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CONGRUENCES OF LINES
WITH ONE-DIMENSIONAL FOCAL LOCUS *

Pietro De Poi

Abstract: In this article we obtain the classification of the congruences of lines with

one-dimensional focal locus. It turns out that one can restrict to study the case of P3.

Introduction

A congruence B of lines in Pn is a family of lines of dimension n−1. The order

of B is the number of lines of B passing through a general point in Pn and its

class is the number of lines of the congruence contained in a general hyperplane

and meeting a general line contained in it.

The study of congruences of lines in P3 was started by E. Kummer in [Kum66],

in which he gave a classification of those of order one. More recently, congruences

of lines in P3 were studied in [Gol85] by N. Goldstein, who tried to classify these

from the point of view of their focal locus. The focal locus is, roughly speaking,

the set of critical values of the natural map between the total space Λ of the

family B and Pn. Successively, Z. Ran in [Ran86] studied the surfaces of order

one in the general Grassmannian G(r, n) i.e. families of r-planes in Pn for which

the general (n−r−2)-plane meets only one element of the family. He gave a

classification of such surfaces, in particular, in the case of P3, obtaining a modern

and more correct proof of Kummer’s classification of first order congruences of

lines. Moreover, he proved that if the class of these congruences in P3 is greater
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than three, these are not smooth, as conjectured by I. Sols. Another proof of

Kummer’s classification is given by F. L. Zak and others in [ZILO]. Moreover, E.

Arrondo and I. Sols, in [AS92] classified all the smooth congruences with small

invariants. Successively, E. Arrondo and M. Gross in [AG93] classified all the

smooth congruences in P3 with a fundamental curve and this classification was

extended to all smooth congruences with a fundamental curve by E. Arrondo,

M. Bertolini e C. Turrini in [ABT94].

In this paper the classification of congruences with focal locus of dimension

one (i.e. if the focal locus reduces to be only a — possibly reducible or non-

reduced — fundamental curve) is obtained. In Section 1 we fix the notation and

we recall some known results. In Section 2 we obtain some general results on

the possible minimal dimension of the focal locus of a congruence in Pn: first of
all, we prove in Theorem 2.1 that if the focal locus has codimension at least two,

then the congruence has order either zero or one. This result has been suggested

to us by F. Catanese. In Theorem 2.2 we prove that the dimension of the focal

locus is at least n−1
2 — if the congruence is not a star of lines, i.e. the set of lines

passing through a point P ∈ Pn (in which case the focal locus has support in P ).

Moreover, we give also some results concerning the case of dimension n−1
2 .

In Section 3 we prove the main result of this paper, namely Theorem 0.1;

in order to state it, we need the following notation: first of all, let ` be a fixed

line in P3 and P1` the set of the planes containing `. Let φ be a general nonconstant

morphism from P1` to ` and let Π be a general element in P1` . We define P1φ(Π),Π
as the pencil of lines passing through the point φ(Π) and contained in Π.

Theorem 0.1. If the focal locus F of a congruence of lines B in Pn has

dimension one, then n = 2, 3. If n = 2 F is an irreducible curve of degree greater

than one and B is its dual; if n = 3 B is a first order congruence, and we have

the following possibilities:

(1) F is an irreducible curve, which is either:

(a) a rational normal curve C3 in P3. In this case B is the family of

secant lines of C3 and has bidegree (1, 3) in the Grassmannian;

(b) or a non-reduced scheme whose support is a line `, and the con-

gruence is — using the above notation —
⋃

Π∈P1

`
P1φ(Π),Π; if we set

d := deg(φ), the congruence has bidegree (1, d); or

(2) F is a reducible curve, union of a line F1 and a rational curve F2 such

that length(F1 ∩ F2) = deg(F2) − 1; B is the family of lines meeting F1
and F2 and it has bidegree (1, deg(F2)).
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1 – Notation and preliminaries

We will work with schemes and varieties over the complex field C, with the

standard definitions and notation as in [Har77]. For us a variety will always be

projective. More information about general results and references about families

of lines, focal diagrams and congruences can be found in [De 01b], [De 01a] and

[De 00], or [De 99]. Besides, we refer to [GH78] for notation about Schubert

cycles and to [Ful84] for the definitions and results of intersection theory. So we

denote by σa0,a1
the Schubert cycle of the lines in Pn contained in a fixed (n−a1)-

dimensional subspace H ⊂ Pn and which meet a fixed (n−1−a0)-dimensional

subspace Π ⊂ H. Here we recall that a congruence of lines in Pn is a (flat) family

