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WEIGHTED BOUNDEDNESS OF MULTILINEAR
LITTLEWOOD-PALEY OPERATORS
FOR THE EXTREME CASES OF p
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Recommended by A. Ferreira dos Santos

Abstract: In this paper, we prove the boundedness of multilinear Littlewood—Paley

operators for the extreme cases of p.

1 — Preliminaries and results

Throughout this paper, Q will denote a cube of R™ with sides parallel to
the axes. For a cube @) and a locally integral function f on R™, denote that

F(@Q) = Jg f(2)dz, fo = QI [o f(z)dz and f#(z) = sup QI Jo If (y)—foldy.

For a weight functions w € Aj(see[10]), f is said to belong to BMO(w) if f# €
L>®(w) and define that [|fl|gpow) = I/#llew); If w = 1, we denote that
BMO(R") = BMO(w). Also, we give the concepts of atom and weighted H*
space. A function a is called a H!'(w) atom if there exists a cube @ such that
a is supported on Q, |lal|peo@y < w(Q)™' and [a(x)dr = 0. It is well known
that, for w € Ay, the weighted Hardy space H'(w) has the atomic decomposition
characterization (see[2]).

In this paper, we will consider a class of multilinear operators related to
Littlewood—Paley operators, whose definition are the following.
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Let v be a fixed function which satisfies the following properties:
(1) [y(x)dz =0,

(2) [¢()| < CA+ |af)~0 ),

(3) |¥(x+y) —P(x)| < C!yl(l + |2[)~("*2) when 2y| < |z|.

Let m be a positive integer and A be a function on R"™. We denote that
T(z)={(y,t)€ R |x—y| <t} and the characteristic function of I'(z) by XT(2)-
The multilinear Littlewood—Paley operator is defined by

1/2
SA()) = [ AT

where

Rm—l—l (A7 z, Z)

|z — 2|

FA P = [ FE) ily — 2) dz

Rrii(Asz,y) = Al@) = Y~ D°A(y) (@ — y)°

laf<m

the derivatives D*A are understood in the distributional sense and 4(x) =
t~"(x/t) for t > 0. We denote that Fy(f) = f *1y. We also define

1/2
Su(h)la) = ( Jo D @P f{ﬁt) ,

which is the Littlewood—Paley operator (see [18]).
Let H be the Hilbert space H = {h: | Rl = (ffRiﬂ |h(t)|? dy dt/t““) /2 <oo}

Then for each fixed x € R", FA(f)(x,y) may be viewed as a mapping from
(0,4+00) to H, and it is clear that

SHN@) = |xre FAA@ )| and  Su()@) = |xre BEH®)| -

We also consider the variant of Sfp‘, which is defined by

1/2
SH()w) = [ JL D fﬁff] ,

where
Qm—‘rl(A;xvz)
rRr | —z|™

FA(f)(w,y) = Yy — 2) f(z) dz

and
Qm+1(A;2,2) = Rp(4; 2, 2) Z D%A(z) (x — 2)*

|a|=m
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Note that when m = 0, S;Z‘ is just the commutator of Littlewood—Paley opera-
tor (see [1],[15],[16]). It is well known that multilinear operators, as an extension
of commutators, are of great interest in harmonic analysis and have been widely
studied by many authors (see [4-9],[12-14]). In [11],[17], the endpoint bound-
edness properties of commutators generated by the Calderon—Zygmund operator
or fractional integral operator with BMO functions are obtained. The main pur-
pose of this paper is to study the boundedness of the multilinear Littlewood—Paley
operators for the extreme cases of p. We shall prove the following theorems in
Section 3.

Theorem 1. Let D*A € BMO(R") for |a| = m and w € A;. Then S;Z‘
maps L (w) continuously into BMO(w).

Theorem 2. Let D*A € BMO(R") for o] = m and w € A;. Then Sﬁ
maps H'(w) continuously into L'(w).

Theorem 3. Let D*A € BMO(R") for o] = m and w € A;. Then S;;‘
maps H'(w) continuously into weak L' (w).

Remark. In general, S£ is not (H'(w), L*(w)) bounded. o

2 — Some Lemmas

We begin with some preliminary lemmas.

Lemma 1 (see [7]). Let A be a function on R"™ and D*A € L(R") for
|a| = m and some q > n. Then

1/q

1

Ruizl < oy X (5 d [ peaipas)
|a|zm ‘Q(I7y)| Q(z,y)

where Q(x,v) is the cube centered at & and having side length 5v/n |z — y|.

