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OPTIMAL ENERGY DECAY RATE OF
COUPLED WAVE EQUATIONS

Ahmed Benaddi

Abstract: We consider a system of coupled wave equations subject to positive vis-

cous damping. Under the assumption that the damping function is of bounded variations,

we give the asymptotic expansion of eigenvalues and eigenfunctions of the infinitesimal

generator of the associated semigroup. Moreover, we prove that the eigenfunctions form

a Riesz basis in the energy space.

1 – Introduction

In this paper we consider a system of coupled wave equations in the presence

of viscous damping :



























utt − uxx + 2 a ut + α(u− v) = 0 , 0 < x < 1, t > 0 ,

vtt − vxx + 2 a vt + α(v − u) = 0 , 0 < x < 1, t > 0 ,

u(0, t) = u(1, t) = 0 , t > 0 ,

v(0, t) = v(1, t) = 0 , t > 0 ,

(1.1)

where a, α ∈ L∞(0, 1) are positive functions.

Let H = H1
0 (0, 1) × L2(0, 1) ×H1

0 (0, 1) × L2(0, 1). We next define the linear

unbounded operator A by

A = (u, z, v, w) =
(

z, uxx − 2 a z − α(u− v), w, vxx − 2 aw − α(v − u)
)

,(1.2)

D(A) = V×H1
0 (0, 1)×V×H

1
0 (0, 1) ,(1.3)
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where we have put V := H1
0 (0, 1) ∩H

2(0, 1). Setting U = (u, ut, v, vt), we trans-

form the system (1.1) into an evolutionary equation

Ut = AU , U(0) = U0 ∈ H .(1.4)

we can prove easily that the operator A generates a C0-semigroup (see Pazy [16]).

Moreover defining the energy of the system by:

E(t) =
1

2

∫ 1

0
u2
x + u2

t + v2
x + v2

t + α(u− v)2 dx ,(1.5)

we find that
d

dt
E(t) = −2

∫ 1

0
a(u2

t + v2
t ) dt ≤ 0 .(1.6)

Assume that a is nonnegative and strictly positive on some subinterval we can

easily prove (see[1]) that there exist constants C > 0 and ω < 0 such that the

following exponential decay rate holds:

E(t) ≤ CE(0) exp(2ωt) , ∀ t ≥ 0 .(1.7)

The exponential stability of the system (1.1) has been established by Najafi

et al [15] in the case of linear boundary feedback and by Komornik–Rao [10] in

the case of nonlinear boundary feedback.

In this work, we will determine the optimal energy decay rate of the system

(1.1). More precisely, denoting by ω(a) the supremum of ω satisfying (1.7), and

by µ(a) the minimum of the real part of eigenvalues of A, we will establish the

relation µ(a) = ω(a) for the coefficient a being of bounded variations. To this

end, we will give the asymptotic expansion of the eigenvalues and prove that the

system of eigenvectors of the operator A constitutes a Riesz basis in the energy

space H.

In section 2 we prove that the spectrum of the system (1.1) is the union of

the spectrum of the systems:

{

uxx − (λ2 + 2 aλ+ 2α)u = 0 ,

u(0) = u(1) = 0 ,
(1.8)

and
{

vxx − (µ2 + 2 aµ) v = 0 ,

v(0) = v(1) = 0 .
(1.9)

Note that the system (1.9) is well studied by Cox and Zuazua in [4].

In this work, we will apply a method used by Rao in [18] to the system (1.8).
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This approach consists in constructing, without any a priori ansatz, an explicit

approximation of the characteristic equation of the underlying system. In this

way, we find the asymptotic form of the eigenvalues of (1.1). In section 3, we

construct the root system of the system (1.1) and we prove that root vectors of

the operator A constitue a Riesz basis in H, therefore we identify the optimal

decay rate of energy ω(a) with the supremum of the real part of the eigenvalues

of the system (1.1).

