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Abstract: We characterize some perfect polynomials in F4[x].

1 – Introduction

Let F be a field of characteristic 2. For a monic polynomial A ∈ F [x], let σ(A)

be the sum of all monic divisors of A:

σ(A) =
∑

P |A, P monic

P .

If σ(A) = A, then we call A a perfect polynomial (we also say that A is a perfect

polynomial over F ).

E.F. Canaday, the first doctoral student of L. Carlitz, began in 1941 the

study of perfect polynomials by considering the case where F is the prime field

F = F2 = {0, 1} (see [1]).

Later in the seventies, T.B. Beard Jr. and collaborators continued the work

of Canaday, extending it in several directions. (see e.g. [2], [3], [4]).

We are interested in their first paper, the more closely related to Canaday’s work

(see [2]).

Their main results were obtained by considering polynomials over the prime

field Fp, (see [1, 2]).

One of the results of Beard et al. over a non trivial extension Fq of the prime
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field Fp is Theorem 3 in [2] in which they prove that the perfect polynomials in

Fq[x] of the form (x
q − x)Npr−1 where r,N are non-negative integers, are exactly

obtained when N is a divisor of q − 1 while r ≥ 0.

In this paper, we denote, as usual, by F4 = F2[α] the finite field with 4 ele-

ments {0, 1, α, α+ 1}, where α2 = α+ 1.

We want to generalize to the simplest extension of the prime field F2, namely

the finite field with 4 elements, some of Canaday’s and Beard’s results. In other

words, the aim of the present paper is to begin the study of the perfect polynomi-

als over F4 but concentrating our attention to essentially 3 types of polynomials:

a) Polynomials that splits into linear factors.

b) Polynomials of the form xh(x + 1)kP l with h, k, l ≥ 1, and P ∈ F4[x] irre-

ducible of degree deg(P ) > 1.

c) Polynomials that are product of two powers of irreducible factors.

Our main results are:

1) Characterization of the perfect polynomials over F4 that split into linear

factors.

(see Theorem 3.4).

2) Non existence of perfect polynomials of the form xh(x+1)kP l with h, k, l≥1,

and P ∈ F4[x] irreducible of degree deg(P ) > 1.

(see Theorem 3.9)

3) Characterization of the perfect polynomials over F4 that are product of two

powers of irreducible factors.

(see Proposition 3.10).

Some proofs (mainly in the Preliminary section) work for more general fields

of characteristic 2. We occasionally insist on this and generally restrict ourselves

to F4 for simplicity.

We denote by the usual symbol ()′ the derivation relative to x in F4[x] and by

τ the galois automorphism of F4[x] over F2[x] that fixes x, 0, 1 and moves α into

α+ 1 in F4.
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2 – Preliminary

We denote, as usual, by N (resp. N∗) the set of nonnegative (resp. positive)

integers. In this section, we present some results that we shall use repeatedly in

the next sections.

Our first lemma below was (essentially) obtained by Canaday over F2 but the

proof works over any perfect field of characteristic 2. (i.e. any characteristic 2

field in which every element is a square):

Lemma 2.1 (see Lemma 5 in [1]). Let P,Q ∈ F[x] where F is a perfect field

of characteristic 2, and let n,m ∈ N; such that P,Q are non constant, i.e. P,Q /∈ F
and

1 + · · ·+ P 2n = Qm .(1)

Then m ∈ {0, 1}.

Proof: We suppose that m > 1 so that n ≥ 1.

Observe that (1) can be written:

(1 + · · ·+ P n)2 + P (1 + · · ·+ P n−1)2 = Qm .(2)

If m is even, then (2) implies that P is a square, so that by taking enough square

roots in both sides of (2) we may assume that m is odd, so that P is not a square,

i.e. P ′ 6= 0.

By hypothesis,

Qm = P 2n + · · ·+ P + 1 = (P n−1 + · · ·+ P + 1) (P n+1 + P ) + 1 ,

so that Q is prime to P n−1 + · · ·+ P + 1.

Differentiating (1) gives us: (P n−1 + · · ·+ P + 1)2P ′ = Q′Qm−1.

Therefore, