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Abstract: We define and study a completion of a prehilbertian space, associated

to a family of linear subspaces endowed with linear topologies such that the inclusions

are continuous. This provides in particular an orthogonal complement of paraclosed

subspaces and an adjoint of paraclosed linear relations.

1 – Introduction

In this work we introduce a completion H̃ of a prehilbertian space H with

respect to a family P of linear subspaces P endowed with linear topologies mak-

ing the inclusions P ↪→ H continuous, so that all the algebraic and topological

duals P ∗ (for P ∈ P) are contained in H̃, see Definition 2.4 and Theorem 3.2.

In particular, this provides an orthogonal complement of paraclosed subspaces

and an adjoint of paraclosed linear relations.

We remind that a linear subspace P of a Hilbert space H is called paraclosed

if it can be endowed with a hilbertian norm making the inclusion P ↪→ H con-

tinuous. Such a norm is unique up to equivalence, by the closed graph theorem.

This notion was evidenced in [4, 8], then it was studied in more general con-

texts, including Banach spaces. Paraclosed subspaces are called also operator

ranges, because a linear subspace of H is paraclosed if and only if it is the range

R(T ) = {Tx : x ∈ H} of a bounded operator T : H → H. These spaces appear

in various cases where it is not sufficient to consider only closed subspaces and
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it is helpful to use operator ranges [5]. We refer also to [10, 11, 13, 14] for their

general properties and various applications.

The linear relations G ⊂ X×X, where X is a Hilbert or a Banach space,

are considered as a generalization of the notion of graphs G(T ) of operators

T : D(T ) (⊂ X) → X, see [1, 2, 3]. Here D(T ) is the domain of T and

G(T ) = {(x, Tx) : x ∈ D(T )}. We remind that an operator T is called closed

(resp. paraclosed) if its graph G(T ) is closed (resp. paraclosed). The class of the

paraclosed operators is the minimal one that contains the closed operators and

is stable under addition and product [4], see also [11] for its properties. Assume

X is a (real or complex) Hilbert space and set H = X ⊕ X. Let CR(X) (resp.

PR(X)) be the set of all closed (resp. paraclosed) linear subspaces G ⊂ H of

infinite dimension and codimension. An element G ∈ CR(X) (resp. PR(X))

is called a closed (resp. paraclosed) linear relation [2]. The set CR(X) of all

closed linear relations is a complete metric space endowed with an algebraic struc-

ture [2, 12] consistent with the usual one for closed densely defined operators T .

That is, the notions of sum, composition, adjoint, etc. of operators have natural

extensions to CR(X), enabling the study of various classes of closed linear rela-

tions [2]. In particular, the adjoint G? of a closed linear relation G ∈ CR(X) is

defined as

G? =
{

(−y, x) ∈ H : (x, y) ∈ G⊥
}

,(1)

by analogy with the equality G(T ?) = G′(−T )⊥ where T ? is the Hilbert space

adjoint of T and G′(T ) = {(v, u) : (u, v) ∈ G(T )}. The symbol σ⊥ := {h ∈ H :

〈h|s〉 = 0 for all s ∈ σ} denotes as usual the orthogonal complement of a subset

σ of a Hilbert space H, while 〈·|·〉 stands for the inner product of H.

The structure of CR(X) partially has a counterpart on PR(X), too. The

starting point of this paper is an attempt to extend the adjoint G 7→ G? to

PR(X) so that (G?)? = G and F ⊂ G⇒ G? ⊂ F ? for F,G ∈ PR(X). By virtue

of (1) for G ∈ CR(X), a related question is then to find a corresponding notion

of orthogonal complement of paraclosed subspaces.

We mention that for a paraclosed subspace P ⊂ H endowed with a fixed

hilbertian norm ‖ · ‖P defining its topology, there exists the notion of the de

Branges complement, that is, a map taking P = (P, ‖ · ‖P ) into a normed para-

closed subspace P ′ = (P ′, ‖ · ‖P ′) such that (P ′)′ = P and P ⊂ Q⇒ Q′ ⊂ P ′, see

[5] for details. Our present questions require to find a norm-independent notion

of orthogonal complement for paraclosed subspaces.

Let P(H) denote the set of all paraclosed linear subspaces P ⊂ H of an

arbitrary Hilbert space H.
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In what follows, we will consider the subspaces P ∈ P(H) to be endowed only

with the linear topologies making P ⊂ H continuous. If all P are Hilbert (or,

more generally, Fréchét) spaces, these own topologies are uniquely determined

whenever they exist.