The method that is used in this work can be adapted to the problem of

indefinite damping:


























utt − uxx + 2 ε a ut + α(u− v) = 0 , 0 < x < 1, t > 0 ,

vtt − vxx + 2 ε b vt + α(v − u) = 0 , 0 < x < 1, t > 0 ,

u(0) = u(1) = 0 ,

v(0) = v(1) = 0 ,

(1.10)

where a, b are functions of indefinite sign and ε > 0 is a small parameter. In fact

in the case a = b the determination of the spectrum of (1.10) can be reduced to

that one of the following system:
{

ϕxx = ϕtt + 2 a ε λϕt + 2αϕ = 0 ,

ϕ(0) = ϕ(1) = 0 .
(1.11)

In the case where α = 0, it was proved that the system (1.11) is exponentially

uniformly stable for ε > 0 small enough if a is of bounded variation and is

“more positive then negative” (see Freitas–Zuazua [6]). Recently, this result

was improved to the system (1.11) with an arbitrary function α ∈ L∞(0, 1) by

Benaddi–Rao [18] using a new asymptotic expansion of eigenfunction which take

into account the potential term αϕ.

In Liu et al [12] we can find a general result on the stability of nondissipative

semigroups which is based on the perturbation theory (Kato [9]) and the charac-

teristic condition of the uniform stability of semigroups (Huang [8], Prüss, [17]).

It seems interesting to adapt their approach to the system (1.10) with a 6= b.

2 – Asymptotic analysis of the spectrum of A

For any U1= (u1, z1, v1, w1) ∈ H, U2 = (u2, z2, v2, w2) ∈ H, we defind the

inner product in the space H by setting:

〈U1, U2〉 =

∫ 1

0
u1x ū2x+ z1z̄2 + v1x v̄2x+w1w̄2 +α(u1− v1) (ū2− v̄2) dx ,(2.1)
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and we consider the following eigenvalue problem























λ2 u− uxx + 2 aλu+ α(u− v) = 0 ,

λ2 v − vxx + 2 aλ v + α(v − u) = 0 ,

u(0) = u(1) = 0 ,

v(0) = v(1) = 0 .

(2.2)

We first remark that the eigenvalues of (2.2) are the eigenvalues of one of the

systems (1.8) or (1.9). More precisely, putting ϕ = u− v and φ = u+ v, then we

have ϕ is solution of the problem (1.8), and φ is solution of the problem (1.9).

Proposition 2.1. Let α0, a1 ≥ 0 and a2 ≥ 0. Let α and a be two functions

in L∞(0, 1) such that ∀x ∈ [0, 1], a1 ≤ a(x) ≤ a2 < ∞ and α > α0 > 0. Then

the complex part of the spectrum of (1.8) is symetric about the real axis and is

contained in

C =
{

λ ∈ C : |λ| ≥
√

π2 + 2α0; −a2 ≤ Reλ ≤ −a1

}

.(2.3)

A necessary condition for the existence of real eigenvalue is:

a2 ≥
√

π2 + 2α0 .(2.4)

In that case the real eigenvalues λn are contained in the interval:

− a2 −
√

a2
2 − π2 − 2α0 ≤ λn ≤ −a1 +

√

a2
2 − π2 − 2α0 .(2.5)

Proof: Let λn be an eigenvalue associated to the eigenfunction un. Then,

we have
{

unxx − (λ2
n + 2 aλn + 2α)un = 0 ,

un(0) = un(1) = 0 .
(2.6)

Multiplying (2.6) by un we obtain:

λ2
n

∫ 1

0
|un|

2 dx + 2λn

∫ 1

0
a|un|

2 dx +

∫ 1

0
|unx|

2 dx + 2

∫ 1

0
α|un|

2 dx = 0 .(2.7)

Hence

λn=

−

∫ 1

0
a|un|

2 dx±

√

(∫ 1

0
a|un|2

)2

dx−

∫ 1

0
|un|2 dx

(∫ 1

0
|unx|2 + 2α

∫ 1

0
|un|2 dx

)

∫ 1

0
|un|

2 dx

.

