions on the domain and the interfaces

are satisfied, we prove that the total energy associated with the model decays exponen-

tially as t → +∞. Exact boundary controllability is then obtained through Russell’s

“controllability via stabilizability” principle.

1 – Introduction

This paper is devoted to study the uniform stabilization as t → +∞ of the

solutions of a transmission problem for a class of dynamic coupled system of

hyperbolic equations from which a distinguish example is the coupled system

of electromagneto-elasticity governed by Maxwell equations and the system of

elastic waves. Let Ω be a bounded region of R3 with smooth boundary ∂Ω = S.
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We will assume that Ω is occupied by a multilayered piezoelectric body whose

motion is governed by the system (see [4] and [7]):

(1.1)





ρ utt −
3∑

i,j=1

∂

∂xi

(
Aij

∂u

∂xj

)
+

3∑

i=1

∂

∂xi
(A∗iE) = 0

∂

∂t

{
DE +

3∑

i=1

Ai
∂u

∂xi

}
− curlH = 0

βHt + curlE = 0

div

{
DE +

3∑

i=1

Ai
∂u

∂xi

}
= 0

divH = 0

in Ω× (0,+∞). Here x = (x1, x2, x3) ∈ Ω and t denotes the time variable.

In (1.1) we denote by

u = (u1, u2, u3) = the displacement vector

E = (E1, E2, E3) = the electric field

H = (H1, H2, H3) = the magnetic field

β(x) = the electric permeability

ρ = the density

and the 3 × 3 matrices Aij(x), Ai and D(x) will satisfy suitable assumptions

given below. In the simplest case, when we consider an isotropic medium, then,

we will have that

3∑

i,j=1

∂

∂xi

(
Aij

∂

∂xj

)
= µ∆+ (λ+ µ)∇ div

where λ and µ are the Lame’s constants (µ>0, λ+µ > 0), D will be the identity

matrix, ∇ the gradient operator, ∆ the (vector) Laplacian,

3∑

i=1

∂

∂xi
(A∗iE) = α curlE

and
∂

∂t

3∑

i=1

Ai
∂u

∂xi
= −α curlut
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where α is a coupling constant. Here A∗i denotes the adjoint of Ai. The coupled

system (1.1) is complemented with initial conditions

(1.2)




u(x, 0) = f1(x) , ut(x, 0) = f2(x)

E(x, 0) = f3(x) , H(x, 0) = f4(x)
in Ω

and boundary conditions

(1.3)





3∑

i,j=1

Aij
∂u

∂xj
ηi −

3∑

i=1

A∗iE ηi = − a(x)ut − b(x)u

η x (E x η) = α(x)Hx η + γ(x)

∫ t

0

[
H(x, τ)x η

]
exp

(
−σ(x) (t− τ)

)
dτ

on ∂Ω× (0,+∞) where “x ” denotes the usual vector product and η = η(x)

denotes the unit outward normal to ∂Ω = S at x. The functions a(x), b(x),

α(x), γ(x) and σ(x) will satisfy suitable conditions given below. In the simplest

case they are just positive constants.

Finding uniform rates of decay of the solution of problem (1.1), (1.2) and

(1.3) as t → +∞ is of interest to understand the evolution of the model and

consequently for the phenomenon described by it. Even more interesting is the

so called transmission problem associated with model (1.1)–(1.3). Let us describe

our main result of this article: Let Ω ⊆ R3 be as above and consider a finite num-

ber of subsets of Ω, {Bk}n
k=1 which are open, connected, with smooth boundary

∂Bk = Sk and such that Bk ⊂ Bk+1 for 1 ≤ k ≤ n− 1. We denote by Ω0 = B1,

Ωk = Bk+1\Bk for k = 1, 2, ..., n−1 and Ωn = Ω\Bn . Now, we consider system

(1.1) restricted to each set Ωk × (0, T ), k = 0, 1, 2, ..., n. We complement (1.1)

with the initial data (1.2) also restricted to Ωk, k = 0, 1, 2, ..., n. The boundary

conditions on S × (0,+∞) are given by (1.3). Furthermore, we will require the

following interface conditions to be satisfied

(1.4)





u(k−1) = u(k)

3∑

i,j=1

A
(k−1)
ij

∂u(k−1)

∂xj
ηi −

3∑

i=1

A∗iE
(k−1)ηi =

3∑

i,j=1

A
(k)
ij

∂u(k)

∂xj
ηi −

3∑

i=1

A∗iE
(k)ηi

η xE(k−1) = η xE(k)

η xH(k−1) = η xH(k)

for any (x, t) ∈ Sk×(0,+∞), k = 1, 2, ..., n. Here, η = η(x) = (η1, η2, η3) is the

unit normal vector pointing the exterior of Bk and A
(k)
ij , u(k), E(k) and H(k) are

the restrictions of Aij , u, E and H to Ωk respectively.
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We will assume to be valid the following conditions

HYPOTHESIS I.

1) Aij = Aij(x) are 3× 3 matrices given by Aij(x) =
[
Cij

kh(x)
]

3×3
where

Cij
kh(x) = (1− δihδik) aikjh(x) + δikδjh aihjk(x)

with δ`k =

{
1 if `=k
0 if ` 6=k and aijkh are Cartesian components of the elastic

tensor with the symmetric properties

aijkh = ajikh = akhij .

2) Ai and D = D(x) are 3× 3 matrices given by

Ai = [ekhi] and D(x) = [dij(x)]

where ekhi and dij(x) are Cartesian components of the piezoelectric and

electric permittivity tensors respectively and satisfy the following condi-

tions:

dkh= dhk ,
3∑

k,h=1

dkh ξkξh ≥ d0 |ξ|2

for some d0 > 0 and any vector ξ = (ξ1, ξ2, ξ3) ∈ R3.

3) The matrices Aij(x) satisfy the condition

3∑

i,j=1

Aij(x) vj ¦ vi ≥ c0

3∑

i=1

|vi|2

for some co > 0 and any vector vi = (v1i , v
2
i , v

3
i ) ∈ R3. Here the dot ¦

denotes the inner product in R3.

4) We assume that aijkh(x), dij(x) and β(x) > 0 are piecewise constant

functions which lose continuity only on S1, S2, ..., Sn .

5) ρ and ekhi are real constants, ρ > 0.

6) The functions a = a(x), b = b(x), α(x), γ(x) and σ(x) are real-valued

and continuously differentiable functions on S = ∂Ω. Furthermore, a > 0,

b > 0, α > 0, γ ≥ 0 and σ > 0 for all x ∈ S.
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Observe that from the symmetry of the aijkh it follows that A∗ij = Aji . Also,

for an isotropic medium, the constants aijkh are given by

aijkh = λ δijδkh + µ (δikδjh + δihδjk)

where λ and µ are the Lame’s constants. Furthermore, assumption 3) in Hypoth-

esis I holds for an isotropic medium with the constant co = µ > 0. In fact, in

that case, direct calculation shows that

3∑

i,j=1

Aij vj ¦ vi = (λ+ µ)

( 3∑

i=1

vi
i

)2
+ µ

3∑

i,j=1

(vj
i )
2 ≥ µ

3∑

i=1

|vi|2 .

Let {u,E,H} be the global solution of problem (1.1) satisfying the initial con-

ditions (1.2), the boundary conditions (1.3) and the interface conditions (1.4).

We consider the (total) energy E(t) given by

(1.5)

E(t) =
n∑

k=0

∫

Ωk

{
ρ |u(k)t |2 +

3∑

i,j=1

A
(k)
ij

∂u(k)

∂xj
¦
∂u(k)

∂xi

+ D(k)E(k) ¦ E(k) + β(k)|H(k)|2
}
dx

+

∫

S

{
b |u(n)|2 + γ

∣∣∣∣
∫ t

0

[
H(x, τ)x η

]
exp

(
−σ(t−τ)

)
dτ

∣∣∣∣
2
}
dS

where β(n) = β and u(n) = u.

We (formally) calculate the derivative of E(t), use the equations together with
the boundary conditions as well as the interface conditions to obtain that

(1.6)

dE(t)
dt

= − 2

∫

S

{
a |ut|2 + α |H x η|2

+ σ γ

∣∣∣∣
∫ t

0

[
H(x, τ)x η

]
exp

(
−σ(t− τ)

)
dτ

∣∣∣∣
2
}
dS .

Thus
dE(t)
dt

≤ 0 .

Assuming suitable geometric conditions on Ω (and Sk) as well as monotonicity

assumptions on the coefficients of the system, we are able to prove that

E(t) ≤ c exp(−wt) E(0)

for any t ≥ 0 where c and w are positive constants.
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As an application of the above result, we study the following exact control-

lability problem: Assume that γ ≡ 0. Given a time T > 0, the initial distri-

bution F (x) = (f1(x), f2(x), f3(x), f4(x)) and a desired terminal state G(x) =

(g1(x), g2(x), g3(x), g4(x)) where F and G belong to an appropriate function

space, to find vector-valued functions ~p(x, t) and ~q(x, t) such that the solution

of (1.1), (1.2) and (1.4) with boundary conditions

(1.7)





3∑

i,j=1

Aij
∂u

∂xj
ηi −

3∑

i=1

A∗iE ηi + b u = ~p(x, t)

η xE = ~q(x, t)

on S × (0, T ), satisfy

(1.8) u(x, T ) = g1(x), ut(x, T ) = g2(x), E(x, T ) = g3(x), H(x, T ) = g4(x) .

Let us mention some bibliographical comments: Boundary controllability in trans-

mission problems for the wave equation has been considered by J.-L. Lions [22]

and S. Nicaise in [24] and [25]. Uniform stabilization and exact control for the

Maxwell system in multilayered media were studied by B. Kapitonov in [10].

Boundary controllability in transmission problems for a class of second order

hyperbolic systems has been studied by J. Lagnese [18]. Stabilization and exact

boundary controllability for the system of elasticity were considered by J. Lagnese

[17], [18], F. Alabau and V. Komornik [1] and M. Horn [6] among others.

The exact controllability problem for the Maxwell system has been studied by

D. Russell [27] for a circular cylindrical region, by K. Kime [14] for a spherical

region and by J. Lagnese for a general region. In [9] and [19] the exact control-

lability problem has been studied by means of the Hilbert Uniqueness Method

introduced by J.-L. Lions [20], [21]. Uniform exponential decay of solutions of

Maxwell’s equation with boundary dissipation was proved by B. Kapitonov in

[10] and [11], including the uniform “simultaneous” stabilization for a pair of

Maxwell’s equations.

The results obtained in this article generalize previous work of the authors

[12], [13] where a transmission problem was considered either for Maxwell system

with boundary conditions with memory and for the system of electromagneto-

elasticity.

Let us describe the sections of this paper: Solvability of (1.1)–(1.4) in the

appropriate class of functions is shown in Section 2. This is done via semigroup

theory and the main technical difficulty comes from the memory term (see (1.3))

on ∂Ω × (0,+∞). In Section 3 we prove the uniform exponential decay of the
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energy E(t) via the multiplier method. At this point, we needed to modified

“slightly” the usual multipliers in order to take care of the additional bound-

ary terms which appear after integration (in space) of the fundamental identity.

We also needed to assume suitable geometric conditions on Ω and Sk as well as

some monotonicity assumptions on A
(k)
ij , D(k) and β(k). In the last section, the

controllability problem (1.1), (1.2), (1.4), (1.7)–(1.8) when γ ≡ 0 is solved.

Since ρ is a positive constant we may assume without lost of generality that

ρ ≡ 1. When studying system (1.1) the restrictions of u, E, H, β, Aij , D, to

Ωk (k = 0, 1, 2, ..., n−1) will be denoted by u(k), E(k), H(k), etc. When k = n

we will write u(n) = u, E(n) = E, etc. At each point x belonging to one of the

boundaries S = ∂Ω, S1, S2, ..., Sn , the unit normal vector pointing the exterior

will be denote by η = η(x) and its components by ηi . We use the standard

notations, for example Hm(Ω) and Hr(∂Ω) will denote the Sobolev spaces of

order m and r on Ω and ∂Ω respectively. The norm of a vector v ∈ R3 will be

denote by |v|. Due to the techniques we use in this article (the multiplier method)

in order to achieve the result on the exponential decay we needed to assume that

b = b(x) is bounded above by a suitable constant (see (3.15) in Theorem 3.5).

This is, apparently, a limitation of the method.

We conclude this introduction with some comments on the boundary condi-

tions (1.3). The second line in (1.3) combines the so-called Leontovich’s boundary

condition (when γ ≡ 0) and a dissipative term of memory type with an exponen-

tially decaying kernel. A boundary condition in electromagnetism with memory

was introduced by M. Fabrizio and A. Morro in [5]. Later V. Berti [2] studied

the asymptotic stability of such models. When γ ≡ 0 and α(x) > 0 then, Leon-

tovich’s boundary condition is also of dissipative type. In V. Komornik’s book

[16] (pg. 120) a nice geometrical meaning of such boundary condition is given in

case α ≡ 1: The tangential component of the magnetic field H is obtained from

the tangential component of the electrical field E by a rotation of angle 90◦ in

the positive direction in the tangent plane. The term −a(x)ut in the first line of

(1.3) is also a dissipative mechanism and the left hand side (of the first line of

(1.3)) could be interpreted as an stress tensor for the system at the boundary S.