The completion H̃ = H̃(P) ⊃ H ofH is an abstract analog of the Sobolev scale

of distributions
⋃

n∈Z H
n contained in the Schwartz space D′ of all distributions,

associated to a space H := L2(= H0) on a smooth manifold [7] with P := {Hn :

n ≥ 0}, see Example 4.1. We construct H̃ by means of the duals P ∗ of the spaces

P ∈ P, which resembles the definition of the rigged Hilbert spaces [6, Section

I.3.1], see Example 4.3. Our definition is more general, providing for instance

P-completions that — unlike in Examples 4.1 and 4.3 — are not necessarily

contained in the dual S∗ of a single subspace S of
⋂

P∈P P , see Example 4.4. Also

we take into account only the topologies of the spaces P ∈ P without requiring

that a particular norm be fixed on each P . The space H̃(P) is the (unique)

solution of a corresponding universal problem. It provides us, for P := P(H)

(with H a Hilbert space), a suitable notion of orthogonal complement P 7→ P⊥

with P⊥ ⊂ H̃(P(H)). Then we can define also the adjoint G? of a paraclosed

linear relation G ⊂ X ⊕X on a Hilbert space X as G? = {(−y, x) : (x, y) ∈ G⊥},

see Remark 3.9.

2 – P-completions

Let H be an arbitrary Hilbert space. We prove that the orthogonal comple-

ment P 7→ P⊥ (for P closed) cannot be extended to a map P 7→ P c on P(H)

with the properties (P c)c = P and M ⊂ N ⇒ N c ⊂M c, where M,N,P ∈ P(H).

Indeed, Proposition 2.1 gives (M c)c = M (the closure of M) and so (M c)c 6= M ,

in general. In order to have an extension of the orthogonal complement with

such properties as above, we should let then the P⊥’s be contained in a larger

space H̃ ⊃ H, endowed with an inner product so that all P⊥ make sense. Propo-

sition 2.2 shows that even in this case, the map P 3 P 7→ P⊥ ⊂ H̃ cannot

satisfy (P⊥)⊥ = P if the inner product of H̃ is globally defined on H̃ × H̃. This

leads us to Definition 2.3. We introduce then, by Definition 2.4, a class of such

completions H̃ associated to families P of topological linear subspaces of H.

Proposition 2.1. Consider an arbitrary function on P(H), denoted by

M 7→M c, such that for every M,N ∈ P(H) the following implications hold:

M ⊂ N =⇒ N c ⊂M c ;(2)
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N = N =⇒ N c = N⊥ .(3)

Then for any M ∈ P(H) we have M c = M⊥ = M
⊥
and (M c)c = (M⊥)⊥ = M .

Proof: Let M ∈ P(H) be arbitrary. By [5, Theorem 1.1], there exists a

sequence Hn (n ≥ 0) of closed mutually orthogonal subspaces of H such that

M =

{

x =
∑

n≥0

xn : xn ∈ Hn,
∑

n≥0

(2n‖xn‖)
2 <∞

}

.

For n ≥ 0, set Mn := {x ∈ M : xk = 0 for k > n}. Thus Mn =
⊕n

k=0 Hk is

closed (and so paraclosed). The trace of the topology of M on Mn coincides with

the topology induced by H, because the first one can be defined by the norm

‖x‖2M :=
∑

k≥0(2
k‖xk‖)

2 and we have

‖x‖2 ≤ ‖x‖2Mn
=

n
∑

k=0

(2k‖xk‖)
2 ≤ 4n‖x‖2 (x ∈Mn) .

Since all Hk are complete, each Mn is closed in H. Then (Mn)
c = (Mn)

⊥, by (3).

Also Mn ⊂ M implies M c ⊂ (Mn)
c, by (2). Hence M c ⊂

⋂

n≥0 M
⊥
n . Since M =

⊕

nHn =
⋃

nMn, we have
⋂

nM
⊥
n ⊂ (M)⊥. Therefore M c ⊂ M⊥ (= (M)⊥).

Due to the closedness of M , we have (M)⊥ = (M)c, by (3). Hence M⊥ = (M)c.

Obviously, M ⊂ M and M is closed, then (2) gives (M)c ⊂ M c. It follows that

M⊥ ⊂ M c. Since the opposite inclusion was proved earlier, we have M c = M⊥

for every M ∈ P(H). Replacing in this equality the space M by M c (∈ P(H) by

the hypothesis of the proposition), we obtain (M c)c = (M c)⊥ = (M⊥)⊥ = M .

Let X ′ denote the algebraic dual of a vector space X. We remind that a linear

subspace Y ⊂ X ′ is called total on X if y(x) = 0 for all y ∈ Y implies x = 0.

In this case 〈X,Y 〉 is said to be a dual pair. Then for any E ⊂ X the sets

E◦ =
{

y ∈ Y : |y(x)| ≤ 1 for every x ∈ E
}

and

E⊥ =
{

y ∈ Y : y(x) = 0 for every x ∈ E
}

are called the polar and the annihilator of E, respectively (see, e.g., [9, Section

III.3.2]). The bipolar and biannihilator of E are then (E◦)◦⊂X and (E⊥)⊥⊂X,

respectively. Using the same notation ⊥ for the polar and the orthogonal comple-

ment is convenient since whenever X is a Hilbert space and Y := X∗ (⊂ X ′), the
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polar E⊥ ⊂ Y of E can be identified with its orthogonal complement E⊥ ⊂ X via

the antilinear (that is, conjugate-linear) isometric isomorphism X∗ 3 y 7→ ỹ ∈ X:

y(x) = 〈x|ỹ〉 (x ∈ X) given by Riesz’ lemma.