Lemma 2 (see [3]). Let T, be the commutator defined by

1) = [P0 sy ay

|z — y|™

If we A1, 1 <p<ooandbe BMO(R™). Then Ty is bounded on LP(w). n
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Lemma 3 (see [8],[9]). Let T4 be the multilinear operator defined by

Rini1(A; 2,
Taf(e) = [ Bt sy dy

IfweA,l<p<oo,1l<r<oo 1/gq=1/p+1/r and D*A € BMO(R") for
|| = m. Then Ty is bounded from LP(w) to Li(w), that is

1Ta(N) ey < CllfllLrw) - m

Lemma 4. Let w € A;, 1 <p<oo,1 <r <oo,1/qg=1/p+1/r and
D*A € BMO(R"™) for |a| = m. Then S{Z‘ is bounded from LP(w) to L(w), that
is

1SE (Pl Lay < C D IID°Allsaco |1 Legw) -

|lal=m

Proof: By Minkowski inequality and the condition of ¢, we have

3T, 2 2
sttt < [ MM Rl ( [T

A P
_ 1/2
1 (A; t—2n dydt
<o [ VO RmtAr2) (1 _dgar)",
Rn |x—z\m |x— y|<t 1+ ’y Z’/t) s gl

Rn |z — z|™ yl<t (2t + |y—2z|)?n+2

Mm+2  4l-n 1/2
<c [ @B (42 2)] (// 2 t dydt) i
|z—

noting that 2t + |y — z| > 2t + |z — z| — |x —y| > t + |x — z| when |z —y| < ¢ and

o0 tdt i
/0 (t+ym—zy)2n+zzc‘$_z’ i

we obtain
A |f() | R (As 2, 2)] ([ tdt 1/2
s < 0 f SR ([ )
= C |f(Z)| |Rm+1(A;33,Z)| dz 7
Rn |$ _ Z|m+n

thus, the lemma follows from Lemma 3. n
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3 — Proofs of Theorems

Proof of Theorem 1: We have only to prove that there exists a constant
Cg such that

g | 15H0E) ~ Calwte) de < 1o

holds for any cube Q. Fix a cube Q = Q(z0,l). Let Q = 5y/nQ and A(z) =
Alz) - 4 1(D?4) 52, then R (A;2,9) =Ry (A; z,7) and DO‘A:DQA—(D“A)Q
la|=m
for |a| = m. We write, for f; = fXQ and fo = fXR"\Q’
FtA(f)(x) = FtA(fl)(ﬁ) +FtA(f2)(x) )
then

/’Sw — S (f2) (o) w(x) do =
1

= 20 /Q‘”Xr(x)FtA(f)(l’,y)H—‘Xr(x)FtA(ﬁ)(xo,y)”‘w(m) di

< ﬁ /Q SA) (@) w(x) da

w(Q) /QHXF(UU)FtA(fQ)(xvy)_XF(x)FtA(fQ)(x07y)"w(aj) da
=I+1I.

Now, let us estimate I and I1 . First, by the L*° boundedness of S;Z‘ (see
Lemma 4), we get
I < S8 lsew) < ClFllEooqw) -

To estimate I, we write

FtA(fQ)(xvy) _XF(:BO)FtA(fZ)(ZL‘o,y) —
1 1 ~
= / |:|l‘ — Z|m - |$0 — Z|m] XT(z) ¢t(y - Z) Rm(A;x,z) fQ(Z) dz

+/ Xr(z) V(Y — 2) f2(2)

|z — z|™

[Rm(fl; z,%) — R (A; 20, z)} dz
iy = 2) Rm(A; 20, 2) f(2)

|z — 2™

dz

+/XF — XT(z0))
a Za'/

|a|=m

= II}(x) + I 15(x) + I I(2) + T I}(x) .

Xl"(:r Tr— Z Xr(xo)(ﬁo—z)a
|z — 2™ |zo — 2™

] Yily — ) DA(2) fa(z) d2
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Note that |z — z| ~ |zg — 2| for z € Q and z € R™ \ Q, similarly to the proof of
Lemma 4 and by Lemma 1, we have

1@) /Q VI @) w(z) de <

¢ e = ol lf Gy o1
S*/ </R“\Q [ = 2 |Rm<A»w,z>|dz) w(z) d

g < lz=aol f(2)] R (A; z, 2)| dz) w(z) dx

2’“+1Q\2kQ |3§‘ Z|n+m+1

> 2’%
c Z le —— Y [ID*4|smo </ Q\f(z)!dz)

laj=m

C > IDAllzro 11 o () Zm_k
k=0

laj=m

IN

IA

IN

C > ID°AllBaro | fllpew) 5

laj=m

For IT(x), by the formula (see [7]):

R (A2, 2) =Ry (A; 20, 2) = R (A; 2, 20) + Z

0<|B|l<m

ﬂ' m‘(Dﬁfi;m'o,Z)(x—wo)ﬁ

and Lemma 1, we get
’Rm(zi,l',z) - Rm(A,xo,Z” <

< ¢ Y |ID*Allpmo (\m — o)™+ Y Jzo— 2"z — xowﬁl) ,
|a|l=m 0<|Bl<m

thus, for z € Q,

i@ < o [ 2O g (e o) - R(Aa0,2)] dz
Rrn X — z|mtn
jx—zo|™ + Y |wo— 2|1 |z —o |1V
0<|B|<m

< C D“A d
< 0 10l /- P f2(2)ld
< O SN0 A0 =i Y- o [, 1] d:

- la|=m B k=0 (2R)mn 2¢Q

< C Y IDAlByo 1 f iz Y_ k27"
laj=m k=1

C > IDAllBaro 1 fllpoe(w) 5

laj=m

IN
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For IT(x), note that |x +y — 2| ~ |[zg+y — 2| for z € Q and z € R"\ Q, we
obtain, similarly to the estimate of I1¢(x),

()] <

_ 9 1/2
[Ye(y—2)[1f2(2) || Rm (A; 20, 2)| dydt
< —
C R”(/A%"+1[ ‘1'0 Z‘m ’XF(x)(y7t) XF(xo)(yat)‘ 1 dz

1/2
< ¢ [ @R (A 20,2) |‘// t1-"dydt . tordydr |

dz
N Y Y (e e e YN R VR B

|f2(2)[| R (A; 20, )|

|z — 2|™

(L.