2 – Well-posedness

In this section we will prove the well-posedness of problem (1.1)–(1.4) using

semigroup theory. The main (technical) difficulty arises from the memory term

appearing on the boundary condition (1.3).
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Let us consider the Hilbert space X consisting on triples v = (v1, v2, v3) of

three-component vector-value functions vj(x) such that

v1, v2 ∈ [L2(Ωk)]
3 , k = 0, 1, 2, ..., n ,

curl v1, curl v2 ∈ [L2(Ωk)]
3 , k = 0, 1, 2, ..., n

and
v3 ∈ [L2(S)]3 , v3 ¦ η = 0 on S .

We define the inner product in X as follows. If v, w ∈ X, then

(v, w)X =
n∑

k=0

∫

Ωk

{
curl v

(k)
1 ¦ curlw

(k)
1 + curl v

(k)
2 ¦ curlw

(k)
2

+ D(k)v
(k)
1 ¦ w

(k)
1 + β(k)v

(k)
2 ¦ w

(k)
2

}
dx +

∫

S
γ v3 ¦ w3 dS .

The following lemma was proved in [12] (see also B.V. Kapitonov [8]):

Lemma 2.1. Assume that α(x) and γ(x) belong to C1(S). Then, the

mapping

u = (u1, u2, u3) 7→ u1 − η(u1 ¦ η)− αu2 x η − γ u3
from [C̃1(Ω)]3 = {u(k) ∈ [C1(Ωk)]

3, k = 0, 1, 2, ..., n} into [C1(S)]3 extends by

continuity to a continuous linear mapping from X into [H−1/2(S)]3 which we also

denote by

u 7→ u1 − η(u1 ¦ η)− αu2 x η − γ u3 ≡ w(u;α, γ) .

Remark 2.2. Well known results (see for instance the book of G. Duvaut

and J.-L. Lions [3]) imply that for any u ∈ X, the expressions η xu1 and η xu2
where η = η(x) is the unit normal vector pointing the exterior of Sk , are well

defined on Sk and belong to [H−1/2(Sk)]
3.

Lemma 2.1 and Remark 2.2 make it possible to introduce in X, the closed

subspace

V =

{
u = (u1, u2, u3) ∈ X such that

η xu
(k−1)
1 = η xu

(k)
1 , η xu

(k−1)
2 = η x u

(k)
2 on Sk , k = 1, 2, ..., n

and u1 − η(u1 ¦ η)− αu2 x η − γ u3 = 0 on S

}
.
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Let us denote by Z the (real) Hilbert space which consists of all elements

w = (w1, w2, w3, w4, w5) of three-component vector-valued functions wj(x) such

that w
(k)
1 ∈ [H1(Ωk)]

3, w
(k)
2 , w

(k)
3 , w

(k)
4 ∈ [L2(Ωk)]

3, k = 0, 1, ..., n, w5 ∈ [L2(S)]3,

w
(k)
1 = w

(k−1)
1 on Sk , k = 1, 2, ..., n. The inner product in Z is given by:

If w, v ∈ Z, then

(w, v)Z =
n∑

k=0

∫

Ωk

{
3∑

i,j=1

A
(k)
ij

∂w
(k)
1

∂xj
¦
∂v
(k)
1

∂xi
+ w

(k)
2 ¦ v

(k)
2

+ D(k)w
(k)
3 ¦ v

(k)
3 + β(k)w

(k)
4 ¦ v

(k)
4

}
dx

+

∫

S
(bw1 ¦ v1 + γ w5 ¦ v5) dS .

The norm in the space Z will be denote by ‖ · ‖Z = ( · , · )1/2Z . In Z we define

the unbounded operator A with domain D(A) which consists of all elements

w = (w1, w2, w3, w4, w5) ∈ Z such that, for k = 1, 2, ..., n

3∑

i,j=1

A
(k)
ij

∂w
(k)
1

∂xj
−

3∑

i=1

A∗iw
(k)
3 ∈ [H1(Ωk)]

3

w
(k)
2 ∈ [H1(Ωk)]

3, (w3, w4, w5) ∈ V, w4 x η ∈ [L2(S)]3

3∑

i,j=1

Aij
∂w1
∂xj

ηi −
3∑

i=1

A∗iw3 ηi + aw2 + bw1 = 0 on S

w
(k−1)
2 = w

(k)
2 on S

and

3∑

i,j=1

A
(k−1)
ij

∂w
(k−1)
1

∂xj
ηi −

3∑

i=1

A∗iw
(k−1)
3 ηi =

=
3∑

i,j=1

A
(k)
ij

∂w
(k)
1

∂xj
ηi −

3∑

i=1

A∗iw
(k)
3 ηi on Sk , k = 1, 2, ..., n ,

then A: D(A) ⊆ Z 7→ Z is defined as

Aw =

(
w2 ,

3∑

i,j=1

∂

∂xi

(
Aij

∂w1
∂xj

)
−

3∑

i=1

∂

∂xi
A∗iw3 , D

−1
(
curlw4 −

3∑

i=1

Ai
∂w2
∂xi

)
,

− β−1 curlw3 , w4 x η − σ w5
)

whenever w = (w1, w2, w3, w4, w5) ∈ D(A).
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Next, we consider the adjoint operatorA∗. We can verified in a similar manner

as in [12] that the domain of A∗ coincides with the following subspace

D(A∗) =
{
v=(v1, v2, v3, v4, v5) ∈ Z such that v

(k)
2 ∈ [H1(Ωk)]

3, (v3, v4, v5)∈ Ṽ ,

3∑

i,j=1

A
(k)
ij

∂v
(k)
1

∂xj
−

3∑

i=1

A∗i v
(k)
3 ∈ [H1(Ωk)]

3, v4 x η ∈ [L2(S)]3,

3∑

i,j=1

Aij
∂v1
∂xj

ηi −
3∑

i=1

A∗i v3 ηi − a v2 + b v1 = 0 on S ,

v
(k−1)
2 = v

(k)
2 on Sk , k = 1, 2, ..., n ,

3∑

i,j=1

A
(k−1)
ij

∂v
(n−1)
1

∂xj
ηi −

3∑

i=1

A∗i v
(k−1)
3 ηi =

3∑

i,j=1

A
(k)
ij

∂v
(k)
1

∂xj
ηi −

3∑

i=1

A∗i v
(k)
3 ηi

on Sk , k = 1, 2, ..., n

}

where Ṽ is as in the definition of V with −α(x) instead of α(x). Given v =

(v1, v2, v3, v4, v5) ∈ D(A∗) then, we have that

A∗v = −
(
v2,

3∑

i,j=1

∂

∂xi

(
Aij

∂v1
∂xj

)
−

3∑

i=1

∂

∂xi
A∗i v3 , D

−1
(
curl v4 −

3∑

i=1

Ai
∂v2
∂xi

)
,

− β−1 curl v3 , v4 x η + σ v5

)
.

We note that the operator A is closed since it coincides with the adjoint operator

of A∗. Clearly A is densely defined. Furthermore, we have

Lemma 2.3. Assuming Hypothesis I given in the introduction (with ρ = 1),

then, the operators A and A∗ are dissipative, that is,

(2.1) (Aw,w)Z ≤ 0 for any w ∈ D(A)

and

(2.2) (A∗v, v)Z ≤ 0 for any v ∈ D(A∗) .
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Proof: It is enough to prove (2.1) for a dense subset of D(A). In fact, the

set of piecewise smooth vector-valued functions w = (w1, w2, w3, w4, w5) ∈ D(A)
such that w1 ∈ [C2(Ωk)]

3, w2, w3, w4 ∈ [C1(Ωk)]
3, w5 ∈ [C(S)]3, k = 0, 1, 2, ..., n

is dense in D(A). Let w be an element of such dense subset. Taking the inner

product of Aw with w in Z and using the divergence theorem we obtain that

(Aw,w)Z =
n∑

k=0

∫

Ωk





3∑

i,j=1

A
(k)
ij

∂w
(k)
2

∂xj
¦
∂w

(k)
1

∂xi

+

[
3∑

i,j=1

∂

∂xi

(
A
(k)
ij

∂w
(k)
1

∂xj

)
−

3∑

i=1

∂

∂xi
(A∗iw

(k)
3 )

]
¦ w

(k)
2

+

[
curlw

(k)
4 −

3∑

i=1

Ai
∂w

(k)
2

∂xi

]
¦ w

(k)
3 − curlw

(k)
3 ¦ w

(k)
4



 dx

+

∫

S

{
bw2 ¦ w1 + γ(w4 x η − σ w5) ¦ w5

}
dS

=
3∑

i=1

∫

Sk





[
3∑

i,j=1

A
(k−1)
ij

∂w
(k−1)
1

∂xj
ηi −

3∑

i=1

A∗iw
(k−1)
3 ηi

]
¦ w

(k−1)
2

(2.3)

−
[

3∑

i,j=1

A
(k)
ij

∂w
(k)
1

∂xj
ηi −

3∑

i=1

A∗iw
(k)
3 ηi

]
¦ w

(k)
2

+ w
(k−1)
4 ¦ (w

(k−1)
3 x η) − w

(k)
4 ¦ (w

(k)
3 x η)



 dSk

+

∫

S





[
3∑

i,j=1

Aij
∂w1
∂xj

ηi −
3∑

i=1

A∗iw3 ηi

]
¦ w2

+ w4 ¦ (w3 x η) + bw2 ¦ w1 + γ(w4 x η − σ w5) ¦ w5



 dS

=

∫

S

{
(− aw2 − bw1) ¦ w2 + w4 ¦ (w3 x η) + bw2 ¦ w1

+ γ(w4 x η − σ w5) ¦ w5

}
dS .

Now, we use the fact that (w3, w4, w5) ∈ V . Therefore

w3 − η(w3 ¦ η)− αw4 x η − γ w5 = 0 on S
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which together with the fact that w5 ¦ η = 0 on S give us that

(− aw2 − bw1) ¦ w2 + w4 ¦ (w3 x η) + bw2 ¦ w1 + γ(w4 x η − σw5) ¦ w5 =

= −a|w2|2 − bw1 ¦ w2 + w3 ¦ (η xw4) + bw2 ¦ w1 + γ(w4 x η) ¦ w5 − γσ|w5|2

= −a|w2|2 − γσ|w5|2 + (w4 x η) ¦ (γw5 − w3)
(2.4)

= −a|w2|2 − γσ|w5|2 + w4 x η ¦

[
−η(w3 ¦ η)− αw4 x η

]

= −a|w2|2 − γσ|w5 x η|2 − α|w4 x η|2 .

Therefore, from (2.3) and (2.4) we obtain that

(Aw,w)Z = −
∫

S

[
a|w2|2 + γσ|w5 x η|2 + α|w4 x η|2

]
dS ≤ 0 .

The proof that (2.2) also holds for A∗ can be done in a similar way.

Therefore, A and A∗ are dissipative operators and clearly A is a densely

defined closed operator. We use a classical result (see [26], Corollary I.4.4, which

says “Let A be a densely defined closed linear operator. If both A and A∗ are

dissipative, then A is the infinitesimal generator of a C0 semigroup of contractions

on the Hilbert space Z ”)) to conclude that A is a generator of a C0 semigroup

of contractions {U(t)}t≥0 on Z.

Lemma 2.4. Let M1 be the orthogonal complement of the subspace

M = {v ∈ D(A∗) such that Av∗ = 0} in Z. Assume Hypothesis I given in

the Introduction (with ρ = 1). Then, the following properties are valid:

1) U(t) takes M1 ∩ D(A) into itself.

2) Any element w = (w1, w2, w3, w4, w5) ∈ M1 ∩ D(A) has the following

property

div

{
D(k)w

(k)
3 +

3∑

i=1

Ai
∂w

(k)
1

∂xi

}
= 0 , divw

(k)
4 = 0 , k = 0, 1, ..., n

in the sense of distributions.

3) Any element w = (w1, w2, w3, w4, w5) ∈M1∩D(A) satisfies the additional
interface conditions

β(k−1)w
(k−1)
4 ¦ η = β(k)w

(k)
4 ¦ η

(
D(k−1)w

(k−1)
3 +

3∑

i=1

Ai
∂w

(k−1)
1

∂xi

)
¦ η =

(
D(k)w

(k)
3 +

3∑

i=1

Ai
∂w

(k)
1

∂xi

)
¦ η

for any x ∈ Sk , k = 1, 2, ..., n.
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Proof: First, we observe that the kernel of A∗ is nonempty. In fact, it

contains elements of the form v = (v1, 0,∇ϕ1,∇ϕ2, 0) where ϕ1 and ϕ2 belong to

H2(Ω) ∩H1
0 (Ω) and v1 is a solution of the following problem

(2.5)





3∑

i,j=1

∂

∂xi

(
A
(k)
ij

∂v
(k)
1

∂xj

)
=

3∑

i=1

∂

∂xi
A∗i ∇ϕ1 in Ωk , k = 0, 1, ..., n

v
(k−1)
1 = v

(k)
1 ,

3∑

i,j=1

A
(k−1)
ij

∂v
(k−1)
1

∂xj
ηi =

3∑

i,j=1

A
(k)
ij

∂v
(k)
1

∂xj
ηi on Sk , k = 1, 2, ..., n ,

3∑

i,j=1

Aij
∂v1
∂xj

ηi + bv1 =
3∑

i=1

A∗i ηi∇ϕ1 on S .

The proof of 1) is simple. Indeed, if v ∈ Ker(A∗) and w ∈M1 ∩ D(A), then
d

dt
(U(t)w, v)Z = (AU(t)w, v)Z = (U(t)w,A∗v)Z = 0

which proves 1). Now, let us prove 2): We will prove that

(2.6)

∫

Ωk

[
D(k)w

(k)
3 +

3∑

i=1

Ai
∂w

(k)
1

∂xi

]
¦∇ϕ1 dx = 0

for an arbitrary ϕ1 ∈ H2(Ω) with support contained in Ωk. Clearly (2.6) implies

that

div

{
D(k)w

(k)
3 +

3∑

i=1

Ai
∂w

(k)
1

∂xi

}
= 0

in the sense of distributions. Let us take any such ϕ1 and v1 a solution of problem

(2.5). We consider the element

ṽ = (v1, 0,∇ϕ1, 0, 0)

which belongs to the kernel of A∗. Then, for any

w = (w1, w2, w3, w4, w5) ∈ M1 ∩ D(A)

we have that

(2.7)

0 = (w, ṽ)Z =
n∑

k=0

∫

Ωk

{
3∑

i,j=1

A
(k)
ij

∂w
(k)
1

∂xj
¦
∂v
(k)
1

∂xi
+D(k)w

(k)
3 ¦∇ϕ1

}
dx

+

∫

S
bw1 ¦ v1 dS .
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However, using the divergence theorem and (2.5) we deduce that

n∑

k=0

∫

Ωk

3∑

i,j=1

A
(k)
ij

∂w
(k)
1

∂xj
¦
∂v
(k)
1

∂xi
dx =

=
n∑

k=0

∫

Ωk

−
3∑

i,j=1

∂

∂xj

(
A
(k)
ji

∂v
(k)
1

∂xi

)
¦ w

(k)
1 dx

+
n∑

k=1

∫

Sk

{
3∑

i,j=1

A
(k−1)
ji

∂v
(k−1)
1

∂xi
ηj ¦ w

(k−1)
1 −

3∑

i,j=1

A
(k)
ji

∂v
(k)
1

∂xi
ηj ¦ w

(k)
1

}
dSk

+

∫

S

3∑

i,j=1

Aji
∂v1
∂xi

ηj ¦ w1 dS

(2.8)

=
n∑

k=0

∫

Ωk

−
3∑

i=1

∂

∂xi
A∗i ∇ϕ1 ¦ w

(k)
1 dx

+
3∑

k=1

∫

Sk

{
3∑

i,j=1

A
(k−1)
ij

∂v
(k−1)
1

∂xj
ηi −

3∑

i,j=1

A
(k)
ij

∂v
(k)
1

∂xj
ηi

}
¦ w

(k)
1 dSk

+

∫

S

{
3∑

i=1

A∗i ηi∇ϕ1 − bv1
}

¦ w1 dS

=

∫

Ωk

3∑

i=1

Ai
∂w

(k)
1

∂xj
¦∇ϕ1 dx −

∫

S
bw1 ¦ v1 dS .

Substitution of (2.8) into (2.7) completes the proof of (2.6). It can be shown in

a similar way that divw
(k)
4 =0 by taking in this case ṽ = (0, 0, 0,∇ϕ2, 0) where

ϕ2 is an arbitrary element of H2(Ω) with support in Ωk .

Finally, let us prove 3): Since ṽ = (0, 0, 0,∇ϕ2, 0) belongs to the kernel of A∗
for an arbitrary ϕ2 ∈ H2(Ω) ∩H1

0 (Ω) it follows that for w ∈M1 ∩D(A) we have

that

0 = (w, ṽ)Z =
n∑

k=0

∫

Ωk

β(k)w
(k)
4 ¦∇ϕ2 dx

=

∫

S1

β(0)w
(0)
4 ¦ η ϕ2 dS1 −

∫

S1

β(1)w
(1)
4 ¦ η ϕ2 dS1 + · · ·

+

∫

Sn

β(n−1)w
(n−1)
4 ¦ η ϕ2 dSn −

∫

Sn

β(n)w
(n)
4 ¦ η ϕ2 dSn .

Now, we choose ϕ2 such that ϕ2 ≡ 0 on S1, ..., Sk−1, Sk+1 . Then
∫

Sk

{
β(k−1)w

(k−1)
4 ¦ η − β(k)w(k)4 ¦ η

}
ϕ2 dSk = 0
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which implies that

β(k−1)w
(k−1)
4 ¦ η = β(k)w

(k)
4 ¦ η on Sk , k = 1, 2, ..., n .

Now, elements of the form ṽ = (v1, 0,∇ϕ1, 0, 0) belong to the kernel of A∗ for

an arbitrary ϕ1 ∈ H2
0 (Ω) with v1 being a solution of (2.5). Thus, for any w ∈

M1 ∩ D(A) we have that

(2.9)

0 = (w, ṽ)Z =
n∑

k=0

∫

Ωk

{
3∑

i,j=1

A
(k)
ij

∂w
(k)
1

∂xj
¦
∂v
(k)
1

∂xi
+D(k)w

(k)
3 ¦∇ϕ1

}
dx

+

∫

S
bw1 ¦ v1 dS .

Using the divergence theorem and (2.5) we deduce that

n∑

k=0

∫

Ωk

3∑

i,j=1

A
(k)
ij

∂w
(k)
1

∂xj
¦
∂v
(k)
1

∂xi
dx =

=
n∑

k=0

∫

Ωk

−
3∑

i,j=1

∂

∂xj

(
A
(k)
ji

∂v
(k)
1

∂xi

)
¦ w

(k)
1 dx

+
n∑

k=1

∫

Sk

{
3∑

i,j=1

A
(k−1)
ji

∂v
(k−1)
1

∂xi
ηj ¦ w

(k−1)
1 −

3∑

i,j=1

A
(k)
ji

∂v
(k)
1

∂xi
ηj ¦ w

(k)
1

}
dSk

+

∫

S

3∑

i,j=1

Aji
∂v1
∂xi

ηj ¦ w1 dS

(2.10)

=
n∑

k=0

∫

Ωk

−
3∑

i=1

∂

∂xi
A∗i ∇ϕ1 ¦ w

(k)
1 dx +

∫

S
−bv1 ¦ w1 dS

=
n∑

k=0

∫

Ωk

3∑

i=1

Ai
∂

∂xi
w
(k)
1 ¦∇ϕ1 dx −

∫

S
b v1 ¦ w1 dS .

Substitution of (2.10) into (2.9) implies that

(2.11)

0 = (w, ṽ)Z =
n∑

k=0

∫

Ωk

{
D(k)w

(k)
3 +

3∑

i=1

Ai
∂w

(k)
1

∂xi

}
¦∇ϕ1 dx

=
n∑

k=1

∫

Sk

[
D(k−1)w

(k−1)
3 +

3∑

i=1

Ai
∂w

(k−1)
1

∂xi

]
¦ η ϕ1 dSk

−
n∑

k=1

∫

Sk

[
D(k)w

(k)
3 +

3∑

i=1

Ai
∂w

(k)
1

∂xi

]
¦ η ϕ1 dSk .
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Now, we choose ϕ1 such that ϕ1≡ 0 on S1, ..., Sk−1, Sk+1, ..., Sn and obtain from

(2.11) that

[
D(k−1)w

(k−1)
3 +

3∑

i=1

Ai
∂w

(k−1)
1

∂xi

]
¦ η =

[
D(k)w

(k)
3 +

3∑

i=1

Ai
∂w

(k)
1

∂xi

]
¦ η

on Sk, k = 1, 2, ..., n, which completes the proof of Lemma 2.4.

Theorem 2.5. Let M1 be the orthogonal complement of the subspace

{w ∈ D(A∗) such that A∗w = 0} in Z. Assume Hypothesis I given in the

Introduction (with ρ = 1) and let f = (f1, f2, f3, f4, 0) ∈ M1 ∩ D(A) then, there
exists a unique solution {u,E,H} of problem (1.1)–(1.4) such that

(2.12)

β(k−1)H(k−1)
¦ η = β(k)H(k)

¦ η
[
D(k−1)E(k−1) +

3∑

i=1

Ai
∂u(k−1)

∂xi

]
¦ η =

[
D(k)E(k) +

3∑

i=1

Ai
∂u(k)

∂xi

]
¦ η

for any x ∈ Sk, k = 1, 2, ..., n and t ≥ 0. Furthermore

(
u, ut, E, H,

∫ t

0

[
H(x, τ)x η

]
exp

(
−σ(x) (t− τ)

)
dτ

)
∈ M1 ∩ D(A)

for any t ≥ 0 and (1.6) is valid for any t ≥ 0 where E(t) is given by (1.5).

Proof: Let w=(w1, w2, w3, w4, w5)=U(t)f ∈M1∩D(A) then (w1, w3, w4) =

(u,E,H). The relation
d

dt
w =

d

dt
U(t)f = Aw

give us that

(2.13)





∂w1
∂t

= w2

∂w2
∂t

=
3∑

i,j=1

∂

∂xi

(
Aij

∂w1
∂xj

)
−

3∑

i=1

∂

∂xi
A∗iw3

∂w3
∂t

= D−1
(
curlw4 −

3∑

i=1

Ai
∂w2
∂xi

)

∂w4
∂t

= β−1 curlw3

∂w5
∂t

= w4 x η − σw5 .
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From the last equation in (2.13) we obtain the identity

(w4 x η) exp(σ(x) t) =
∂

∂t

(
exp(σ(x) t)w5

)

which implies that

(2.14) w5(x, t) =

∫ t

0

[
w4(x, τ)x η

]
exp

(
−σ(t− τ)

)
dτ

because w5(x, 0) = 0. Since w ∈M1 ∩ D(A) then (w3, w4, w5) ∈ V (see the defi-

nition of V after Remark 2.2). Consequently

(2.15) w3 − η(w3 ¦ η)− αw4 x η − γ w5 = 0 on S .

Substitution of (2.14) into (2.15) and writting w3 = E, w4 = H implies that

η x (E x η) − αHx η − γ

∫ t

0

[
H(x, τ)x η

]
exp

(
−σ(t− τ)

)
dτ = 0

on S because η x (E x η) = E − η(E ¦ η), (|η| = 1). The first boundary condition

in (1.3) is also satisfy because w ∈M1 ∩D(A) and the interface conditions (1.4)

for the same reason.

Lemma 2.4 implies the validity of (2.12) as well as the last equation in (1.1).

Finally, let us prove (1.6) for a dense subset of M1 ∩ D(A), namely, the set

of piecewise smooth vector-valued functions w = (w1, w2, w3, w4, 0) belonging to

M1∩D(A) such that w1∈ [C2(Ωk)]
3, wj∈ [C1(Ωk)]

3, j=2, 3, 4 and k=0, 1, 2, ..., n.

Let us take the inner product of 2ut, 2E and 2H by the first, second and third

equation of (1.1) respectively. We obtain the identity

0 = 2ut ¦



utt −

3∑

i,j=1

∂

∂xi

(
Aij

∂u

∂xj

)
+

3∑

i=1

∂

∂xi
A∗iE





(2.16)

+ 2E ¦




∂

∂t

(
DE +

3∑

i=1

Ai
∂u

∂xi

)
− curlH



 + 2H ¦

{
βHt + curlE

}
.

Using the identity div(U×V ) = V ¦curlU − U ¦curlV valid for any pair of vectors

U and V in R3, we obtain from (2.16) that

(2.17)

0 =
∂

∂t

{
|ut|2 +DE ¦ E + β|H|2

}
− 2 div(H×E)

+ 2ut ¦

{
3∑

i=1

∂

∂xi
A∗iE

}
+ 2E ¦

3∑

i=1

Ai
∂ut

∂xi

−
3∑

i=1

∂

∂xi

{
2ut ¦

3∑

j=1

Aij
∂u

∂xj

}
+ 2

3∑

i,j=1

Aij
∂u

∂xj
¦
∂ut

∂xi
.
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Since A∗ij = Aji and

2
3∑

i=1

Ai
∂ut

∂xi
¦ E =

3∑

i=1

∂

∂xi
{2ut ¦A∗i E}

2ut ¦

3∑

i=1

∂

∂xi
A∗iE + 2

3∑

i=1

Ai
∂ut

∂xi
¦ E =

3∑

i=1

∂

∂xi
{2ut ¦A∗iE} − 2

3∑

i=1

∂ut

∂xi
¦A∗iE .

Then, we can rewritte (2.17) as follows

(2.18)

0 =
∂

∂t



|ut|2 +

3∑

i,j=1

Aij
∂u

∂xj
¦
∂u

∂xi
+DE ¦E + β|H|2





− 2 div(H xE) −
3∑

i=1

∂

∂xi



2ut ¦

(
3∑

j=1

Aij
∂u

∂xj
−A∗iE

)
 .

Integration of identity (2.18) over Ωk and summation in k from zero up to n give

us

∂

∂t

n∑

k=0

∫

Ωk



|u

(k)
t |2 +

3∑

i,j=1

A
(k)
ij

∂u(k)

∂xj
¦
∂u(k)

∂xi
+D(k)E(k) ¦ E(k) + β|H(k)|2



 dx =

=
n∑

k=1

∫

Sk

(
F (k−1) − F (k)

)
dS +

∫

S
F dS(2.19)

where

F (k) = 2
(
H(k) xE(k)

)
¦ η − 2u

(k)
t ¦





3∑

i,j=1

A
(k)
ij

∂u(k)

∂xj
ηi −

3∑

i=1

A∗iE
(k)ηi





and

(2.20) F = 2 (H xE) + 2ut ¦





3∑

i,j=1

Aij
∂u

∂xj
ηi −

3∑

i=1

A∗iE ηi



 .

Due to the interface conditions (1.4), the integrals over Sk on the right hand side

of (2.20) are equal to zero for k = 1, 2, ..., n. Now, we use the boundary conditions

(1.3) to get the identities

2 (H xE) ¦ η = 2E ¦ (η xH)

= 2
{
η(E · η) + η x (E x η)

}
¦ {η xH} , |η| = 1 ,

= 2 {η x (E x η)} ¦ {η xH}
(2.21)

= 2 {η xH} ¦

{
α(H x η) + γ

∫ t

0
(H x η) exp

(
−σ(t−τ)

)
dτ

}
=
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= − 2α |H x η|2 − ∂

∂t

{
γ

∣∣∣∣
∫ t

0
(H x η) exp

(
−σ(t−τ)

)
dτ

∣∣∣∣
2
}

− 2 γ σ

∣∣∣∣
∫ t

0
(H x η) exp

(
−σ(t−τ)

)
dτ

∣∣∣∣
2

and

(2.22)
2ut ¦

{
3∑

i,j=1

Aij
∂u

∂xj
ηi −

3∑

i=1

A∗iE ηi

}
= 2ut ¦ {−aut − bu}

= −2 a |ut|2 −
∂

∂t
(b |u|2) .

Using (2.21) and (2.22) together with (2.19) where F is given by (2.20), we obtain

that

∂

∂t





n∑

k=0

∫

Ωk

{
|u(k)t |2 +

3∑

i,j=1

A
(k)
ij

∂u(k)

∂xj
¦
∂u(k)

∂xi
+D(k)E(k) ¦E(k) + β(k)|H(k)|2

}
dx



 =

= −
∫

S

{
2α |H x η|2 + 2 a |ut|2 − 2 γ σ

∣∣∣∣
∫ t

0
(H x η) exp

(
−σ(t−τ)

)
dτ

∣∣∣∣
2

+
∂

∂t

(
γ

∣∣∣∣
∫ t

0
(H x η) exp

(
−σ(t−τ)

)
dτ

∣∣∣∣
2

+ b |u|2
)}

dS

which implies (1.6). This concludes the proof of Theorem 2.5.

Corollary 2.6. Under the assumptions of Theorem 2.5, let f=(f1,f2,f3,f4,0)

∈ Z, then U(t)f is the weak solution of the problem

dw

dt
= Aw , w(0) = f .

Proof: Let f (m) =
(
f
(m)
1 , f

(m)
2 , f

(m)
3 , f

(m)
4 , 0

)
∈ D(A) such that f (m) → f

in Z as m→∞. Then, U(t)f (m) satisfies the following identity

(2.23)

∫ T

0

{(
U(t)f (m),

dψ

dt

)

Z
+

(
U(t)f (m),A∗ψ

)

Z

}
dt = −

(
f (m), ψ(0)

)

Z

for any ψ ∈ L2(0, T ;D(A∗)) such that ψt ∈ L2(0, T ;Z) and ψ(T ) = 0. Passing

to the limit in (2.23) as n→ +∞, we obtain

(2.24)

∫ T

0

{(
U(t)f,

dψ

dt

)

Z
+

(
U(t)f,A∗ψ

)

Z

}
dt = −

(
f, ψ(0)

)

Z

which proves Corollary 2.6.
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Remark 2.7. We note that U(t) takesM1 into itself. Indeed, if g ∈ Ker(A∗)
and take ψ(t) = (T − t)g, then from (2.17) it follows that

∫ T

0
(U(t)f, g)Z = T (f, g)Z

which implies that (U(t)f, g)Z = (f, g)Z , ∀ t ≥ 0 whenever f ∈M1 .

3 – Stabilization

In this section we will prove the main result of this article, that is, the ex-

ponential stabilization of the solution of problem (1.1)–(1.4). The proof is based

on the theory of multipliers and it is motivated by the invariance of system (1.1)

(with constant coefficients) relative to the one-parameter group of dilations in

all variables. The multipliers have to be conveniently modified in such a way

that the extra boundary terms appearing in the identities can be estimated by

appropriate bounds. Let ϕ = ϕ(x) be an auxiliary (scalar) smooth function on

Ω which we will choose later. Let us fix t0 > 0 and consider the multiplier

(3.1) L1u = (t+ t0)ut + (∇ϕ ¦∇)u+ u

where ∇ =

(
∂

∂x1
,
∂

∂x2
,
∂

∂x3

)
,

∇ϕ ¦∇ =
∂ϕ

∂x1

∂

∂x1
+
∂ϕ

∂x2

∂

∂x2
+
∂ϕ

∂x3

∂

∂x3

and u = u(x, t) = (u1, u2, u3).

We also consider the multipliers

L2 = L2(E,H) = (t+ t0)E + β∇ϕxH(3.2)

and

L3 = L3(H,E, u) = (t+ t0)H −∇ϕ x

[
DE +

3∑

i=1

Ai
∂u

∂xi

]
.(3.3)

We take the inner product (in R3) of L1u, L2 and L3 with

utt −
3∑

i,j=1

∂

∂xi

(
Aij

∂u

∂xj

)
+

3∑

i=1

∂

∂xi
(A∗iE) ,

∂

∂t

(
DE +

3∑

i=1

Ai
∂u

∂xi

)
− curlH

and
βHt + curlE ,
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respectively. Finally, we multiply div

{
DE +

3∑
i=1

Ai
∂u

∂xi

}
by E ¦∇ϕ and divH

by βH ¦∇ϕ. Since {u,E,H} is a solution of (1.1) then, adding the identities we

obtain that

(3.4)
∂F

∂t
− divxG−

3∑

i=1

∂Ii
∂xi

− J = 0

where

F = (t+ t0)



|ut|2 +

3∑

i,j=1

Aij
∂u

∂xj
¦
∂u

∂xi
+DE ¦ E + β |H|2

+ 2ut ¦ (∇ϕ ¦∇)u + 2ut ¦ u + 2β(∇ϕxH) ¦DE(3.5)

+ 2β(∇x
¯
H) ¦

(
3∑

i=1

Ai
∂u

∂xi

)
 ,

G = 2 (t+ t0)H xE +∇ϕ (DE ¦ E) + (∇ϕ)β |H|2 − 2DE (E ¦∇ϕ)

− 2βH(H ¦∇ϕ) + 2E x

(
∇ϕ x

3∑

i=1

Ai
∂u

∂xi

)
,(3.6)

Ii = 2
[
(t+ t0)ut + (∇ϕ ¦∇)u+ u

]
¦

[
3∑

j=1

Aij
∂u

∂xj
−A∗iE

]

+
∂ϕ

∂xi

{
|ut|2 −

3∑

p,q=1

Apq
∂u

∂xq
¦
∂u

∂xp

}
(3.7)

and

J = (∆ϕ− 1)
3∑

i,j=1

Aij
∂u

∂xj
¦
∂u

∂xi
− 2

∑

i,j,p=1

∂2ϕ

∂xi ∂xp
Aij

∂u

∂xj
¦
∂u

∂xp

+ (3−∆ϕ) |ut|2 + 2
3∑

i,j,k=1

∂2ϕ

∂xi ∂xk
dij Ej Ek − (∆ϕ− 1)DE ¦ E

+ 2
3∑

i,j=1

∂2ϕ

∂xi ∂xj
β HiHj − (∆ϕ− 1)β|H|2(3.8)

+ 2E ¦





3∑

i,k=1

∂2ϕ

∂xi ∂xk
Ak

∂u

∂xi
+

(
3∑

k=1

Ak
∂u

∂xk
¦∇
)
∇ϕ

− (∆ϕ− 1)
3∑

k=1

Ak
∂u

∂xk



 .
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Observe that if we consider ϕ(x) =
1

2
|x−x0|2 for some fixed x0 ∈ Ω, then J≡ 0.

In this case (3.4) will be a conservation law. However, due to the expressions

of G and Ii we can see that we will need (after integration in Ωk of identity

(3.4)) a definite sign for
∂ϕ

∂η
· We will choose ϕ(x) as a “little” perturbation of

1

2
|x−x0|2 for some x0 ∈ Ω. Let f = (f1, f2, f3, f4, 0) ∈M1∩D(A) and {u,E,H}

be the corresponding solution of problem (1.1)–(1.4) obtained in Theorem 2.5.

Integration over Ωk×(0, t) of the identity (3.4) and summation over k implies

that

(t+t0)
n∑

k=0

∫

Ωk

{
|u(k)t |2+

3∑

i,j=1

A
(k)
ij

∂u(k)

∂xj
¦
∂u(k)

∂xi
+D(k)E(k)¦E(k)+β(k)|H(k)|2

}
dx

∣∣∣∣∣

t=T

t=0

+

+ 2
n∑

k=0

∫

Ωk

{
u
(k)
t ¦ (∇ϕ ¦∇)u(k) + u

(k)
t ¦ u(k) + β(k)(∇ϕxH(k)) ¦D(k)E(k)

+ β(k)(∇ϕxH(k)) ¦

(
3∑

i=1

Ai
∂u(k)

∂xi

)}
dx

∣∣∣∣∣

t=T

t=0

=

(3.9)

=
n∑

k=1

∫ T

0

∫

Sk

(Vk−1− Vk) dSk dt +

∫ T

0

∫

S
Vn dS dt +

n∑

k=0

∫ T

0

∫

Ωk

Jk(x, t) dx dt

where

Vk = 2
{
(t+ t0)u

(k)
t + (∇ϕ ¦∇)u(k) + u(k)

}
¦

{
3∑

i,j=1

A
(k)
ij

∂u(k)

∂xj
ηi −

3∑

i=1

A∗iE
(k) ηi

}

+
∂ϕ

∂η

{
|u(k)t |2 −

3∑

i,j=1

A
(k)
ij

∂u(k)

∂xj
¦
∂u(k)

∂xi

}
+ 2 (t+ t0) η ¦ (H(k) xE(k))

(3.10)

+
∂ϕ

∂η
D(k)E(k) ¦ E(k) +

∂ϕ

∂η
β(k)|H(k)|2 − 2 (D(k)E(k) ¦ η) (E(k) ¦∇ϕ)

− 2β(k) (H(k)
¦ η) (H(k)

¦∇ϕ) + 2

{
∇ϕx

(
3∑

i=1

Ai
∂u(k)

∂xi

)}
¦

{
η xE(k)

}

and Jk(x, t) is the restriction of J(x, t) (given in (3.8)) to the subset Ωk .

Here
∂ϕ

∂η
denotes the normal derivative of ϕ at x ∈ Sk .

The proof of the main result will follow as long as we can get appropriate

estimates for all terms on the right hand side of identity (3.9). The following

three Lemmas will take care of such estimates. Since their proofs are quite long
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and technical we prefer to give the precise statement postponing their proofs to

the end of the section. The first Lemma tell us that the differences Vk−1− Vk

will have a “good” sign if we choose ϕ conveniently together with a monotonicity

condition on {A(k)ij }, {D(k)} and {β(k)}.