Proposition 2.2. Let P ⊂ H be a linear subspace of a topological vector

space H. Let H̃ be a topological vector space endowed with a continuous bilinear

form 〈·, ·〉 defined on H̃×H̃, such that 〈x, y〉 = 0 for all x ∈ H̃ (resp. for all y ∈ H̃)

implies y = 0 (resp. x = 0). Let i : H → H̃ be an injective and continuous linear

map. Set P̃ = i(P ). Define

P̃⊥ =
{

x ∈ H̃ : 〈x, z〉 = 0 for all z ∈ P̃
}

and

P̃⊥⊥ =
{

y ∈ H̃ : 〈x, y〉 = 0 for all x ∈ P̃⊥
}

.

If P̃⊥⊥ = P̃ , then the subspace P must be closed in H.

Proof: Let H̃∗ be dual to H̃. The space Y := {〈x, ·〉 : x ∈ H̃} ⊂ H̃∗

is total on H̃. Thus 〈H̃, Y 〉 is a dual pair. Also H̃ is embedded into the dual

space of Y by the mapping H̃ 3 z 7→ fz where fz(〈x, ·〉) = 〈x, z〉 for x ∈ H̃.

Then H̃ is total on Y . Since P̃ is a linear subspace of H̃, the (bi)polar of P̃

coincides with the (bi)annihilator of P̃ , see [9, Section III.3, Lemma 2(4)]. Thus

(P̃ ◦)◦ = (P̃⊥)⊥ = P̃⊥⊥ (= P̃ by the hypothesis). By the bipolar theorem (see,

e.g., [9, Section III.3, Theorem 4]), (P̃ ◦)◦ is the closure of P̃ with respect to the

topology σ(H̃, Y ). Now if h ∈ H is the limit of a generalized sequence (mν)ν with

mν ∈ P , then imν → ih in H̃. We have 〈x, imν〉 → 〈x, ih〉 for any x ∈ H̃, due to

the conitnuity of 〈·, ·〉. Since P̃ is σ(H̃, Y )-closed, it follows that ih ∈ P̃ (= iP ).

In view of the injectivity of i, we infer that h ∈ P . Thus P is closed.

In what follows, we state a context in which the questions raised in the intro-

duction can get positive answers.

An antilinear map x 7→ x on a complex vector space X is called an involution

if x = x for all x ∈ X. An involution on a prehilbertian space H is called unitary

if 〈h|k〉 = 〈k|h〉 for all h, k ∈ H.

Given a prehilbertian space H, a linear subspace L of H endowed with a linear

topology making the inclusion L ⊂ H continuous will be called a topological linear

subspace of H.

Definition 2.3. A space with inner product is a real or complex linear space

H endowed with a scalar-valued map 〈·|·〉 defined on a subset D of H × H and

an involution x 7→ x (= the identity in the real case) such that
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– for any x ∈ H, the set of all y ∈ H such that (y, x) (resp. (x, y)) belongs to

D is a linear subspace, on which the functional 〈·|x〉 (resp. 〈x|·〉) is linear (resp.

antilinear); this functional is null only if x = 0;

– if both (x, y), (y, x) ∈ D, then 〈x|y〉 = 〈y|x〉;

– if (x, y) ∈ D, then (x, y) ∈ D and 〈x|y〉 = 〈x|y〉;

– the set {x ∈ H : (x, x) ∈ D} is a linear subspace, prehilbertian when

endowed with 〈·|·〉.

Any vectors x, y ∈ H are said to be orthogonal if either (x, y) ∈ D and

〈x|y〉 = 0, or (y, x) ∈ D and 〈y|x〉 = 0. The orthogonal complement σ⊥ of a

subset σ ⊂ H is then defined as the set of those vectors x ∈ H that are orthogonal

to all y ∈ σ. A linear map f between spaces with inner product (H, D, 〈·|·〉) and

(H′, D′, 〈·|·〉) is said to be isometric if for any (x, y) ∈ D we have (fx, fy) ∈ D′

and 〈fx|fy〉 = 〈x|y〉. Whenever (x, y) ∈ D, we set 〈x, y〉 := 〈x|y〉.

Hypotheses. We shall consider real or complex prehilbertian spaces (H, 〈·|·〉)

together with sets P of topological linear subspaces P ⊂ H. We always suppose

that H ∈ P. All the prehilbertian spaces (H,P) under consideration are assumed

to be endowed with a unitary involution. Moreover all P ∈ P are supposed to

be invariant under this involution. For every L ∈ P, let L∗ denote its algebraic

and topological dual with respect to the uniform convergence on the bounded

subsets of L. For M,P ∈ P with M ⊂ P , we say that M is P -dense (resp.