(Λ, B, p) of lines in Pn obtained as the pull-back of the universal family under the

desingularization map of a subvariety B ′ of dimension n−1 of the Grassmannian

G(1, n) of lines in Pn. So Λ ⊂ B × Pn and p is the restriction of the projection

p1 : B × Pn → B to Λ, while we will denote the restriction of p2 : B × Pn → Pn

by f . Λb := p−1(b), (b ∈ B) will be a line of the family and f(Λb) =: Λ(b) is the

corresponding line in Pn. A point y ∈ Pn is called fundamental if its fibre f−1(y)

has dimension greater than the dimension of the general one. The fundamental

locus is the set of the fundamental points. It is denoted by Ψ. Moreover the

locus of the points y ∈ Pn for which the fibre f−1(y) has positive dimension will

be denoted by Φ.

Since Λ is smooth of dimension n, we define the focal divisor R ⊂ Λ as the

ramification divisor of f . The schematic image of the focal divisor R under f (see,

for example, [Har77]) is the focal locus F ⊂ Pn. Clearly, we have Ψ ⊂ Φ ⊂ (F )red.

To a congruence is associated a sequence of degrees (a0, ..., aν) since B is

rationally equivalent to a linear combination of the Schubert cycles of dimension

n− 1 in the Grassmannian G(1, n):

[B] =
ν

∑

i=0

ai σn−1−i,i

(where we set ν := [n−12 ]); in particular, the order a0 is the number of lines of

B passing through a general point in Pn, and the class a1 is the number of lines

intersecting a general line L and contained in a general hyperplane H ⊃ L (i.e.

as a Schubert cycle, B · σn−2,1). a0 is the degree of f : Λ → Pn: thus if a0 > 0,

Ψ = Φ, while if a0 = 1, set-theoretically, Ψ = Φ = F .

An important result — independent of order and class — is the following:
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Proposition 1.1 (C. Segre, [Seg88]). On every line Λb ⊂ Λ of the family,

the focal divisor R either coincides with the whole Λb — in which case Λ(b) is

called a focal line — or is a zero dimensional subscheme of Λb of length n − 1.

Moreover, in the latter case, if Λ is a first order congruence, Ψ = F and F ∩Λ(b)

has length n− 1.

This result was proven classically in [Seg88]; the first modern proof in the case

of the congruences (i.e. families of dimension two) of planes in P4 is in [CS92].

See [De 01b], Proposition 1 for a proof of Proposition 1.1.

2 – Congruences of lines in Pn

We start with the following result, suggested to us by F. Catanese:

Theorem 2.1. Let B be a congruence whose focal locus F has codimension

at least two. Then, B has order either zero or one.

Proof: Let us consider the restriction of the map f : Λ → Pn to the set

Λ \ f−1(F ). Then, either f−1(F ) = Λ, in which case B is a congruence of order

zero, or the map f |Λ\f−1(F ) defines an unramified covering of the set Pn\F . But it

is a well-known fact that — by dimensional reasons — Pn \F is simply connected

and Λ \ f−1(F ) is connected. Therefore, f |Λ\f−1(F ) is a homeomorphism, hence

f is a birational map and B is a first order congruence.

A central definition, introduced in [De 01b], is the notion, ∀d such that

0 ≤ d ≤ n − 2, of fundamental d-locus. This locus Fd, is so defined: let

R1, ..., Rs be the horizontal components (i.e. p|Ri
: Ri → B is dominant). Now,

let Fi := f(Ri), (as before, we take the schematic image); then, ∀d such that

0 ≤ d ≤ n − 2 we define Fd :=
⋃

dim(Fi)=d Fi. By dimensional reasons, the lines

of the congruence passing through Pd ∈ F
d form a family of dimension (at least)

n−1−d (so, set-theoretically, Fd ⊂ Φ).

From this, we infer for example that if the focal locus has dimension zero,

then the congruence is a star of lines (see Corollary 1 of [De 01b]). In this article,

we will be interested in the subsequent case, i.e. the case in which dim(F ) = 1.

We first note that if our congruence has order one, then there exists a d such

that Fd 6= ∅.

The first important results of this paper are the following
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Theorem 2.2. Let B be a congruence of lines in Pn. If dim(F ) := i > 0,

then n−1
2 ≤ i ≤ n − 1. Besides, if i = n−1

2 , (F )red is irreducible and the general

line of the congruence meets F — set-theoretically — in only one point, then F

is — set-theoretically — an i-plane.

Proof: Clearly, we have only to prove that dim(F ) ≥ n−1
2 . Moreover, by

Theorem 2.1, we can reduce to study the cases of order zero and one.

If the congruence has order zero, F = f(Λ) and F contains a family of lines

of dimension n − 1. Then the the observation that among varieties of fixed

dimension i, the projective space is the unique one which contains a family of

lines of dimension greater than or equal to 2(i− 1).

Let now suppose that the order is one. Let F i be the fundamental i-locus of

maximal dimension i(> 0). Given i+ 1 general hyperplanes H0, ..., Hi in Pn and

the corresponding hyperplane sections of F i, D0, ..., Di, the lines of Λ which meet

Dj form a family of dimension n − 2, j = 0, ..., i which will fill a hypersurface

MDj
in Pn. Since D0 ∩ · · · ∩Di = ∅ and M := MD0

∩ · · · ∩MDi
⊂ Pn is such that

dim(M) ≥ n − 1 − i ≥ 0, take Q ∈ M . By definition, there exist `i ∈ Di with

Q ∈ `i. If the `i’s are different, then Q ∈ F . If all `i’s are equal, it is absurd.

It follows that M ⊂ F .

Now M ⊂ F ; if dim(F ) < n−1
2 , then, since dim(M) ≥ n − 1 − i, we have

2i > n− 1, which cannot be, since F i ⊂ F .

Let us now suppose that the equality holds, D := (F )red is irreducible, and

the general line of the congruence meets D in only one point. If P,Q ∈ D are

two general points, the set of lines of Λ passing through them generate two cones

MP ,MQ⊂Pn of dimension i+1. Therefore, by our hypotheses dim(MP ∩MQ)≥1

and MP ∩MQ contains the line joining P and Q. So, D is a linear space.

Proposition 2.3. Let Λ be a congruence in Pn and D the component of

the focal locus of maximal dimension i > 0; if Fk is a fundamental k-locus

contained in D, then n− 1− i ≤ k ≤ i. In particular, if i = n−1
2 we have only

the i-fundamental locus F i.

Proof: With notation as in the proof of the preceding theorem, we consider

the hyperplane sections of F k, D0, ..., Dk, for which we have D0 ∩ · · · ∩Dk = ∅,

and so MD0
∩ · · · ∩MDk

⊂ F . Therefore our thesis easily follows.

Corollary 2.4. Let Λ be a congruence in Pn; if dim(F ) = 1, then n ≤ 3.
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Remark. The preceding results are new in the literature, although the

method of proof of Theorem 2.2 and Proposition 2.3 is very similar to the respec-

tive proofs of Theorem 6 and Corollary 2 of [De 01b]. Actually, in Theorem 6

of [De 01b] we forgot the hypothesis — in the border case i = n−1
2 — that the

general line should meet the focal locus only once.

3 – Congruences in P3

Our aim in this article is to classify the congruences with dim(F ) = 1. In view

of Corollary 2.4, it is sufficient to consider congruences in P2 and P3. The case of
P2 is well known: all the congruences but the ones of order one (i.e. the pencils)

have a focal curve, and the congruence is given by the tangents of the focal curve.

Therefore, we will study congruences in P3 with dim(F ) = 1. By Theorem 2.1,

these are the first order congruences (but the star of lines) of P3, since the order

cannot be zero; this can be deduced easily from the fact that the only surface

containing a family of dimension two of lines is the plane. Actually, the first order

congruences of P3 are classified in [Ran86] and [ZILO]. Here we give another easy

and — as far as we know — new proof of this classification.

In what follows, we will also call the focal locus fundamental curve.

3.1. Congruences with irreducible fundamental curve

Proposition 3.1. If the fundamental curve F of a congruence of lines in P3

is irreducible, then we have the following possibilities:

(1) if F is reduced, we are in case (1)(a) of Theorem 0.1;

(2) If F is non-reduced, we are in case (1)(b) of Theorem 0.1.

Proof: First of all, we consider the case of the secant lines of a curve, and

we know that we have a first order congruence. We could apply Theorem 2.16

of [De 00] to obtain that deg(F ) = 3, but for the sake of completeness, we will

prove this result here. Clearly we have that degF ≥ 3 for degree reasons. Then,

let us denote by a the class of our congruence, and by r a general line in P3.
Let us also denote by Vr the scroll of the lines of B meeting r. An easy application

of the Schubert calculus shows that deg(Vr) = a+ 1.