Lemma 3.1. Let f = (f1, f2, f3, f4, 0) ∈ M1 ∩ D(A) and {u,E,H} be the

corresponding solution of problem (1.1)–(1.4) obtained in Theorem 2.5. Then,

the identity

Vk−1− Vk = −∂ϕ
∂η





3∑

i,j=1

(A
(k−1)
ij −A(k)ij )

∂u(k−1)

∂xj
¦
∂u(k−1)

∂xi

+
3∑

i,j=1

A
(k)
ij

(
∂u(k)

∂xj
− ∂u(k−1)

∂xj

)
¦

(
∂u(k)

∂xi
− ∂u(k−1)

∂xi

)

(3.11)
+ (D(k) −D(k−1))E(k) ¦ E(k)

+ D(k−1)(E(k) − E(k−1)) ¦ (E(k) − E(k−1))

+ (β(k) − β(k−1))
{
|H(k) x η|2 + β(k)

β(k−1)
|H(k)

¦ η|2
}


holds for k = 1, 2, ..., n.

Let us choose a convenient function ϕ(x): Let Φ(x) be the solution of the

Neumann problem 



∆Φ = 1 in Ω

∂Φ

∂η
=

measure(Ω)

area(S)
on ∂Ω

which admits a solution Φ ∈ C2(Ω)∩C1(Ω). Let δ > 0 and x0 ∈ Ω (to be chosen

later) and define

(3.12) ϕ(x) = δΦ(x) +
1

2
|x− x0|2 .

Thus, the normal derivative of ϕ is given by

∂ϕ

∂η
= δ

∂Φ(x)

∂η
+ (x− x0) ¦ η .

Now, we concentrate our discussion in estimating the term
n∑

k=0

∫ T

0

∫

Ωk

Jk(x, t) dx dt

in (3.9), where Jk is given by (3.8).
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Lemma 3.2. Under the assumptions of Lemma 3.1 and Hypothesis I (with

ρ ≡ 1) and choosing ϕ(x) as in (3.12), then, the following estimate

n∑

k=0

∫ T

0

∫

Ωk

Jk(x, t) dx dt ≤

≤ δ c5

n∑

k=0

∫ T

0

∫

Ωk





3∑

i,j=1

A
(k)
ij

∂u(k)

∂xj
¦
∂u(k)

∂xi
+D(k)E(k) ¦ E(k) + β(k)|H(k)|2



 dx dt

holds for any δ > 0 and some positive constant c5 which depends only on Φ and

the norms of the matrices Aij , Ai and D.

We will impose some geometric assumptions on Ω and Sk :

HYPOTHESIS II. There exists a positive constant δ1 ≥ 0 such that

a) δ1 c5 < 1 ,

b) δ1
∂Φ

∂η
+ (x− x0) ¦ η ≥ 0 for some point x0 ∈ Ω and all x ∈ Sk,

c) δ1
measure(Ω)

area(S)
+ (x− x0) ¦ η > 0 for all x ∈ S,

where c5 is given as in the conclusion of Lemma 3.2 and η = η(x) denotes the

unit outward normal to Sk (or to S in c)).

Remark 3.3. We note that the above assumptions on Hypothesis II hold

with δ1 = 0 for star-shaped surfaces S1, S2, S3, ..., Sn and strictly star-shaped

surface S with respect to x0 , i.e.

(x− x0) ¦ η > 0 for all x ∈ S .

If all surfaces S1, S2, ..., Sn are strictly star-shaped with respect to a point x0 ∈ Ω,

then conditions a) and b) hold with δ1 > 0 for a class of domains Ω which includes

star-shaped regions.

Lemma 3.4. Under the assumptions of Lemma 3.1, Hypothesis I and II

(with ρ = 1) then, the following estimate

∫ T

0

∫

S
Vn dS dt ≤
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≤ −(t+ t0)

∫

S

{
b|u|2 + γ

∣∣∣∣
∫ t

0
[H x η] exp(−σ(t− τ)) dτ

∣∣∣∣
2
}
dS

∣∣∣∣
t=T

t=0

−
∫

S
a |u|2 dS

∣∣∣∣
t=T

t=0
−
∫ T

0

∫

S
(1− c6 b) b |u|2 dS dt

−
∫ T

0

∫

S

{
2 (t+ t0) a−

∂ϕ

∂η
− c7

}
|ut|2 dS dt

−
∫ T

0

∫

S

{
∂ϕ

∂η
− δ0 |∇ϕ|

} 3∑

i,j=1

Aij
∂u

∂xj
¦
∂u

∂xi
dS dt

−
∫ T

0

∫

S

{
2 (t+ t0)α− (β + c8 α

2) (3 + δ−10 ) |∇ϕ| − c9
}
|H x η|2 dS dt

−
∫ T

0

∫

S

{
2 (t+ t0)σ − 1− γ c10 (3 + δ−10 ) |∇ϕ| − c11

}

· γ
∣∣∣∣
∫ t

0
[H x η] exp

(
−σ(t−τ)

)
dτ

∣∣∣∣
2

dS dt

holds, for some positive constants cj , 6 ≤ j ≤ 11 (which will be defined in the

proof of Lemma 3.4).

Finally, we will requere the following monotonicity assumptions:

HYPOTHESIS III. We assume the monotonicity conditions on {A(k)ij },
{D(k)} and {β(k)}:

1)
3∑

i,j=1

(
A
(k−1)
ij −A(k)ij

)
vj ¦ vi ≥ 0 for any vi ∈ R3 and all 1 ≤ k ≤ n.

2)
(
D(k)−D(k−1)

)
v ¦ v ≥ 0 for any v∈R3 and all 1≤k≤n and k=1, 2, ..., n.

3) β(k) ≥ β(k−1) for all 1 ≤ k ≤ n.

Let us consider the following quantities: Let δ0 > 0 be such that

(3.13)
∂ϕ

∂η
≥ δ0|∇ϕ| for any x ∈ S

which is possible because
∂ϕ

∂η
> 0 on S and S is compact. Let

(3.14) λ0 = max
x∈Ω

{
|x− x0|+ δ1|∇Φ|

}
,

where x0 ∈ Ω and δ1 are as in Hypothesis II.
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With the help of the above Lemmas now we can prove the main result of this

paper.

Theorem 3.5. Let us assume Hypothesis I, II and III and

(3.15) b(x) ≤ c0 δ0
2λ0

where the constants δ1 and c5 appeared in Hypothesis II, δ0 in (3.13), c0 in

Hypothesis I and λ0 in (3.14). Let f = (f1, f2, f3, f4, 0) belong to M1∩D(A) and
{u,E,H} be the unique solution of problem (1.1)–(1.4) obtained in Theorem 2.5.

Then, there exist positive constants c and w such that

E(t) ≤ c exp(−wt) E(0)

for any t ≥ 0 where E(t) is given by (1.5).

Proof: We will use identity (3.9). First, we observe that we need to get a

bound for the term

I = 2
n∑

k=0

∫

Ωk



u

(k)
t ¦(∇ϕ ¦∇)u(k) + u

(k)
t ¦ u(k) + β(k)(∇ϕxH(k)) ¦D(k)E(k)

(3.16)

+ β(k)(∇ϕxH(k)) ¦

(
3∑

i=1

Ai
∂u(k)

∂xi

)
 dx

∣∣∣∣∣∣

t=T

t=0

.

Each term on the integrand of (3.16) can be bound in the same way as in the

proof (which we will give later of Lemma 3.4). Except that will appear the term
n∑

k=0

∫

Ωk

|u(k)|2 dx. However, since u(k) ∈ [H1(Ωk)]
3 for k = 0, 1, ..., n then, we know

that the following inequality

c12

n∑

k=0

‖u(k)‖2[L2(Ωk)]3
≤

n∑

k=0

∫

Ωk

A
(k)
ij

∂u(k)

∂xj
¦
∂u(k)

∂xi
dx +

∫

S
b |u|2 dS

holds for some positive constant c12 . Here u(n) = u. Thus, the term I in (3.16)

can be estimated by

(3.17) |I| ≤ c13 E(T ) ≤ c13 E(0)

for some positive constant c13 . Observe that all terms on the right hand side of

the conclusion of Lemma 3.3 can assume to be with a fixed sign provided we take



UNIFORM STABILIZATION AND EXACT CONTROL 437

t0 > 0 large enough. In fact, 1− c6 b ≥ 0 by assumption (3.15),
∂ϕ

∂η
− δ0|∇ϕ| ≥ 0

on S by (3.13). The coefficient

{
2 (t+ t0) a−

∂ϕ

∂η
− c7

}
as well as the last two

coefficients on the inequality in Lemma 3.3 will be positive for all t ≥ 0 as long as

we choose t0 = T0 large enough. Now, we use Lemmas 3.1, 3.2 and 3.3 together

with (3.17) to conclude from identity (3.9) that

(3.18) (T + T0) E(T ) ≤ c13 E(0) + δ1c5

∫ T

0
E(t) dt

for any T > 0. Recall that δ1c5 < 1. Let us denote by g(T ) the right hand side of

(3.18). Clearly
g′(T )

g(T )
≤ δ1c5
T + T0

which implies that g(T ) ≤ (T + T0)
p

T p
0

g(0) where

p = δ1c5 < 1. Returning to (3.18) we obtain that

(3.19) E(T ) ≤ c14
(T + T0)1−p

E(0)

where c14 = c13 T
−p
0 . Now, we can choose T > 0 large enough in (3.19) so that

c14/(T + T0)
1−p is strictly less than one. The semigroup property then implies

the conclusion of Theorem 3.5.

Corollary 3.6. Under the assumptions of Theorem 3.5, let f=(f1,f2,f3,f4, 0)

∈M1 , then

a) The same conclusion as in Theorem 3.5 holds.

b) If γ ≡ 0, then, the semigroup {U(t)}t≥0 associated with problem

(1.1)–(1.4) takes the closed subspace M1 into itself and ‖U(t)‖L(Z,Z)< 1

for any t > T0

[(
c13
T0

)1/1−p

− 1

]
.

Proof: a) follows from a density argument and Theorem 3.5. Item b) is a

consequence of (3.19), again by a density argument.

Now, we will prove the technical Lemmas 3.1, 3.2 and 3.4.

Proof of Lemma 3.1: The idea is to use the interface conditions (1.4).

In order to simplify notations let us denote by E(k−1)=E, E(k)= Ẽ, H(k−1)=H,

H(k)=H̃, D(k−1)=D, D(k)=D̃, A
(k−1)
ij =Pij , A

(k)
ij = P̃ij , β

(k−1)=β, β(k)= β̃,

u(k−1)=u and u(k)= ũ. Using the interface conditions (1.4) and (3.10) we find
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that

(3.20)

Vk−1 − Vk = L+
∂ϕ

∂η
β|H|2 − ∂ϕ

∂η
β̃|H̃|2 − 2β(H ¦ η) (H ¦∇ϕ)

+ 2 β̃(H̃ ¦ η) (H̃ ¦∇ϕ) + ∂ϕ

∂η
DE ¦ E − ∂ϕ

∂η
(D̃Ẽ ¦ Ẽ)

− 2

{(
DE +

3∑

i=1

Ai
∂u

∂xi

)
¦ η

}
{E ¦∇ϕ}

+ 2

{(
D̃Ẽ +

3∑

i=1

Ai
∂ũ

∂xi

)
¦ η

}
{Ẽ ¦∇ϕ}

+ 2
∂ϕ

∂η
E ¦

{
3∑

i=1

Ai
∂u

∂xi

}
− 2

∂ϕ

∂η
Ẽ ¦

{
3∑

i=1

Ai
∂ũ

∂xi

}

where

L = 2
{
(∇ϕ ¦∇)u

}
¦

{
3∑

i,j=1

Pij
∂u

∂xj
ηi −

3∑

i=1

A∗iE ηi

}

− ∂ϕ

∂η

3∑

i,j=1

Pij
∂u

∂xj
¦
∂u

∂xi
− 2

{
|∇ϕ ¦∇)ũ

}
¦

{
3∑

i,j=1

P̃ij
∂ũ

∂xj
ηi −

3∑

i=1

A∗i Ẽ ηi

}

+
∂ϕ

∂η

{
3∑

i,j=1

P̃ij
∂ũ

∂xj
¦
∂ũ

∂xi

}
.