P -closed) in P if it is dense (resp. closed) with respect to the own topology of P .

The symbol sp{σi : i ∈ I} will denote the linear space generated by a family of

subsets σi. We denote by R(T ) the range of a linear map T . For any h, k ∈ H,

we set 〈h, k〉 := 〈h|k〉.

Under the hypotheses from above, we give the following definition.

Definition 2.4. Let P be a set of topological linear subspaces of a prehilber-

tian space H such that H ∈ P. For any L ∈ P, we define the inclusion of L into

L∗ by

iLL∗ : L→ L∗ , iLL∗ l := 〈·, l〉|L (= 〈·|l〉 for l ∈ L) .

Let K,L,M,P ∈ P. A P-completion of H is a space with inner product H̃

together with the linear maps

i : H → H̃ , iL∗ : L
∗ → H̃

called the inclusions and the linear maps

rL : H̃L → L∗, where H̃L := sp
{

R(iP ∗) : P ∈ P, P ⊃ L
}

,
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called the restrictions such that

iL∗iLL∗ = i|L , 〈il, iL∗u〉 = ul for all l ∈ L, u ∈ L∗ ;

rKiL∗u = u|K for all u ∈ L∗, K ⊂ L ;

iP ∗u = iM∗(u|M ) if u ∈ P ∗ and M is P -dense in P .

We will denote the above defined P-completion by (H̃, i, (iL∗)L∈P , (rL)L∈P).

A morphism of P-completions

f :
(

H̃, i, (iL∗)L∈P , (rL)L∈P
)

→
(

H, j, (jL∗)L∈P , (ρL)L∈P
)

is a linear map f : H̃ → H such that fiL∗ = jL∗ for all L ∈ P.

3 – Main results

We will establish now the existence and main properties of a P-completion

as defined in Section 2. This completion will turn also to be unique in a certain

sense.

Proposition 3.1. Let H be a prehilbertian space and P be a set of topo-

logical linear subspaces satisfying the hypotheses stated in Section 2.

If (H̃, i, (iL∗)L∈P , (rL)L∈P) is a P-completion of H, then the inclusion i : H → H̃

is isometric and for every L ∈ P the inclusions iLL∗ : L→ L∗, iL∗ : L∗ → H̃ are

injective.

If f : (H̃, i, (iL∗)L∈P , (rL)L∈P) → (H, j, (jL∗)L∈P , (ρL)L∈P) is a morphism of

P-completions, then it is isometric, f |H = 1H (that is, fi = j) and f commutes

with the restrictions, namely ρLf |H̃L = rL whenever L ∈ P.

Proof: For all L ∈ P, the mappings iLL∗ are injective, see Definition 2.4.

Since rLiL∗ = 1L∗ , all iL∗ are injective, too. Then i = iH∗iHH∗ is also injective.

For any h, h′ ∈ H we have

〈ih, ih′〉 = 〈ih, iH∗(iHH∗h′)〉 = (iHH∗h′)(h) = 〈h, h′〉 .

Thus i is isometric. We have fi = fiH∗iHH∗ = jH∗iHH∗ = j. Fix K ∈ P. Take

an arbitrary finitely supported set {uL ∈ L∗ : L ∈ P, L ⊃ K}, that is, all the
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functionals uL are null except for a finite number of them. For any L ∈ P with

L ⊃ K and any u ∈ L∗, we have

ρKfiL∗u = ρKjL∗u = u|K = rKiL∗u .

Take u = uL and sum over L ∈ P. It follows that ρKf = rK on H̃K . Now f is

isometric. Indeed, if D ⊂ H̃ × H̃ denotes the domain of the inner product 〈·|·〉

of H̃, then for any (ik,
∑

L iL∗u
L) ∈ D we have

〈

fik, f
∑

L

iL∗u
L

〉

=

〈

jk,
∑

L

jL∗u
L

〉

=
∑

L

uLk =

〈

ik,
∑

L

iL∗u
L

〉

.

Theorem 3.2. Let H be a prehilbertian space and P be a set of topological

linear subspaces of H satisfying the hypotheses stated in Section 2. Then there

exists a P-completion H̃ of H such that for any other P-completion H of H there

is a unique morphism from H̃ to H.

Proof: Let S :=
⊕

L∈P L
∗ denote the algebraic direct sum of all duals L∗ of

spaces L from P. Thus S consists of all the formal sums
⊕

L∈P u
L of functionals

uL ∈ L∗ on various domains L ∈ P with the family (uL)L∈P of finite support.

In what follows, whenever the symbol L will be used as an index, it will be

assumed to run the whole set P if not otherwise specified.