Let Vr and Vr′ be two such surfaces; we denote by k the (algebraic) multiplicity

of F in Vr (and Vr′). First of all, we note that the complete intersection of two
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general surfaces Vr and Vr′ is a (reducible) curve Γ whose components are the

focal locus F and (a + 1) lines, i.e. the lines of B meeting r and r′: in fact, a

point of Γ not belonging to the lines meeting both r and r′ is a focal point, since

through it pass infinitely many lines of B, i.e. a line meeting r and another one

meeting r′, and r and r′ are general. The lines of B meeting r and r′ are a + 1

since this is the degree of Vr.

Then, by Bézout, we have that

deg(Vr ∩ Vr′) = (a+ 1)2

= a+ 1 + k2d

— where d := deg(F ) — and we obtain

k2d = (a+ 1) a .(1)

Besides, since a line of the congruence not belonging to the (a+ 1) lines

meeting r and r′ must intersect the curve F in (at least) two points, we deduce

a+ 1 = 2 k .(2)

From formulas (1) and (2) we conclude

k2(4− d)− 2 k = 0 ,

from which we get the result, i.e. d = 3.

So the only possibility is to have the twisted cubic C3, which has, in fact, an

apparent double point. Since this curve has degree three, the bidegree is (1, 3).

Then we pass at the other case: by Theorem 2.2, (F )red =: ` is a line; so, if

we restrict the congruence to a (general) plane Π through `, we get a congruence

of lines in P2 such that its focal locus is contained in `, and therefore it is a pencil

of lines with its fundamental point PΠ in `. Then ϕ of Theorem 0.1, (1)(b) is the

map defined by ϕ(Π) = PΠ. This congruence has bidegree (1, d), as it is easily

seen if we consider the lines of the congruence contained in a general plane.

3.2. Congruences with reducible fundamental curve

Proposition 3.2. If the fundamental curve F of a first order congruence of

lines in P3 is reducible, then the congruence is as in Theorem 0.1, case (2).
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Proof: Let us denote by Z the 0-dimensional scheme given by F1 ∩ F2 and

we set u = length(Z).

Let P be a general point in P3; then, if we set deg(F1) := m1 ≥ m2 =: deg(F2),

the cone given by the join PFj has degree mj ; as usual, by Bézout

deg(PF1 ∩ PF2) = m1m2 .

Since we have a congruence of order one, we obtain:

u = m1m2 − 1 ;(3)

this is due to the fact that only one of the lines of PF1 ∩ PF2 is a line of the

congruence; therefore the others must be the u lines of the join PZ.

If Q is a general point of F1, there will pass m2(m1− 1) secant lines of F1
through Q meeting F2 also; but these lines will pass through the points of Z,

since if one of these lines did not intersect Z, this line would be a focal line,

and varying these lines when we vary Q on F1, we would obtain a focal surface.

Besides, since Q is general, we can suppose that it does not belong to the tangent

cones of the two curves at the points of Z. Then we have that

u = (m1− 1)m2 ,(4)

and by equation (3) we obtain m2 = 1, u = m1 − 1. To see that F1 is a rational

curve, we can simply project it from a general point of the line F2 onto a plane:

by the Clebsh formula, the projected curve has geometric genus zero.

The class is — as usual — calculated intersecting with a general plane.

3.3. Final remarks about first order congruences

We finish this article analysing which of these congruences are smooth as

surfaces in the Grassmannian G(1, 3).

Proposition 3.3. The smooth first order congruences of lines B in P3 are

(1) the secants of the twisted cubic, in which case B is the Veronese surface;

(2) the join of a line and a smooth conic meeting in a point, in which case B

is a rational normal cubic scroll;

(3) the join of two — non-meeting — lines in which case B is a quadric.
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Proof: We see from [AG93] and [ABT94] that the only possible bidegrees for

a smooth congruence in P3 with a fundamental curve are (1, 1), (1, 2), (1, 3) and

(3, 6). The last case can be excluded because has order three, by Theorem 0.1.

From the description of these congruence given in [AS92] we get the proposition.

Remark. Observe that, if the fundamental curve is non-reduced, its support

is a line `. Its image in G(1, 3) is a singular point L for B: more precisely, B is

a 2-dimensional linear section, tangent to G(1, 3) at L.

We observe finally that the case of two lines is the one in which B is the

intersection of the two tangent hyperplane sections of the Grassmannian cor-

responding to the two lines, i.e. B is a general 2-dimensional linear section of

G(1, 3). From this description we see that the case in which the fundamental

curve is a line only is a limit case of this one, when the two lines coincide.
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Universitätsstraße 30, D-95447 Bayreuth - GERMANY
E-mail: depoi@mathsun1.univ.trieste.it