Using (2.12) we obtain the identities

β|H x η|2 + β|H ¦ η|2 = β|H̃ x η|2 + β̃2

β
|H̃ ¦ η|2(3.21)

β(H ¦ η)(H ¦∇ϕ) = β̃(H̃ ¦ η)
{
η(H ¦ η) + η x (H x η)

}
¦∇ϕ(3.22)

because H = η(H ¦ η) + η x (H x η) since |η| = 1. Observe also that (3.21) it is

equal to β|H|2 because |H|2 = |H x η|2 + |H ¦ η|2. Furthermore (3.22) can be

written as

β̃(H̃ ¦ η)

{
η
β̃

β
H̃ ¦ η + η x (H̃ x η)

}
¦∇ϕ =

= β̃(H̃ ¦ η)

{
η
β̃

β
H̃ ¦ η + H̃ − η(H̃ ¦ η)

}
¦∇ϕ

= β̃(H̃ ¦ η) (H̃ ¦∇ϕ) + β̃

β
(β̃ − β) (∇ϕ ¦ η) |H̃ ¦ η|2 .
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From the above discussion, we can write the identity

∂ϕ

∂η
β|H|2 − ∂ϕ

∂η
β̃|H̃|2 − 2β(H ¦ η) (H ¦∇ϕ) + 2 β̃(H̃ ¦ η) (H̃ ¦∇ϕ) =

(3.23)

=
∂ϕ

∂η

{
β|H̃ x η|2 + β̃2

β
|H̃ ¦ η|2

}
− ∂ϕ

∂η

{
β̃|H̃ x η|2 + β̃|H̃ ¦ η|2

}

− 2 β̃(H̃ ¦ η) (H̃ ¦∇ϕ)− 2
β̃

β
(β̃ − β) ∂ϕ

∂η
|H̃ ¦ η|2 + 2 β̃(H̃ ¦ η) (H̃ ¦∇ϕ)

= −∂ϕ
∂η

{
(β̃ − β)|H̃ x η|2 + β̃

β
(β̃ − β)|H̃ ¦ η|2

}
.

Using the interface conditions

(3.24)





u = ũ

3∑

i,j=1

Pij
∂u

∂xj
ηi −

3∑

i=1

A∗iE ηi =
3∑

i,j=1

P̃ij
∂ũ

∂xj
ηi −

3∑

i=1

A∗i Ẽ ηi

on Sk and the fact that
∂

∂xi
(u− ũ) = ηi

∂

∂η
(u− ũ) on Sk because u− ũ = 0 for

x ∈ Sk , we deduce the following identities

2 (∇ϕ ¦∇)u ¦

(
3∑

i,j=1

Pij
∂u

∂xj
ηi −

3∑

i=1

A∗iE ηi

)
−

− 2 (∇ϕ ¦∇) ũ ¦

(
3∑

i,j=1

P̃ij
∂ũ

∂xj
ηi −

3∑

i=1

A∗i Ẽ ηi

)
=

= (∇ϕ ¦∇) (u− ũ) ¦

(
3∑

i,j=1

Pij
∂u

∂xj
ηi −

3∑

i=1

A∗iE ηi

)

+ (∇ϕ ¦∇) (u− ũ) ¦

(
3∑

i,j=1

P̃ij
∂ũ

∂xj
ηi −

3∑

i=1

A∗i Ẽ ηi

)
(3.25)

=
∂ϕ

∂η

∂

∂η
(u− ũ) ¦

(
3∑

i,j=1

Pij
∂u

∂xj
ηi −

3∑

i=1

A∗iE ηi

)

+
∂ϕ

∂η

∂

∂η
(u− ũ) ¦

(
3∑

i,j=1

P̃ij
∂ũ

∂xj
ηi −

3∑

i=1

A∗i Ẽ ηi

)
=
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=
∂ϕ

∂η

{
3∑

i,j=1

Pij
∂u

∂xj
¦
∂

∂xi
(u− ũ) −

3∑

i=1

A∗iE ¦
∂

∂xi
(u− ũ)

}

+
∂ϕ

∂η

{
3∑

i,j=1

P̃ij
∂ũ

∂xj
¦
∂

∂xi
(u− ũ) −

3∑

i=1

A∗i Ẽ ¦
∂

∂xi
(u− ũ)

}
.

Substitution of identity (3.25) into the expression of L (given after (3.20)) give

us that

(3.26)

L = −∂ϕ
∂η

{
3∑

i,j=1

Pij
∂u

∂xj
¦
∂ũ

∂xi
−

3∑

i,j=1

P̃ij
∂ũ

∂xj
¦
∂u

∂xi

}

− ∂ϕ

∂η

3∑

i=1

Ai
∂u

∂xi
¦ E +

∂ϕ

∂η

3∑

i=1

Ai
∂ũ

∂xi
¦ E

− ∂ϕ

∂η

3∑

i=1

Ai
∂u

∂xi
¦ Ẽ +

∂ϕ

∂η

3∑

i=1

Ai
∂ũ

∂xi
¦ Ẽ .

The following identities will be useful:

(3.27)

3∑

i,j=1

Pij
∂u

∂xj
¦
∂ũ

∂xi
−

3∑

i,j=1

P̃ij
∂ũ

∂xj
¦
∂u

∂xi
=

=
3∑

i,j=1

(Pij − P̃ij)
∂u

∂xj
¦
∂u

∂xi
−

3∑

i,j=1

(Pij − P̃ij)

(
∂u

∂xj
− ∂ũ

∂xj

)
¦
∂u

∂xi

=
3∑

i,j=1

(Pij − P̃ij)
∂u

∂xj
¦
∂u

∂xi
−

3∑

i,j=1

(Pij − P̃ij)
∂u

∂xj
¦

(
∂u

∂xi
− ∂ũ

∂xi

)

=
3∑

i,j=1

(Pij − P̃ij)
∂u

∂xj
¦
∂u

∂xi
−

3∑

i,j=1

Pij
∂u

∂xj
¦

(
∂u

∂xi
− ∂ũ

∂xi

)

+
3∑

i,j=1

P̃ij
∂u

∂xj
¦

(
∂u

∂xi
− ∂ũ

∂xi

)
.

Substitution of (3.27) into (3.26) give us that

(3.28)

L = −∂ϕ
∂η





3∑

i,j=1

(Pij − P̃ij)
∂u

∂xj
¦
∂u

∂xi
−

3∑

i,j=1

Pij
∂u

∂xj
¦

(
∂u

∂xi
− ∂ũ

∂xi

)

+
3∑

i,j=1

P̃ij
∂u

∂xj
¦

(
∂u

∂xi
− ∂ũ

∂xi

)
+

3∑

i=1

Ai
∂u

∂xi
¦ E −

3∑

i=1

Ai
∂ũ

∂xi
¦ E

+
3∑

i=1

Ai
∂u

∂xi
¦ Ẽ −

3∑

i=1

Ai
∂ũ

∂xi
¦ Ẽ



 .
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Again, we use the interface conditions (3.24) on Sk to obtain

(3.29)

3∑

i,j=1

Pij
∂u

∂xj
¦

(
∂ũ

∂xi
− ∂u

∂xi

)
−

3∑

i=1

A∗iE ¦

(
∂ũ

∂xi
− ∂u

∂xi

)
=

=
3∑

i,j=1

(
∂ũ

∂η
− ∂u

∂η

)
¦ Pij

∂u

∂xj
ηi −

3∑

i=1

(
∂ũ

∂η
− ∂u

∂η

)
¦A∗iE ηi

=

{
3∑

i,j=1

P̃ij
∂ũ

∂xj
ηi −

3∑

i=1

A∗i Ẽ ηi

}
¦

{
∂ũ

∂η
− ∂u

∂η

}
.

Substitution of (3.29) into (3.30) give us that

(3.30)

L = −∂ϕ
∂η





3∑

i,j=1

(Pij − P̃ij)
∂u

∂xj
¦
∂u

∂xi

+

[
3∑

i,j=1

P̃ij
∂ũ

∂xj
ηi −

3∑

i=1

A∗i Ẽ ηi

]
¦

(
∂ũ

∂η
− ∂u

∂η

)

+
3∑

i,j=1

P̃ij
∂u

∂xj
¦

(
∂u

∂xi
− ∂ũ

∂xi

)
+

3∑

i=1

(
∂u

∂xi
− ∂ũ

∂xi

)
¦A∗i Ẽ





= −∂ϕ
∂η





3∑

i,j=1

(Pij − P̃ij)
∂u

∂xj
¦
∂u

∂xi
+

3∑

i,j=1

P̃ij
∂ũ

∂xj
¦

(
∂ũ

∂xi
− ∂u

∂xi

)

+
3∑

i=1

A∗i Ẽ ¦

(
∂u

∂xi
− ∂ũ

∂xi

)
+

3∑

i,j=1

P̃ij
∂u

∂xj
¦

(
∂u

∂xi
− ∂ũ

∂xi

)

+
3∑

i=1

(
∂u

∂xi
− ∂ũ

∂xi

)
¦A∗i Ẽ





= −∂ϕ
∂η





3∑

i,j=1

(Pij − P̃ij)
∂u

∂xj
¦
∂u

∂xi

+
3∑

i,j=1

P̃ij

(
∂ũ

∂xj
− ∂u

∂xj

)
¦

(
∂ũ

∂xi
− ∂u

∂xi

)

− 2
3∑

i=1

Ai
∂ũ

∂xi
¦ Ẽ + 2

3∑

i=1

Ai
∂u

∂xi
¦ Ẽ



 .
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Now, we return to (3.20) and use (3.23) with (3.30) to obtain that

Vk−1 − Vk = −∂ϕ
∂η





3∑

i,j=1

(Pij − P̃ij)
∂u

∂xj
¦
∂u

∂xi

+
3∑

i,j=1

P̃ij

(
∂ũ

∂xj
− ∂u

∂xj

)
¦

(
∂ũ

∂xi
− ∂u

∂xi

)

− 2
3∑

i=1

Ai
∂ũ

∂xi
¦ Ẽ + 2

3∑

i=1

Ai
∂u

∂xi
¦ Ẽ

+ (β̃ − β) |H̃ x η|2 +
β̃

β
(β̃ − β) |H̃ ¦ η|2(3.31)

− 2E ¦

[
3∑

i=1

Ai
∂u

∂xi

]
+ 2 Ẽ ¦

[
3∑

i=1

Ai
∂ũ

∂xi

]
− DE ¦ E + D̃Ẽ ¦ Ẽ





+ 2

{(
D̃Ẽ +

3∑

i=1

Ai
∂ũ

∂xi

)
¦ η

}
{Ẽ ¦∇ϕ}

− 2

{(
DE +

3∑

i=1

Ai
∂u

∂xi

)
¦ η

}
{E ¦∇ϕ} .

Let us write in a more convenient form some of the terms in (3.31):

K ≡ ∂ϕ

∂η
DE ¦ E − ∂ϕ

∂η
D̃Ẽ ¦ Ẽ

+ 2
∂ϕ

∂η
E ¦

[
3∑

i=1

Ai
∂u

∂xi

]
− 2

∂ϕ

∂η
Ẽ ¦

[
3∑

i=1

Ai
∂u

∂xi

]

+ 2

{(
D̃Ẽ +

3∑

i=1

Ai
∂ũ

∂xi

)
¦ η

}
{Ẽ ¦∇ϕ}

− 2

{(
DE +

3∑

i=1

Ai
∂u

∂xi

)
¦ η

}
{E ¦∇ϕ}

(3.32)

= 2




∂ϕ

∂η
DE ¦ E − ∂ϕ

∂η
D̃Ẽ ¦ Ẽ + (D̃Ẽ ¦ η) (Ẽ ¦∇ϕ) − (DE ¦ η) (E ¦∇ϕ)

+
∂ϕ

∂η
E ¦

[
3∑

i=1

Ai
∂u

∂xi

]
− ∂ϕ

∂η
Ẽ ¦

[
3∑

i=1

Ai
∂u

∂xi

]

+

[
3∑

i=1

Ai
∂ũ

∂xi
¦ η

]
{Ẽ ¦∇ϕ} −

[
3∑

i=1

Ai
∂ũ

∂xi
¦ η

]
{E ¦∇ϕ}





− ∂ϕ

∂η
DE ¦ E +

∂ϕ

∂η
D̃Ẽ ¦ Ẽ .
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Next we use the identity

(ax b) ¦ (cx d) = (a ¦ c) (b ¦ d)− (b ¦ c) (a ¦ d)

valid for any vectors a, b, c, d ∈ R3 to obtain the following identities

2 (∇ϕxDE) ¦ (η xE) = 2
{
(∇ϕ ¦ η) (DE ¦ E)− (DE ¦ η) (E ¦∇ϕ)

}

= 2
∂ϕ

∂η
DE ¦ E − 2 (DE ¦ η) (E ¦∇ϕ) ,

2 (∇ϕx D̃Ẽ) ¦ (η x Ẽ) = 2
∂ϕ

∂η
D̃Ẽ ¦ Ẽ − 2 (D̃Ẽ ¦ η) (E ¦∇ϕ) ,

2

(
∇ϕx

3∑

i=1

Ai
∂u

∂xi

)
¦ (η xE) = 2

∂ϕ

∂η

(
E ¦

3∑

i=1

Ai
∂u

∂xi

)
− 2

(
3∑

i=1

Ai
∂u

∂xi

)
¦ η(E ¦∇ϕ)

and

2

(
∇ϕx

3∑

i=1

Ai
∂ũ

∂xi

)
¦ (η x Ẽ) = 2

∂ϕ

∂η

(
Ẽ ¦

3∑

i=1

Ai
∂u

∂xi

)
− 2

(
3∑

i=1

Ai
∂ũ

∂xi

)
¦ η(Ẽ ¦∇ϕ) .

Substitution of the above identities in (3.32) give us that

(3.33)

K = 2 (∇ϕxDE) ¦ (η xE)− 2 (∇ϕx D̃Ẽ) ¦ (η x Ẽ)

+ 2

(
∇ϕx

3∑

i=1

Ai
∂u

∂xi

)
¦ (η xE) − 2

(
∇ϕx

3∑

i=1

Ai
∂ũ

∂xi

)
¦ (η x Ẽ)

− ∂ϕ

∂η
DE ¦ E +

∂ϕ

∂η
D̃Ẽ ¦ Ẽ

+ 2
∂ϕ

∂η
Ẽ ¦

3∑

i=1

Ai
∂ũ

∂xi
− 2

∂ϕ

∂η
Ẽ ¦

3∑

i=1

Ai
∂u

∂xi

= 2 (η xE) ¦

(
∇ϕ x

{
DE +

3∑

i=1

Ai
∂u

∂xi

})

− 2 (η x Ẽ) ¦

(
∇ϕ x

{
D̃Ẽ +

3∑

i=1

Ai
∂ũ

∂xi

})

− ∂ϕ

∂η
DE ¦ E +

∂ϕ

∂η
D̃Ẽ ¦ Ẽ

+ 2
∂ϕ

∂η
Ẽ ¦

3∑

i=1

Ai
∂ũ

∂η
Ẽ − 2

∂ϕ

∂η
Ẽ ¦

3∑

i=1

Ai
∂u

∂xi
.
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If we use the interface conditons η xE = η x Ẽ together with (2.12) we can sim-

plify some terms of K:

2 (η xE) ¦

(
∇ϕx

{
DE +

3∑

i=1

Ai
∂u

∂xi

})
− 2 (η x Ẽ) ¦

(
∇ϕx

{
D̃Ẽ +

3∑

i=1

Ai
∂ũ

∂xi

})
=

= 2 (η x Ẽ) ¦

(
∇ϕx

{
DE +

3∑

i=1

Ai
∂u

∂xi

})

− 2 (η x Ẽ) ¦

(
∇ϕx

{
D̃Ẽ +

3∑

i=1

Ai
∂ũ

∂xi

})

(3.34)

= 2
∂ϕ

∂η
Ẽ ¦

{
DE +

3∑

i=1

Ai
∂u

∂xi

}
− 2 (Ẽ ¦∇ϕ)

{
DE +

3∑

i=1

Ai
∂u

∂xi

}
¦ η

− 2
∂ϕ

∂η
Ẽ ¦

{
D̃Ẽ +

3∑

i=1

Ai
∂ũ

∂xi

}
+ 2 (Ẽ ¦∇ϕ)

{
D̃Ẽ +

3∑

i=1

Ai
∂ũ

∂xi

}
¦ η

= 2
∂ϕ

∂η
Ẽ ¦

{
DE +

3∑

i=1

Ai
∂u

∂xi

}
− 2

∂ϕ

∂η
Ẽ ¦

{
D̃Ẽ +

3∑

i=1

Ai
∂ũ

∂xi

}
.

Substitution of identity (3.34) into (3.33) give us that

(3.35) K = −∂ϕ
∂η

{
D(E − Ẽ) ¦ (E − Ẽ) + (D̃ −D)Ẽ ¦ Ẽ

}
.

Using (3.35) in (3.31) we finally deduce that

Vk−1 − Vk = −∂ϕ
∂η





3∑

i,j=1

(Pij − P̃ij)
∂u

∂xj
¦
∂u

∂xi

+
3∑

i,j=1

P̃ij

(
∂ũ

∂xj
− ∂u

∂xj

)
¦

(
∂ũ

∂xi
− ∂u

∂xi

)

+ (β̃ − β)
[
|H̃ x η|2 + β̃

β
|H̃ ¦ η|2

]

+ D(E − Ẽ) ¦ (E − Ẽ) + (D̃ −D)Ẽ ¦ Ẽ





which completes the proof of Lemma 3.1.
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Proof of Lemma 3.2: Straightforward calculations using (3.8) and ϕ(x)

chosen as in (3.12) lead us to the identity

Jk = δ
3∑

i,j=1

A
(k)
ij

∂u(k)

∂xj
¦
∂u(k)

∂xi
− 2 δ

3∑

i,j,p=1

∂2Φ

∂xp ∂xi
A
(k)
ij

∂u(k)

∂xj
¦
∂u(k)

∂xp

− δ|u(k)t |2 + 2 δ
3∑

i,j,p=1

∂2Φ

∂xi ∂xp
d
(k)
ij E

(k)
j E(k)p + 2 δ

3∑

i,j=1

∂2Φ

∂xi ∂xj
β(k)H

(k)
i H

(k)
j

(3.36)

− δ D(k)E(k) ¦ E(k) − δ β(k)|H(k)|2

+ 2 δ E(k) ¦





3∑

i,p=1

∂2Φ

∂xi ∂xp
Ap
∂u(k)

∂xi
+

(
3∑

j=1

Aj
∂u(k)

∂xj
¦∇
)
∇Φ−

3∑

j=1

Aj
∂u(k)

∂xj



 .

Let us estimate the terms on the right hand side of (3.36): We claim that for any

ε > 0 we have that

− 2 δ
3∑

i,j,p=1

∂2Φ

∂xp ∂xi
A
(k)
ij

∂u(k)

∂xj
¦
∂u(k)

∂xp
≤

≤ δ ε
3∑

i,j=1

A
(k)
ij

∂u(k)

∂xj
¦
∂u(k)

∂xi
(3.37)

+ δ ε−1
3∑

i,j=1

A
(k)
ij

(
3∑

p=1

∂2Φ

∂xp ∂xj

∂u(k)

∂xp

)
¦

(
3∑

p=1

∂2Φ

∂xp ∂xi

∂u(k)

∂xp

)
.

In fact, let vi =
3∑

p=1

∂2Φ

∂xp ∂xi

∂u(k)

∂xp
and ε > 0 then, we can write

−2
3∑

i,j=1

A
(k)
ij

∂u(k)

∂xj
¦ vi = −

3∑

i,j=1

A
(k)
ij

(
√
ε
∂u(k)

∂xj
+

1√
ε
vj

)
¦

(
√
ε
∂u(k)

∂xi
+

1√
ε
vi

)

+ ε
3∑

i,j=1

A
(k)
ij

∂u(k)

∂xj
¦
∂u(k)

∂xi
+

1

ε

3∑

i,j=1

A
(k)
ij vj ¦ vi

≤ ε
3∑

i,j=1

A
(k)
ij

∂u(k)

∂xj
¦
∂u(k)

∂xi
+ ε−1

3∑

i,j=1

A
(k)
ij vj ¦ vi

because A
(k)
ij satisfies assumption 3) of Hypothesis I. This proves (3.37). Let

c2 = max
x∈Ω

i,j=1,2,3

‖Aij(x)‖ , c3 = max
x∈Ω

i,j=1,2,3

∣∣∣∣∣
∂2Φ

∂xi ∂xj

∣∣∣∣∣
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where ‖ ‖ denotes the norm of the matrix. With this notations, we have that

|vi| ≤ c3





3∑

j=1

∣∣∣∣∣
∂u(k)

∂xj

∣∣∣∣∣





and

(3.38)

∣∣∣∣∣∣

3∑

i,j=1

A
(k)
ij vj ¦ vi

∣∣∣∣∣∣
≤

3∑

i,j=1

‖A(k)ij (x)‖ |vj | |vi| ≤ c2

(
3∑

j=1

|vj |
)2

≤ 9 c2 c
2
3

{
3∑

i=1

∣∣∣∣∣
∂u(k)

∂xi

∣∣∣∣∣

}2
≤ 27 c2 c

2
3

3∑

i=1

∣∣∣∣∣
∂u(k)

∂xi

∣∣∣∣∣

2

.

From (3.38) we deduce that

(3.39)

∣∣∣∣∣∣

3∑

i,j=1

A
(k)
ij vj ¦ vi

∣∣∣∣∣∣
≤ 27 c2 c

2
3 c
−1
0

3∑

i,j=1

A
(k)
ij

∂u(k)

∂xj
¦
∂u(k)

∂xi

where c0 is the positive constant in Hypothesis I (item 3)). Using (3.39) into

(3.37) we get that

(3.40)

− 2 δ
3∑

i,j,p=1

∂2Φ

∂xp ∂xi
A
(k)
ij

∂u(k)

∂xj
¦
∂u(k)

∂xp
≤

≤ δ
{
ε+ 27 c2 c

2
3 c
−1
0 ε−1

} 3∑

i,j=1

A
(k)
ij

∂u(k)

∂xj
¦
∂u(k)

∂xi
.

Let us bound the last term on the right hand side of (3.36). Let

c4 = max
j=1,2,3

‖Aj‖

then

(3.41)
3∑

i,p=1

∣∣∣∣∣
∂2Φ

∂xi ∂xp
Ap

∂u(k)

∂xi

∣∣∣∣∣ ≤ 3 c4 c3

3∑

i=1

∣∣∣∣
∂u

∂xi

∣∣∣∣

and

(3.42)
3∑

j=1

∣∣∣∣∣Aj
∂u(k)

∂xj

∣∣∣∣∣ ≤ c4

3∑

i=1

∣∣∣∣
∂u

∂xi

∣∣∣∣ .
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Also

3∑

j=1

∣∣∣∣∣

(
Aj

∂u(k)

∂xj
¦∇
)
∇Φ

∣∣∣∣∣ =
3∑

j=1

{(
a1j

∂2Φ

∂x21
+ a2j

∂2Φ

∂x1 ∂x2
+ a3j

∂2Φ

∂x1 ∂x3

)2

+

(
a1j

∂2Φ

∂x1 ∂x2
+ a2j

∂2Φ

∂x22
+ a3j

∂2Φ

∂x2 ∂x3

)2

+

(
a1j

∂2Φ

∂x1 ∂x3
+ a2j

∂2Φ

∂x2 ∂x3
+ a3j

∂2Φ

∂x23

)2}1/2

where (a1j , a2j , a3j) = Aj
∂u(k)

∂xj
·

Thus

(3.43)
3∑

j=1

∣∣∣∣∣

(
Aj

∂u(k)

∂xj
¦∇
)
∇Φ

∣∣∣∣∣ ≤ 3 c3 c4

3∑

j=1

∣∣∣∣∣
∂u(k)

∂xj

∣∣∣∣∣ .

From (3.41)–(3.43) we obtain the estimate

2 δ E(k) ¦





3∑

i,p=1

∂2Φ

∂xi ∂xp
Ap

∂u(k)

∂xi
+

(
3∑

j=1

Aj
∂u(k)

∂xj
¦∇
)
∇Φ −

3∑

j=1

Aj
∂u(k)

∂xj



 ≤

≤ 2 δ |E(k)| {6 c3 c4 + c4}
3∑

j=1

∣∣∣∣∣
∂u(k)

∂xj

∣∣∣∣∣(3.44)

≤ δ {6 c3 c4 + c4} ε1|E(k)|2 + δ ε−11 {6 c3 c4 + c4}
(

3∑

j=1

∣∣∣∣∣
∂u(k)

∂xj

∣∣∣∣∣

)2

for any ε1>0. Since Aij satisfies assumption 3) in Hypothesis I, we get the bound

(
3∑

j=1

∣∣∣∣∣
∂u(k)

∂xj

∣∣∣∣∣

)2
≤ 3

3∑

j=1

∣∣∣∣∣
∂u(k)

∂xj

∣∣∣∣∣

2

≤ 3 c−10

3∑

j=1

A
(k)
ij

∂u(k)

∂xj
¦
∂u(k)

∂xi
.

Thus, the left hand side of (3.44) can be bound by

(3.45) δ (6 c3 c4 + c4) ε1|E(k)|2 + 3 δ ε−11 c−10 (6 c3 + 1) c4

3∑

i,j=1

A
(k)
ij

∂u(k)

∂xj
¦
∂u(k)

∂xi

for any ε1 > 0. Finally,

(3.46)
2 δ

3∑

i,j,p=1

∂2Φ

∂xi ∂xp
d
(k)
ij E

(k)
j E(k)p + 2 δ

3∑

i,j=1

∂2Φ

∂xi ∂xj
β(k)H

(k)
i H

(k)
j ≤

≤ 6 δ c4‖D(k)‖ d−10 (DE(k) ¦ E(k)) + 6 δ c4 β
(k)|H(k)|2
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where ‖D(k)‖ denotes the norm of the matrix D(k) and d0 > 0 is as in Hypothesis

I (item 2)).