For every P ∈ P, let sP : P ∗ → S be the canonical injection. That is, for any

u ∈ P ∗ we have sPu =
⊕

L u
L with uP := u and uL := 0 for L 6= P . Define a

linear subspace S1 of S by

S1 =

{

⊕

L

iLL∗ lL ∈ S : lL ∈ L for every L,
∑

L

lL = 0 in H

}

.(4)

Remind that iLL∗ : L→ L∗ is the injective map defined by iLL∗ l = 〈·, l〉. Set

δ :=
{

(M,P ) ∈ P2 : M is P -dense in P
}

.

Let S2 ⊂ S be the linear span of all the vectors of the form sPu− sM (u|M ) with

(M,P ) ∈ δ and u ∈ P ∗. Let H̃ = H̃(P) be the quotient space

H̃(P) := S/(S1 + S2)(5)

where S1 + S2 := {s1 + s2 : s1 ∈ S1, s2 ∈ S2}. Let p : S → H̃ denote the linear

canonical map of factorization through the linear subspace S1 + S2 of S. The

involution

ul := ul (l ∈ L ∈ P, u ∈ L∗)
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induces an involution on H̃ by factorization through the subspace S1 + S2 ⊂ S.

For any L ∈ P, let

iL∗ := psL .

Set also

i := iH∗iHH∗ .

For every K ∈ P, define the subspace H̃K of H̃ by

H̃K = sp
{

R(iL∗) : L ∈ P, L ⊃ K
}

.

Define the set D ⊂ H̃(P)× H̃(P) as

D =
⋃

K∈P

(

i(K)× H̃K

)

.(6)

We verify now that the conditions of Definitions 2.3, 2.4 are satisfied. For

every s2 ∈ S2 there exists a family {uMP ∈ P ∗ : (M,P ) ∈ δ} of finite support

such that

s2 =
∑

(M,P )∈δ

(

sPu
MP − sM (uMP |M )

)

.

For every (M,P ) ∈ δ, represent sPu
MP ∈ S as sPu

MP =
⊕

L u
L by a finitely

supported set {uL ∈ L∗ : L ∈ P}, where uP = uMP while uL = 0 if L 6= P . Thus

uL = δPLu
ML, where δPL is Kronecker’s symbol. Then

∑

(M,P )∈δ

sPu
MP =

∑

(M,P )∈δ

⊕

L

δPLu
ML =

⊕

L

∑

M :(M,P )∈δ

δPLu
ML =

⊕

L

∑

M :(M,L)∈δ

uML .

Similarly, we obtain the equality

sM (uMP |M ) =
⊕

L

∑

P :(L,P )∈δ

uLP |L .

Then any vector s2 ∈ S2 has the following form

s2 =
∑

(M,P )∈δ

(

sPu
MP− sM (uMP |M )

)

=
⊕

L

∑

M :(M,L)∈δ

uML −
⊕

L

∑

P :(L,P )∈δ

uLP |L .

Given any finitely supported set {uL ∈ L∗ : L ∈ P}, we have then the implication

∑

L

iL∗u
L = 0 =⇒ uL = 〈·, lL〉|L +

∑

M :(M,L)∈δ

uML −
∑

P :(L,P )∈δ

uLP |L(7)
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for some sets of finite support {uMP ∈ P ∗ : (M,P ) ∈ δ} and

{

lL ∈ L : L ∈ P,
∑

L∈P

lL = 0

}

,

see the equalities (4) and (5).

This shows that rK is well-defined on H̃K by

rK
∑

L

iL∗u
L :=

∑

L

uL|K .

Indeed, if
∑

L iL∗u
L = 0, then we infer that

∑

L u
L|K = 0, by summing in the

equality (7) over all L ∈ P with L ⊃ K and using the equalities
∑

L lL = 0 and

∑

L

∑

M :(M,L)∈δ

uML|K =
∑

L

∑

P :(L,P )∈δ

uLP |K .

Since rLiL∗ = 1L∗ , all iL∗ are injective. Hence i (= iH∗iHH∗) is injective too.

Now if L ∈ P and l ∈ L are arbitrary, then the vector s = sl ∈ S given by

s := sLiLL∗ l − sHiHH∗ l belongs to S1, see (4). Indeed, if L 6= H (the nontrivial

case), then s has the form s =
⊕

P iPP ∗ lP , where lL = l, lH = −l and lP = 0 for

all P 6= L,H. Hence
∑

P lP = 0. Then ps = 0. Therefore,

iL∗ iLL∗ l − i l = psL iLL∗ l − p sH iHH∗ l = p s l = 0 .

Thus iL∗iLL∗ = i|L.

To define the inner product, let d := (ik,
∑

L iL∗u
L) ∈ D be arbitrary. That is,

we fix a spaceK∈P, a vector k∈K, and a finitely supported set {uL∈L∗ : L∈P}

with the property that L ⊃ K whenever uL 6= 0, see the definition (6) of D.