(2.8)
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If λn is a complex eigenvalue then we have:

Reλn = −

∫ 1

0
a|un|

2 dx

∫ 1

0
|un|

2 dx

and − a2 ≤ Reλn ≤ −a1 .(2.9)

Furthermore we have

(Reλn)
2 + (Imλn)

2 =

∫ 1

0
|unx|

2 + 2

∫ 1

0
α|un|

2 dx

∫ 1

0
|un|

2 dx

.(2.10)

By Poincaré’s inequality, we have:

|λn|
2 = (Reλn)

2 + (Imλn)
2 ≥ π2 + 2α0 .(2.11)

If λn is a real eigenvalue, we have

0 ≤









∫ 1

0
a|un|

2

∫ 1

0
|un|

2 dx









2

−

∫ 1

0
|unx|

2 dx

∫ 1

0
|un|

2 dx

− 2α ≤ a2
2 − π2 − 2α0 .(2.12)

This gives (2.4). The proof is complete.

Now, we carry out the study of the high frequencies of the problem (2.6).

We will use a method used in Rao [18]. We denote by BV (0, 1) the set of functions

of bounded variations. We consider the following initial value problem
{

yxx − (λ2 + 2 aλ+ 2α) y = 0 ,

y(0, λ) = 0 , yx(0, λ) = 1 .
(2.13)

We have the following result:

Proposition 2.2. Let a ∈ BV (0, 1) and y(x, λ) the solution of the problem

(2.13). Then for all λ ∈ C, sufficienly large, we have:
∣

∣

∣

∣

∣

∣

∣

∣

y(x, λ)−
sinh

(

λx+

∫ x

0
a(s) ds

)

λ

∣

∣

∣

∣

∣

∣

∣

∣

≤
C0

|λ|2
,(2.14)

∣

∣

∣

∣

yx(x, λ)− cosh

(

λx+

∫ x

0
a(s) ds

) ∣

∣

∣

∣

≤
C0

|λ|
(2.15)

where C0 > 0 is a constant independent of λ.



86 AHMED BENADDI

Proof: By the theory of ordinary differential equations (see Naimark [14]), we

know that y(x, λ) is analytic with respect to λ. Furthermore λn is an eigenvalue

of (1.9) if and only if λn is a root of y(1, λ) = 0, and its algebraic multiplicity is

the nullity order of λn as a zero of the function λ→ y(1, λ).

Let z(x, λ) =
1

λ
sinhλx be the solution of the undamped initial value problem

(a ≡ 0). By the variation of constants formula we have:

y(x, λ) = z +

∫ x

0
2 a(s)λ y(s) z(x− s) ds .(2.16)

Hence

yx(x, λ) = zx +

∫ x

0
2 a(s)λ y(s) zx(x− s) ds .(2.17)

Since |sinhλx| ≤ cosh |a2| := C1 and |coshλx| ≤ C1, thanks to Gronwall’s in-

equality, we deduce that

|y(x, λ)| ≤
C1

|λ|
exp

(

2C1

∫ 1

0
|a(s)| ds

)

:=
C2

|λ|
.(2.18)

Inserting (2.18) into (2.17) we conclude that

|yx(x, λ)| ≤ C1 + C1C2

∫ 1

0
2 |a(s)| ds := C3 .(2.19)

Now we construct an approximate solution of the problem (2.13). Using an

idea of Rao [18], we consider the case where a is a constant. In that case, the

characteristic equation of (2.13) is given by

τ2 − (λ2 + 2 aλ+ 2α) = 0 .

Thus we have:

τ± = ±
√

λ2 + 2 aλ+ 2α = ±λ

(

1 +
a

λ
+O

(

1

|λ|

))

.(2.20)

By neglecting the high order term, we set

θ(x) = λx+

∫ x

0
a(s) ds , v(x) =

1

λ+ a(0)
sinh θ(x) .(2.21)

Furthermore, since the functions sinh θ(x) and cosh θ(x) are uniformly bounded

for λ ∈ C, we deduce that there exists C4 > 0 independent of λ, such that

|v| ≤
C4

|λ|
and |vx| ≤ C4 .(2.22)
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Let us consider the following problem:
{

vxx − (λ2 + 2 aλ+ 2α) v = f ,

v(0) = 0 , vx(0) = 1 .
(2.23)

where

f =
1

λ+ a(0)

(

(a2 − 2α) sinh θ(x) + a′ cosh θ(x)
)

.(2.24)

By the variation of constants formula we have

v(x)− y(x) =

∫ x

0
f(s) y(x− s) ds ,

vx(x)− yx(x) =

∫ x

0
f(s) yx(x− s) ds .

Thanks to (2.18), (2.19) and (2.24) we obtain that

|v(x)− y(x)| ≤
C1 · C2

|λ| |λ+ a(0)|

∫ 1

0

(

|a2 − 2α|+ |a′|
)

dx ,(2.25)

|vx(x)− yx(x)| ≤
C1 · C3

|λ+ a(0)|

∫ 1

0

(

|a2 − 2α|+ |a′|
)

dx .(2.26)

Consequently, we obtain
∣

∣

∣

∣

∣

∣

∣

∣

y(x)−
sinh

(

λx+

∫ x

0
a(s) ds

)

λ+ a(0)

∣

∣

∣

∣

∣

∣

∣

∣

≤
C1 · C2 · (Ta + ‖a‖

2
∞ + 2α)

|λ| |λ+ a(0)|
,(2.27)

∣

∣

∣

∣

yx(x)−
λ+a(x)

λ+a(0)
cosh

(

λx+

∫ x

0
a(s) ds

)∣

∣

∣

∣

≤
C1 ·C3 ·(Ta+‖a‖

2
∞+ 2α)

|λ+ a(0)|
,(2.28)

where Ta denotes the total variations of a. Since for λ large enough we have:

λ+ a(x)

λ+ a(0)
= 1 +O

(

1

|λ|2

)

,(2.29)

1

λ+ a(0)
=

1

λ
+O

(

1

|λ|2

)

.(2.30)

We deduce that there exists a constant C0 > 0 such that (2.14)–(2.15) hold.

This achieves the proof.

Let N be the smallest integer greater than
4C0

π
. We define the sets

ΠN =

{

z ; |z + a0| ≤ Nπ +
π

2

}

,(2.31)
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Π±n =

{

z ; |z + a0 ∓ i n π| =
2C0

nπ

}

, for n > N ,(2.32)

where we have put:

a0 =

∫ 1

0
a(x) dx .

By Lemma 5.2 in Cox–Zuazua [4], we have |sinh(λ+ a0)| >
C0

|λ|
for all λ ∈ Πn.

Theorem 2.1. Let a ∈ BV (0, 1). There exists a finite number of eigenvalues

λn ∈ ΠN and one simple eigenvalue in the region enclosed by Πn for each n > N .

Proof: Let n > N . By (2.14) we have

∣

∣

∣

∣

y(1, λ)−
sinh(λ+ a0)

λ

∣

∣

∣

∣

≤
C0

|λ|2
<

∣

∣

∣

∣

sinh(λ+ a0)

λ

∣

∣

∣

∣

, ∀λ ∈ Πn .(2.33)

By Rouché’s theorem, y(1, λ) has the same number of roots as the function

λ→
sinh(λ+ a0)

λ
in the region enclosed by Πn. In particular, we have

λ±n = −a0 ± i n π +O

(

1

n

)

.(2.34)

As the spectrum of (1.8) is discret and ΠN is compact, there exists at most a

finite number of eigenvalues λn ∈ ΠN . This achieves the proof.

Theorem 2.2. Let a ∈ BV (0, 1). Setting

ξ(x) =

∫ x

0
a(s) ds − x a0 ,(2.35)

we have

λ±n · u±n(x) = sinh
(

ξ(x)± i n π x
)

+O

(

1

n

)

,(2.36)

u±nx(x) = cosh
(

ξ(x)± i n π x
)

+O

(

1

n

)

.(2.37)

Proof: Using (2.34) and (2.14) we obtain:

λ±n · u±n(x) = λ±n y(x, λ±n)

= sinh
(

ξ(x)± i n π x
)

+O

(

1

n

)

.
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Similarly, using (2.15) and (2.34) we get:

u±nx(x) = yx(x, λ±n)

= cosh
(

ξ(x)± i n π x
)

+O

(

1

n

)

.

The proof is complete.

Now we consider the eigenvalue problem (1.9) defined by
{

vmxx − (µ2
m + 2 aµm) vm = 0 ,

vm(0) = vm(1) = 0 .
(2.38)

By applying the same method, we obtain the following developement for all

m > M where M is an integer depending only on a(x):

µ±m = −a0 ± imπ +O

(

1

m

)

,(2.39)

µ±m v±m(x) = sinh
(

ξ(x)± imπ x
)

+O

(

1

m

)

,(2.40)

v±mx(x) = cosh
(

ξ(x)± imπ x
)

+O

(

1

m

)

.(2.41)

We notice that for |n| > sup(N,M), there exist, in Πn, two eigenvalues λn and µn
of algebraic multiplicity 1. We will prove that these two eigenvalues are distinct:

Proposition 2.3. Let n be a sufficiently large integer. We have

λn 6= µn .(2.42)

Proof: Assume that λn = µn. Let un and vn be eigenfunctions associated

to λn and µn. We have
{

vnxx − (µ2
n + 2 aµn) vn = 0 ,

vn(0) = vn(1) = 0 .
(2.43)

Multiplying (2.43) with un and integrating by parts, we obtain that

∫ 1

0
vn ·

[

∂xx − (λ2
n + 2 aλn + 2α)

]

un dx + 2

∫ 1

0
αun · vn dx = 0 .(2.44)

Since un is a solution of (1.8), we have

∫ 1

0
αun · vn dx = 0 .(2.45)
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On the other hand by (2.36) and (2.40) we have
∫ 1

0
αun · vn dx =

1

n2 π2

∫ 1

0
α
∣

∣

∣sinh
(

ξ(x)± i n π x
)∣

∣

∣

2
dx + O

(

1

n3

)

= 0 .(2.46)

It follows that
∫ 1

0
α
∣

∣

∣sinh
(

ξ(x)± i n π x
)∣

∣

∣

2
dx = O

(

1

n

)

.(2.47)

A straight forward computation shows that
∫ 1

0
α
∣

∣

∣sinh
(

ξ(x)± i n π x
)∣

∣

∣

2
dx =

∫ 1

0
α
(

sinh2 ξ(x) + sin2(nπ x)
)

dx

>
1

2

∫ 1

0
αdx >

α0

2
> 0 .(2.48)

This leads to a contradiction. Thus, we have proved that for each n > sup(N,M),

the region enclosed by Πn contain two distincts eigenvalues µn, λn.

3 – System of root vectors

Let λn and µm be two eigenvalues of the operator A. We know that their

algebraic multiplicity is equal to one for |n| > N and |m| > M . We index the

eigenvalues λn et µm (|n| > N, |m| > M) of high frequencies following the asymp-

totic expansions (2.34) and (2.39). We denote by λ̃k for 1 ≤ k ≤ K and µ̃l for

1 ≤ l ≤ L the eigenvalues of low frequencies. Hence we write the spectrum of A:

σ(A) =
{

λn : |n|>N
}

∪
{

λ̃k : 1≤k≤K
}

∪
{

µm : |m|>M
}

∪
{

µ̃l : 1≤ l≤L
}

.

Let λn be an eigenvalue of (1.8) with the corresponding eigenfunction un and µm
be an eigenvalue of (1.9) with the corresponding eigenfunction vn. Then, λn is an

eigenvalue of A associated to the eigenvector φ−n =(un, λnun,−un,−λnun), and

µm is an eigenvalue ofA associated to the eigenfunction φ+
m=(vn, µmvm, vm, µmvm).

We denote by sk the algebraic multiplicity of λ̃k and by {φ̃−k,j}
sk−1
0 the associated

Jordan chain. Respectively, we denote by ql the algebraic multiplicity of µ̃l and

by {φ̃+
l,j}

ql−1
0 the associated Jordan chain. The root vectors of A are given by
{

φ̃−k,j : 0≤j≤sk−1 ; 1≤k≤K
}

∪
{

φ−n : |n| > N
}

∪(3.1)

∪
{

φ̃+
l,j : 0≤j≤ql−1 ; 1≤ l≤L

}

∪
{

φ+
m : |m| > M

}

.

Our aim is to prove that (3.1) is a Riesz basis in the energy space H by using the

following theorem:
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Theorem 3.1 (Rao [18]). Let {φn}
n
0 be a Riesz basis in the Hilbert space X,

and let {gn}
∞
n0
be a ω-linearly independent system. Assume that

∞
∑

n=n0

‖φn − gn‖
2
X <∞ .(3.2)

Then {gn}
∞
n0
is a Riesz basis in the subspace X0 spanned by itself in X.

We first prove the following preliminary result:

Proposition 3.1. The system of root vectors (3.1) of A are complete and

ω-linearly independent in the energy space H.

Proof: Putting:

L = i









0 I 0 0
∂xx − αI 0 αI 0

0 0 0 I

αI 0 ∂xx − αI 0









, T = i









0 0 0 0
−2a 0 0 0
0 0 0 0
0 0 −2a 0









.(3.3)

Then we have iA = L+ T . A straightforward computation show that L is self-

adjoint in H. Since T is bounded in the energy space H, then

ρ(L−1TL−1) ≤ ‖L−1‖ ‖T‖ ρ(L−1)(3.4)

where ρ denotes the order of a linear bounded operator (see [7, p. 27] for defini-

tion). On the other hand, L−1 is compact, from (2.34) and (2.39) we deduce that

the asymptotic form of the eigenvalues of L−1:

λn(L
−1) =

i

±i n π +O( 1
n
)
=

1

nπ
+O

(

1

n3

)

.(3.5)

Then, the order ρ of L−1 is given by (Gohberg–Krein [7, p. 256]):

ρ = lim
n→∞

log n

log 1
λn(L−1)

= 1 .(3.6)

Hence by Theorem V 8.1 (Gohberg–Krein [7, p. 257]), we deduce that the system

(3.1) is complete in the energy space H.

On the other hand, one straightforward computation show that A−1 is com-

pact in H. Since the operator iA−1 has no real eigenvalues, by Theorem I.5.2

(Gohberg–Krein [7, p. 23]), all i
λ
∈ C\R are normal points of iA−1. Let λ0 be
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a point of the operator iA. Following Thorem I 2.1 Gohberg–Krein [7, p. 9], the

projector operator

Pλ0
= −

1

2 i π

∫

|µ−λ0|=δ
(iA−1 − µI)−1 dµ .(3.7)

is of finite-dimension and the range of Pλ0
is the subspace ker(iA−1 − λ0I)

ν0
,

where ν0 ≥ 1 is the algebric multiplicity of λ0. Now we consider a serie:

K
∑

k=1

sk−1
∑

j=0

|c−k,j |
2 +

∑

|n|>N

|c−n |
2 +

L
∑

l=1

ql−1
∑

j=0

|c+l,j |
2 +

∑

|m|>M

|c+m|
2 < ∞(3.8)

such that

K
∑

k=1

sk−1
∑

j=0

c−k,j φ̃
−
k,j +

∑

|n|>N

c−n φ
−
n +

L
∑

l=1

ql−1
∑

j=0

c+l,j φ̃
+
l,j +

∑

|m|>M

c+m φ+
m = 0 .(3.9)

Applying the projector Pµ̃l
, 1 ≤ l ≤ L, to (3.9), we obtain that

ql−1
∑

j=0

c+l,j φ̃
+
l,j = 0 for 1 ≤ l ≤ L .(3.10)