Using (3.40), (3.44), (3.45) and (3.46) we deduce the following estimate for

Jk given by (3.29):

Jk ≤ δ
{
1 + ε+ 27 c2 c

2
3 c
−1
0 ε−1 + 3 (6 c3 + 1) c4 ε

−1
1 c−10

} 3∑

i,j=1

A
(k)
ij

∂u(k)

∂xj
¦
∂u(k)

∂xi

+ δ
{
6 c4‖D(k)‖ d−10 + (6 c3 + 1) c4 ε1 d

−1
0 − 1

}
(D(k)E(k) ¦ E(k))(3.47)

+ δ β(k) (6 c2 − 1) |H(k)|2 − δ |u(k)t |2

for any ε > 0, ε1 > 0, where we use Hypothesis I, (item 2)). Let us choose

ε = 3 c3(c2 c
−1
0 )1/2 and ε1= (3 d0 c

−1
0 )1/2 in (3.47) to obtain the desired estimate

of Lemma 3.2 with

c5 = max

{
1 + 12 c3(c2 c

−1
0 )1/2 +

√
3 c4(6 c3 + 1) (c0 d0)

−1/2,

6 c4max
k
‖D(k)‖+

√
3 c4(6 c3 + 1) (c0 d0)

−1/2, 6 c4

}
.

Proof of Lemma 3.4: From now on we will choose δ = δ1 in the definition

of ϕ(x) in (3.12). Now, let us get a bound for the term

∫ T

0

∫

S
Vn dS dt in (3.9).

Using the boundary conditions (1.3) we can rewrite Vn as

Vn = − ∂

∂t



(t+ t0)

[
b|u|2 + γ

∣∣∣∣
∫ T

0

[
H(x, τ)x η

]
exp

(
−σ(x) (t− τ)

)
dτ

∣∣∣∣
2
]


− ∂

∂t

{
a|u|2

}
− b|u|2 −

{
2 (t+ t0) a−

∂ϕ

∂η

}
|ut|2

− ∂ϕ

∂η





3∑

i,j=1

Aij
∂u

∂xj
¦
∂u

∂xi



− 2 (∇ϕ ¦∇)u ¦ (aut + bu)

(3.48)

− 2 (t+t0)α |H x η|2 −
{
2 (t+t0)σ − 1

}
γ

∣∣∣∣
∫ t

0
[H x η] exp

(
−σ(1−τ)

)
dτ

∣∣∣∣
2

+
∂ϕ

∂η
DE ¦ E +

∂ϕ

∂η
β|H|2 − 2 (DE ¦ η) (E ¦∇ϕ)

− 2β(H ¦ η) (H ¦∇ϕ) + 2 (η xE) ¦

(
∇ϕ x

3∑

i=1

Ai
∂u

∂xi

)
.
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Let cj , j = 7, 8, ..., 11, be the following constants

c6 = 2λ0 c
−1
0 δ−10 , c7 = 8λ0 a

2
1 c
−1
0 δ−10 , c8 = c10 = 2 d1 ,

c9 = 16α21 c
2
4 c
−1
0 δ−10 , c11 = 16λ0 γ1 c

2
4 c
−1
0 δ−10

where a1= max
x∈S

a(x), d1= max
x∈Ω

‖D(x)‖, α1= max
x∈S

α(x) and γ1= max
x∈S

γ(x).

The constant c4 was defined in the proof of Lemma 3.2 (see below (3.40)) and

c0 appeared in Hypothesis I (item 3)).

We will get a bound for some of the terms on the right hand side of (3.41).

We use the identity

H = η x (H x η) + η H ¦ η

to rewrite the expression

−2β(H ¦ η) (H ¦∇ϕ) = −2β(∇ϕ ¦ η) |H ¦ η|2 − 2β(H ¦ η) (H x η) ¦ (∇ϕx η) .

Now we can obtain a bound for the term

∂ϕ

∂η
β|H|2 − 2β(H ¦ η) (H ¦∇ϕ) =

=
∂ϕ

∂η
β|H x η|2 − ∂ϕ

∂η
β|H ¦ η|2 − 2β(H ¦ η) (H x η) ¦ (∇ϕx η)

(3.49)

≤ ∂ϕ

∂η
β|H x η|2 − ∂ϕ

∂η
β|H ¦ η|2 + β δ0|∇ϕ| |H ¦ η|2 + β δ−10 |∇ϕ| |H x η|2

≤
(
∇ϕ ¦ η + δ−10 |∇ϕ|

)
β|H x η|2 .

Next, we use the identity

E = η x (E x η) + η E ¦ η

in order to obtain that

(3.50)

∂ϕ

∂η
(DE ¦ E) =

∂ϕ

∂η
(Dη ¦ η) |E ¦ η|2 + 2

∂ϕ

∂η
(E ¦ η)

(
Dη ¦ {η x (E x η)}

)

+
∂ϕ

∂η
D{η x (E x η)} ¦ {η x (E x η)}

and

−2 (DE ¦ η)(E ¦∇ϕ) = − 2 (Dη ¦ η) (E ¦ η) (E x η) ¦ (∇ϕx η)

− 2
∂ϕ

∂η
(Dη ¦ η) |E ¦ η|2 − 2

∂ϕ

∂η
(E ¦ η)

(
Dη ¦ {η x (E x η)}

)

(3.51)
− 2Dη ¦ {η x (E x η)} (E x η) ¦ (∇ϕx η) .
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Using (3.43), (3.50) and (3.51) we get a representation and therefore an inequality

as follows

∂ϕ

∂η
(DE ¦ E)− 2 (DE ¦ η) (E ¦∇ϕ) =

= −∂ϕ
∂η

(Dη ¦ η) |E ¦ η|2 − 2 (Dη ¦ η) (E ¦ η) (E x η) ¦ (∇ϕx η)

− 2 (Dη x η) ¦ (E x η) (E x η) ¦ (∇ϕx η)

+
∂ϕ

∂η
D
(
η x (E x η)

)
¦

(
η x (E x η)

)

(3.52)
≤ δ−10 |∇ϕ| (Dη ¦ η) |E x η|2 − 2 (Dη x η) ¦ (E x η) (E x η) ¦ (∇ϕx η)

+
∂ϕ

∂η
D
(
η x (E x η)

)
¦

(
η x (E x η)

)

≤
{
(∇ϕ ¦ η) + δ−10 |∇ϕ|+ 2 |∇ϕ|

}
d1|E x η|2 .

From the boundary conditions (1.3) it follows that

|E x η|2 ≤ 2α2|H x η|2 + 2 γ2
∣∣∣∣∣

∫ T

0

[
H(x, τ)x η

]
exp

(
−σ(x) (t− τ)

)
dτ

∣∣∣∣∣

2

which together with (3.52) and (3.49) give us the estimate

∂ϕ

∂η
(DE ¦ E) +

∂ϕ

∂η
β|H|2 − 2 (DE ¦ η) (E ¦∇ϕ) − 2β(H ¦ η) (H ¦∇ϕ) ≤

≤
[
∇ϕ ¦ η + δ−10 |∇ϕ|+ 2 |∇ϕ|

]
[2 d1 α

2 + β] |H x η|2

+
[
∇ϕ ¦ η + δ−10 |∇ϕ|+ 2 |∇ϕ|

]

· 2 d1γ2
∣∣∣∣
∫ t

0

[
H(x, τ)x η

]
exp

(
−σ(x) (t− τ)

)
dτ

∣∣∣∣
2

(3.53)

≤ (3 + δ−10 ) |∇ϕ| (2 d1α2 + β) |H x η|2

+ 2 d1γ
2(3 + δ−10 ) |∇ϕ|

∣∣∣∣
∫ t

0

[
H(x, τ)x η

]
exp

(
−σ(t− τ)

)
dτ

∣∣∣∣
2

.

Let ε1, ε2, ε3 positive real numbers. With the notations given above we have

the following estimates

−2 (∇ϕ ¦∇)u ¦ (aut + bu) ≤ λ0 a1ε
−1
2 |ut|2 + λ0 b

2ε−13 |u|2
(3.54)

+ (ε2 a1c
−1
0 + ε3 c

−1
0 ) |∇ϕ|

3∑

i,j=1

Aij
∂u

∂xj
¦
∂u

∂xi
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where we used Cauchy–Schwarz inequality and Hypothesis I (item 3)). By the

same reasons and the boundary conditions (1.3) we deduce that

2 (η xE) ¦

(
∇ϕ x

3∑

i=1

Ai
∂u

∂xi

)
≤

≤ |∇ϕ| c4 ε−11 |η xE|2 + 3 |∇ϕ| c4 ε1 c−10
3∑

i,j=1

Aij
∂u

∂xj
¦
∂u

∂xi

≤ 2λ0 c4 ε
−1
1

{
α21 |H x η|2 + γ1γ

∣∣∣∣
∫ t

0

[
H(x, τ)x η

]
exp

(
−σ(t−τ)

)
dτ

∣∣∣∣
2
}

(3.55)

+ 3 |∇ϕ| c4 ε1 c−10
3∑

i,j=1

Aij
∂u

∂xj
¦
∂u

∂xi
.

Now, we choose ε1=
1

8
c0 δ0 c

−1
4 , ε2 =

1

8
c0 δ0 a

−1
1 and ε3 =

1

2
c0 δ0 in (3.54) and

(3.55). Thus, the summation of the left hand sides is less than or equal to

(8λ0 a
2
1 c
−1
0 δ−10 ) |ut|2 + 2λ0 b

2c−10 δ−10 |u|2 + δ0|∇ϕ|
3∑

i,j=1

Aij
∂u

∂xj
¦
∂u

∂xi
+

+ (16λ0 c
2
4 c
−1
0 δ−10 )

{
α21 |H x η|2 + γ1γ

∣∣∣∣
∫ t

0

[
H(x, τ)x η

]
exp

(
−σ(t−τ)

)
dτ

∣∣∣∣
2
}
.

Hence, from (3.48), (3.53) and the above discussion, we obtain the estimate

Vn ≤ − ∂

∂t

{
(t+ t0) b|u|2 + γ

∣∣∣∣
∫ t

0

[
H(x, τ)x η

]
exp

(
−σ(t−τ)

)
dτ

∣∣∣∣
2
}

− ∂

∂t
{a|u|}2 − {1− 2λ0 b c

−1
0 δ−10 } b|u|2

−
{
2 (t+ t0)a−

∂ϕ

∂η
− 8λ0 a

2
1 c
−1
0 δ−10

}
|ut|2

−
{
∂ϕ

∂η
− δ0|∇ϕ|

} 3∑

i,j=1

Aij
∂u

∂xj
¦
∂u

∂xi
(3.56)

−
{
2 (t+ t0)α− (3 + δ−10 ) (2 d1 α

2 + β) |∇ϕ| − 16λ0 c
2
4 δ
−1
0 α21

}
|H x η|2

−
{
2 (t+ t0)− 1− 2 d1γ1(3 + δ−10 ) |∇ϕ| − 16λ0 c

2
4 c
−1
0 δ−10 γ1

}

· γ
∣∣∣∣
∫ t

0
[H x η] exp

(
−σ(t−τ)

)
dτ

∣∣∣∣
2

.

Integration of (3.56) in S×[0, T ] proves Lemma 3.4.
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4 – Exact controllability

In this section, we use the result of Theorem 3.5 to prove exact boundary

controllability to an arbitrary state of solutions of (1.1), (1.2), (1.4) and (1.7)

when γ ≡ 0.

Theorem 4.1. Under the assumptions of Theorem 3.5 and γ ≡ 0, there exists

T̃ > 0 such that for any T > T̃ , given any initial data f ∈ M1 and any terminal

state g ∈ M1 , there exists a boundary control {~p(x, t), ~q(x, t)} belonging to

[L2(S×(0, T ))]6 driving the system (1.1), (1.2), (1.4), (1.7) to the terminal state

g(x) at time T :

u(x, T ) = g1(x) , ut(x, T ) = g2(x) , E(x, T ) = g3(x) and H(x, T ) = g4(x) .

Moreover

(4.1) ‖~p‖2W + ‖~q‖2W ≤ c
{
‖f‖2Z + ‖g‖2Z

}

for positive constant c where W = [L2(S×(0, T ))]3.

Proof: Let T̃ = T0

[(
c13
T0

)1/1−p

−1

]
> 0. We consider the following equation

in M1 :

(4.2) v − U∗(T )U(T ) v = f − U∗(T ) g

where {U(t)}t≥0 is the semigroup associated with problem (1.1)–(1.4). The op-

erator F (T ) = U ∗(T )U(T ) takes M1 into itself and ‖F (T )‖ < 1 for any T > T̃

by Corollary 3.6. Thus we can solve (4.2) for any f, g ∈M1 and

‖v‖Z ≤ c
{
‖f‖Z + ‖g‖Z

}
.

Consequently, if we choose v = (I −F (T ))−1(f −U∗(T )g) then we will have that

(u1, u2, u3, u4) = U(t)v − U∗(T − t) (U(T )v − g)
≡ (ṽ1, ṽ2, ṽ3, ṽ4)− (w1, w2, w3, w4)

is a weak solution of (1.1), (1.2), (1.4) and (1.7) with

~p(x, t) = −a ṽ2 − aw2 , ~q(x, t) = α η x {(ṽ4 + w4)x η} .

We observe that

(u1, u2, u3, u4)|t=T = g(x)

therefore by the energy identity we obtain (4.1).
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