Set
〈

ik,
∑

L

iL∗u
L

〉

:=
∑

L

uL k .

To prove that 〈·, ·〉 is well-defined above, represent d ∈ D in a similar form,

d = (ik′,
∑

L iL∗v
L). More precisely, k′ ∈ K ′ ∈ P and the set {vL ∈ L∗ : L ∈ P}

has finite support and satisfies L ⊃ K ′ whenever vL 6= 0. Then ik = ik′ and

∑

L

iL∗(u
L − vL) = 0 .

Since i is injective, we have k=k′. Moreover, uL−vL can be represented as in (7).

By summing over L, it follows that
∑

L u
Lk −

∑

L v
Lk′ = 0.
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We let

f
∑

L

iL∗u
L :=

∑

L

jL∗u
L .

To show that f is well-defined, suppose that we have
∑

L iL∗u
L = 0. Hence uL

can be represented as in the equality (7), that we use as follows. Remind that

〈·, lL〉|L = iLL∗ lL, apply jL∗ to (7) and use the equality jL∗iLL∗ = j. Finally,

sum over L and use the equalities
∑

L lL = 0 and jL∗(u
LP |L) = jP ∗uLP to derive,

after canceling the terms in the right-hand side, that
∑

L jL∗u
L = 0. Since

H̃ = sp{R(iL∗) : L ∈ P}, it follows that f is also uniquely determined.

Given H and P, we have established, by Theorem 3.2, the existence of an

initial object H̃ = (H̃, i, (iL∗)L∈P , (rL)L∈P) in the category of completions (see

Definition 2.4). This object is then uniquely determined modulo an isomorphism

in this category. We will call H̃ = H̃(P) the P-completion of H. As will follow

by Remark 3.8, the completion does not essentially change if we replace the inner

product of H by an equivalent one.

Remark 3.3. If H is a prehilbertian space and all L ∈ P are endowed with

the induced topology, then H̃(P) can be identified with the usual completion H˜

of H and i : H ↪→ H˜ becomes the inclusion. In particular, this holds if all L ∈ P

are closed in a Hilbert space H. Indeed, in this case S2 = {0} and, by (4), the

map iH∗ : H∗ → H̃(P) = S/S1 is an isomorphism. Then use H∗ ≡ (H )̃∗ and

Riesz’ isomorphism H˜≡ (H )̃∗ taking x into 〈·|x〉.

Proposition 3.4. LetH,K be prehilbertian spaces and P,Q be sets of topo-

logical linear subspaces of H,K, respectively. Let f : H → K be isometric and

such that Q = {f(P ) : P ∈ P} and for every L ∈ P the map f |L : L → fL

be bicontinuous with respect to the own topologies of L and fL. Then f has a

unique isometric extension f̃ : H̃(P)→ K̃(Q).

Proof: Let (H̃(P), i, (iL∗)L∈P , (rL)L∈P) and (K̃(Q), k, (k(fL)∗)L∈P , (tfL)L∈P)

denote the corresponding completions. We define j : H → K̃(Q), jL∗ : L∗ →

(fL)∗, and ρL∗ : K̃fL → (fL)∗ as follows. Set j := kf . For L ∈ P and u ∈ L∗, set

jL∗u := k(fL)∗(uf
−1). For ξ ∈ sp{R(jP ∗) : P ∈ P, P ⊃ L}, set ρLξ := (tfLξ)f |L.

We obtain thus another P-completion (K̃(Q), j, (jL∗)L∈P , (ρL)L∈P) of H.

The conclusion follows then by Theorem 3.2 and Proposition 3.1.

Note that if all P ∈ P are Fréchét spaces, then any isometric map f with

Q = f(P) as in Proposition 3.4 is automatically bicontinuous from P to fP

whenever P ∈ P, by the closed graph and the open map theorems.



84 C.-G. AMBROZIE

The completion H 7→ H̃ is also monotonic, namely if K ⊂ H then K̃ ⊂ H̃ in

the following sense.

Corollary 3.5. Let P be a set of topological linear subspaces of a prehilber-

tian space H. Let K ∈ P have the induced topology. Endow K with the restric-

tion of the norm of H. Set PK = {L ∈ P : L ⊂ K}. Then K̃(PK) ⊂ H̃(P).

Proof: Denote by (H̃(P), i, (iL∗)L∈P , (rL)L∈P) the P-completion ofH. Hence

the PK-completion of K is (K̃(PK), i|K , (iL∗)L∈PK
, (tL)L∈PK

), where, for every

L ∈ PK , tL is the restriction of rL to the linear span of all R(iP ∗) with P ∈ P

and P ⊃ L. Let f : K ↪→ H be the inclusion of K into H. By Proposition 3.4,

there exists a unique isometric extension f̃ of f taking K̃(PK) into H̃(P) such

that f̃ iL∗ = fiL∗ for L ∈ PK . We use also Proposition 3.1 to derive fi = i|K .