)
< ¢ [ [2@NRm(Aiz0,2) (// & — ol ¢ dydt )1/2d2
ly

R |zg — z|™ <t (t+ |z +y— 2])2n+3
[f2(2) |2 — o] /2 | R (A; 0, 2)|
X0 KV (2kpm

<C ZW Z ID°Al 5ar0 (/ Q\f(z>\dZ)

<C
1

(t+ ]:U+y z|)2" 2 (t+ |zoty—2z|)2n T2

dydt )1/ 2
dz
tnfl

<C dz

< C X 1Dl ar0 Il Y k22
k

|a|=m

<C Y IID*Allsao || fll o)

|a|=m
For IT}(x), similarly to the estimates of I1}(z) and IT4(z), we get

_ — zal1/2
ITi(z)| < lz =20l o= | 3" [DA(z d
[IL(z)]| < C R\ <|x — 2|1 + |z — Z|n+1/2 ‘ If(2)] d=

|a|=m
S ¢ Z ”‘DQAHBMO HfHLoo(w) Zk(Qik _{_2*]{3/2)
[af=m k=0
< O Y IID*A) saro 11l w) -

|al=m

Combining these estimates, we complete the proof of Theorem 1. n
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Proof of Theorem 2: It suffices to show that there exists a constant C > 0
such that for every H!(w)-atom a, the following holds:

155 (@)l 11w) < C -

We write

~Aa ) w\xr r = ~Aa ZT) w\x T = .
[ 5t @) u) d [/zg/@@c] Ha)(a)wie) do = T+ 7

For J, by the following equality

1 (6% (63 (634
Iniadimy) = (i) = 3 il =) (D) ~ DAW)) .
we get, similarly to the proof of Lemma 4,

$Ma)a) < SMa)a) +C Y /‘DaA

laf=m

— D%A(y)
-y

lay) dy .

thus, §$ is L*°-bounded by Lemma 2 and Lemma 4. We see that
J < Cl53(a) |1 (w) w(2Q) < Cllal| Loy w(@) < C.

To obtain the estimate of J.J, we denote that A(z) =A@~ |aj=m L (D*A)qze.
Then Qum(A;2,y) = Qm(A;z,y). We write, by the vanishing moment of a and
Qu+1(A;2,y) = Rn(A52,Y) = 3| a)=m a1( — y)*DA(z), for z € (2Q)°,

)(x,y) /wt m(A;7,2) a(z) dz

\ﬂf—Z!m

|z = 2™

| ai/wt =) D) (o - )" a(z) dz

|a=

- / [wt(y ) Ru(&iz2)  duly —20) Rm(;l;x’m)] a(z) dz

|z — z|™ | — zo|™

v L - /[lﬁt(y 2)(x—2)° ¢t(y—xo)($—xo)a} DA(x) a(z) dz ,

|z — z|™ |z — xo|™

thus, similarly to the proof of 11 in Theorem 1, we obtain

A ‘Q|1+1/n « . —n—1 . —n—1| oy .
1@ (z, ) <O YDAl puolr—wo| "7 + o — 0| "M DA()]| +

|lal=m
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Note that if w € Aq, then ‘(QQZ")J(Q|) < C for all cubes @1,Q2 with Q1 C Qs.

Thus, by Holder’inequality and the reverse of Holder’ inequality for w € Aj,
choose p > 1 and 1/p + 1/p’ = 1, we obtain

. Q] w(@*'Q)
JJ < C’a; | DAl Brro 22 g (w(Q) 12K H1Q)] >

toy Zz—k |Q’ ( L |Dafx(a:)ypdx)l/p
2k+1Q| 2k +1Q)

|a|=m k=1

1 oy /v
. 7|2k+1Q| 2k+1Qw(I) T

00 k+1
o ag i [(w(@Q) \QI) c
< a%:mHD HBMokZ::l/ﬂ ( 2O w(Q) < C,

which together with the estimate of J yields the desired result. This finishes the
proof of Theorem 2. n

Proof of Theorem 3: By the equality
1 [0 o o
Rop1(Aiz,y) = Qumer(Aiz,y) + > 5(37 ) (D A(z) - D A(y))
lajl=m "

and similarly to the proof of Lemma 4, we get

SHN@) < S + o X [EEE =T ) ay

lal=m

by Theorem 1,2 and Lemma 2, we obtain
w({a} € R SA(f)(z) > A}) <
< w({x € R S4(f)(x) > )\/2}>
fu ({x R e e m})

Pyt —y|"
< Clfllar ) /> -

This completes the proof of Theorem 3. n
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