Since {φ̃+
l,j}

ql−1
0 is a basis of ker(A− µ̃lI)

ql−1 for all 1 ≤ l ≤ L, it follows that

c+l,j = 0 , 0 ≤ j ≤ ql − 1, 1 ≤ l ≤ L .(3.11)

On the other hand, the algebraic multiplicity of the eigenvalue µm is equal to 1

for m > M . Applying Pµm for m > M to (3.9) we have:

c+m = 0 for all |m| > M .(3.12)

Similarly, applying Pλ̃n
for 1 ≤ k ≤ K and Pλn

for |n| > N to (3.9) we get that

c−k,j = 0 for 0≤ j≤sk−1, 1≤k≤K and c−n = 0 for all |n|>N .(3.13)

This achieves the proof.

Now we consider the subspace L of X = L2(0, 1)×L2(0, 1)×L2(0, 1)×L2(0, 1)

defined by

L =

{

(f, g, h, k) ∈ X such that

∫ 1

0
f(x) dx =

∫ 1

0
g(x) dx = 0

}

(3.14)

and we define the linear bounded operator from H to L by

F(u, z, v, w) = (ux, z, vx, w) ∀ (u, z, v, w) ∈ H .(3.15)
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Proposition 3.2. The linear operator F defined by (3.14)–(3.15) is an iso-

morphism from H onto L.

Proof: Let (u, z, v, w) ∈ H, then

‖F(u, z, v, w)‖2X =

∫ 1

0
|ux|

2 + |z|2 + |vx|
2 + |w|2 dx

= ‖u‖2H1
0 (0,1) + ‖z‖

2
L2(0,1) + ‖v‖

2
H1

0 (0,1) + ‖w‖
2
L2(0,1) .

Hence F is a linear bounded operator from H to L. Let (f, g, h, k) ∈ L. We can

verify that

u =

∫ x

0
f(x) dx ∈ H1

0 (0, 1) , z = g ∈ L2(0, 1) ,(3.16)

v =

∫ x

0
h(x) dx ∈ H1

0 (0, 1) , w = k ∈ L2(0, 1) ,(3.17)

satisfy the equation F(u, z, v, w) = (f, g, h, k).We conclude, by Banach’s theorem

that F is an isomorphism from H onto L. The proof is complete.

Let ξ ∈ L∞(0, 1), and set Θn defined by Θn(x) = ξ(x) + i n π x. We have the

following system

Φ±n = (coshΘn, sinhΘn, ± coshΘn, ± sinhΘn) , n ∈ Z .(3.18)

Proposition 3.3. For all ξ∈L∞(0, 1), the system (3.18) is aRiesz basis in X.

Proof: For n ∈ Z, we set:

e±n =
(

cosnπx, sinnπx, ± cosnπx, ± sinnπx
)

,

M =









cosh ξ(x) sinh ξ(x) 0 0
i cosh ξ(x) i sinh ξ(x) 0 0

0 0 cosh ξ(x) sinh ξ(x)
0 0 i cosh ξ(x) i sinh ξ(x)









.(3.19)

Then we have Φ±n = e±n ·M. Since the transformation matrix has a bounded inverse

in X and since the system {e±n }n∈Z is equivalent to an orthonormal basis in X,

it follows that the system (3.18) is a Riesz basis in X. The proof is complete.

Theorem 3.2. Assume that a ∈ BV (0, 1). Then the root system (3.1) forms

a Riesz basis in the energy space H.
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Proof: We use an idea of Rao in [18]. Since the operator F is an isomorphism

from H on to L, it is sufficient to prove that the system

{

F φ̃−j,k : 0≤j≤sk−1, 1≤k≤K
}

∪
{

Fφ−n : |n|>N
}

∪(3.20)

∪
{

F φ̃+
j,l : 0≤j≤ql − 1, 1≤ l≤L

}

∪
{

Fφ+ : |m|>M
}

is a Riesz basis in L. We distinguish three cases:

Case i:
∑K

k=1 sk +
∑L

l=1 ql = M +N . From (2.36), (2.37), (2.40) and (2.41)

it follows that:

K
∑

k=0

sk−1
∑

j=0

‖F φ̃−j,k − Φ̃−j,k‖
2
X +

L
∑

l=0

ql−1
∑

j=0

‖F φ̃+
j,l − Φ̃+

j,l‖
2
X +(3.21)

+
∑

|n|>N

‖Fφ−n − Φ−n ‖
2
X +

∑

|m|>M

‖Fφ+
m − Φ+

m‖
2
X < ∞ .