Hence the desired conclusion follows.

Proposition 3.6. Let P be a set of topological linear subspaces of a Hilbert

space H. Assume each L ∈ P to be a separated locally convex space. Suppose

that for any L ∈ P and x ∈ H there exists P ∈ P with L ⊂ P and x ∈ P such

that L is P -closed in P . Then i(L)⊥⊥ = i(L) for every L ∈ P and (iN)⊥ ⊂ (iM)⊥

for any M,N ∈ P(H) with M ⊂ N .

Proof: The inclusions iL ⊂ ((iL)⊥)⊥ and (iN)⊥ ⊂ (iM)⊥ hold by the

definition of orthogonality. Let η ∈ ((iL)⊥)⊥ be arbitrary. Then η ∈ H̃(P) is

orthogonal to (iL)⊥. From (6) it follows that η ∈ iH. Hence η = ix for some

x ∈ H. Suppose that η 6∈ iL. Then x 6∈ L. By the hypothesis, there exists

a subspace P ∈ P such that L ⊂ P , x ∈ P and L is P -closed in P . By the

Hahn–Banach theorem, there exists a functional u ∈ P ∗ such that u|L = 0 and

u(x) 6= 0. It follows that ξ := iL∗u ∈ (iL)⊥ and 〈η, ξ〉 = 〈ix, iL∗u〉 = u(x) 6= 0.

Then η is not orthogonal to (iL)⊥, which is false. This contradiction shows that

η ∈ iL.

Remark 3.7. Let P be a set of topological linear subspaces of a Hilbert space

H. For any L ∈ P, factorize iLL∗ : L→ L∗ as L ↪→ H ≡ H∗ ρL→ L∗ where H,H∗

are identified, by Riesz’ lemma, via h 7→ 〈·|h〉, while ρL is the map of restriction to

L. Taking adjoints provides a factorization of i∗LL∗ as L∗∗
ιL→ H → L∗ where ιL =

ρ∗L is the adjoint of ρL, namely for ξ ∈ (L∗)∗, ιL(ξ) = ξ ◦ρL ∈ H∗∗ ≡ H. Then we

can complete H by starting as well with the family P∗∗ := {ιL(L
∗∗) : L ∈ P}. If

each L ∈ P is a reflexive Banach space, then we obtain a P-completion H̃(P∗∗)
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isomorphic to H̃(P). This holds using the canonical embedding JL : L→ L∗∗ of

L into its bidual L∗∗ and the equalities i∗LL∗JL = iLL∗ for L ∈ P.

Remark 3.8. Let P be a set of topological linear subspaces of the Hilbert

space (H, 〈·|·〉). Let A be a strictly positive bounded operator on H. Set (x|y) :=

〈Ax|Ay〉 for x, y ∈ H. Let K denote the Hilbert space H endowed with the inner

product (·|·). Set Q = {A−1P : P ∈ P}. Then, by Proposition 3.4, there exists a

bijective linear isometric map Ã : K̃(Q)→ H̃(P) such that (x|y)K̃ = 〈Ãx|Ãy〉H̃ .

Remark 3.9. Let X be a Hilbert space. Set H = X ⊕X and take

P =
{

P ⊕Q : P,Q ∈ P(X)
}

.

Define the adjoint G? ⊂ H̃(P) of a paraclosed linear relation G ∈ PR(X) as

G? :=
{

(−y, x) : (x, y) ∈ G⊥
}

.

Then we have (G?)? = G and F ⊂ G⇒ G? ⊂ F ? for any F,G ∈ PR(X). These

properties follow easily from Proposition 3.6, using the fact that P(X) is the set

of all paraclosed linear spaces of X.

4 – Examples

We give below concrete examples of P-completions H̃(P).

Example 4.1. Let V be a compact smooth manifold without boundary. Let

H be L2(V,m) with respect to an absolutely continuous measure m on V with

continuous positive density. Thus 〈f |g〉 =
∫

V fgdm for f , g ∈ H. Let P be the

set of all hilbertian Sobolev spaces Hn(V ) ⊂ H of positive integer order n ≥ 0,

each of them endowed with the usual hilbertian topology [7]. Then H̃(P) is the

space D′(V ) =
⋃

n∈Z H
n(V ) of all distributions on V , where H−n(V ) ≡ (Hn(V ))∗

for n ≥ 0. The mapping i is the inclusion L2(V,m) ↪→ D′(V ). The bilinear map

〈f, g〉 = 〈f |g〉 on H is extended by the duality 〈ϕ, u〉 between test functions

ϕ ∈ D(V ) and distributions u ∈ D′(V ). The domain D of 〈·, ·〉 is the union
⋃

n≥0 H
n(V ) × H−n(V ). For any L := Hn(V ) (n ≥ 0) the map iL∗ can be

identified with the inclusion of H−n(V ) into D′(V ).
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Definition 4.2. [6, Section I.3.2]. Let S be a linear space endowed with a