Thanks to Bari’s Theorem, we show that the system (3.20) is a Riesz basis in X.

Case ii: If
∑K

k=1 sk +
∑L

l=1 ql > M+N . From Bari’s theorem, we can find a

subsystem of (3.20) which is quadratically close to the Riesz basis {Φ±n }n∈Z, and
would be also a Riesz basis in X. This contradicts the linear independence of the

system (3.20).

Case iii: If
∑K

k=1 sk +
∑L

l=1 ql ≤ M+N . From Proposition 3.1, the system

(3.20) is complete and ω-linearly independent in L. Since the system (3.20) is

quadratically close to a subsystem of the Riesz basis {Φ±n }n∈Z, applying Theorem

3.1, we conclude that system (3.20) is a Riesz basis of the subspace spanned by

itself. But the system (3.20) is complete in L, hence forms a Riesz basis in the

whole space L. The proof is thus complete.

Theorem 3.3. If a ∈ BV (0, 1), then have µ(a) = ω(a).

Proof: The proof is similar to the one used in [2], [4] and [13]. For the sake

of the complement we give a brief outline of the proof.

We know that µ(a) ≤ ω(a). We will establish the reverse inequality.

We expand the initial data into:

(u0, z0, v0, w0) =
±∞
∑

n=0

sn−1
∑

j=0

β−n,jφ
−
n,j +

±∞
∑

m=0

qm−1
∑

j=0

β+
m,jφ

+
m,j .(3.22)
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It follows that

‖(u, ut, v, vt)‖
2
H =

∥

∥

∥

∥

∥

∥

±∞
∑

n=0

sn−1
∑

j=0

β−n,j S(t)φ
−
n,j +

±∞
∑

m=0

qm−1
∑

j=0

β+
m,j S(t)φ

+
m,j

∥

∥

∥

∥

∥

∥

2

(3.23)

where S(t) is the C0-semigroup generated by the system (1.1). By the property

of Riesz basis there exist positive constants C1, C2 such that

C1





±∞
∑

n=0

sn−1
∑

j=0

|β−n,j |
2 +

±∞
∑

m=0

qm−1
∑

j=0

|β+
m,j |

2



 ≤ ‖U0‖
2
H

≤ C2





±∞
∑

n=0

sn−1
∑

j=0

|β−n,j |
2 +

±∞
∑

m=0

qm−1
∑

j=0

|β+
m,j |

2





for any U0 = (u0, z0, v0, w0) ∈ H. Then a straightforward computation gives that

‖(u, ut, v, vt)‖
2
H ≤ C2





±∞
∑

n=0

e2µ(a)t
sn−1
∑

j=0

|β−n,j |
2

j
∑

k=0

(

t(j−k)

(j − k)!

)2

(3.24)

+
±∞
∑

n=0

e2µ(a)t
qn−1
∑

j=0

|β+
n,j |

2
j
∑

k=0

(

t(j−k)

(j − k)!

)2


 .

Recalling that at mostM+N eigenvalues may be of algebraic multiplicity greater

then one, we conclude that there exists a positive constant C3 such that:

‖(u, ut, v, vt)‖
2
H ≤ C3 C2 e

2µ(a)t





±∞
∑

n=0

sn−1
∑

j=o

|β−n,j |
2 +

±∞
∑

m=0

qm−1
∑

j=o

|β+
m,j |

2



 (1 + t2(m+N))

≤
C3C2

C1
e2µ(a)t(1 + t2(M+N)) ‖(u0, u0t, v0, v0t)‖

2
H .(3.25)

We have established our main result.
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