set of prehilbertian norms ‖ · ‖n (n ≥ 1) such that if a ‖ · ‖n-null sequence is

‖ · ‖m-Cauchy, then it is ‖ · ‖m-null, too (n,m ≥ 0). Assume S is complete when

endowed with the topology whose basis of neighborhoods of 0 is given by ‖s‖n < ε

(n ≥ 1, ε > 0). We may assume the sequence of the norms is increasing. Let

Ln be the ‖ · ‖n-completion of S. We call S a nuclear space if for any m there is

n ≥ m such that the inclusion inm : Ln ↪→ Lm can be represented as

inm s =
∑

k≥1

tk 〈s|s
′
k〉n s

′′
k

with tk ≥ 0 and
∑

k tk <∞ for orthonormal systems (s′k)k ⊂ Ln, (s
′′
k)k ⊂ Lm.

Example 4.3. Let H be the completion of a nuclear space (S, (‖ · ‖n)n≥0)

with respect to a separately continuous inner product 〈·|·〉. Set P := {S,L0, L1, ...}

where Ln is the ‖ · ‖n-completion of S, see Definition 4.2. Then H̃(P) = S∗ and

ih = 〈·, h〉|S for h ∈ H.

The spaces from above have good properties with respect to certain operator

theoretic problems. For instance, any selfadjoint operator A on S has a complete

system of generalized eigenvectors [6, Section I.4.5], namely vectors u ∈ S∗, u 6= 0

such that there is a scalar λ with uA = λu on S.

Example 4.4. Let H be L2(R) with respect to the Lebesgue measure.

Let L1 = H1(R) be the Sobolev space of order 1, namely the space of all f ∈ H

with generalized derivative f ′ ∈ H, endowed with the usual hilbertian topology.

Then L1 consists of continuous functions. Let L0 = {f ∈ L1 : f(0) = 0} have

the topology induced by L1. Let H1(0,∞) be the Sobolev space of order 1, de-

fined as the space of all u ∈ D′(0,∞) with u, u′ ∈ L2(0,∞). Then H1(0,∞)

is continuously contained in the space of the continuous functions on [0,∞) [7].

The limit u(0+) exists for any u ∈ H1(0,∞). Extend u to ũ ∈ H by 0 on (−∞, 0).

Let S+ = {ũ : u ∈ H1(0,∞)} and S− = {f(−x) : f ∈ S+} have the topology

induced by H1(0,∞). Let L2 = S+ + S− have the topology of sum of paraclosed

subspaces [5] and L3 = H. Thus L0 ⊂ . . . ⊂ L3. Set P = {Lj}
3
j=0. Using the

density of Lj in H we obtain in this case

H̃(P) =
(

⊕

j

L∗j

)

/N
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where

N =

{

⊕

j

hj ∈ H4 :
∑

j

hj = 0

}

.

The duals L∗j have known concrete descriptions: L∗1 = H−1(R) ⊂ D′(R) is the

dual of H1(R), L∗0 is the quotient space H−1(R)/L⊥0 , and L∗2 ≡ (H−1(0,∞))2.

The inclusions iL∗
j
: L∗j ⊂ H̃(P) are obvious. With the notation from the proof of

Theorem 3.2, we have sLj
u = u for u ∈ L∗j and ps = s for s ∈ S, see (5). Dirac’s

functional δ belongs to L∗1. The elements δ+, δ− ∈ L∗2 defined by δ±u = u(0±)

do not belong to L∗0, since δ, δ± ∈ L⊥0 , but δ, δ± 6= 0 (one shows easily that they

cannot be represented as L2-functions
∑

j hj ∈ N ). We have δ+ − δ− ∈ L⊥1 since

δ+ = δ− on L1.

ACKNOWLEDGEMENTS – This paper was started while visiting Laboratoire

J.A. Dieudonnée at the University of Nice and is based to a large extent on a joint

work with professor J.-Ph. Labrousse.

The author is indebted to the referee for many remarks and suggestions that have con-

siderably improved the presentation of the paper.

This research was supported by grant 201/03/0041 of GA CR.

REFERENCES

[1] Arens, R. – Operational calculus of linear relations, Pacific J. Math., 11 (1961),
9–23.

[2] Boulmaarouf, Z. and Labrousse, J.-Ph. – The Cayley transform of linear
relations, J. Egyptian Math. Soc., 2 (1994), 53–65.

[3] Coddington, E.A. – Extension theory of formally normal and symmetric sub-

spaces, in “Memoirs of the Amer. Math. Soc.”, vol. 134, Amer. Math. Soc., Provi-
dence, RI, 1973.

[4] Dixmier, J. – Étude sur les variétés et les opérateurs de Julia, avec quelques
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[10] Labrousse, J.-Ph. – Opérateurs unitairs tempérés, Bull. Sc. Math., 2e série, 96
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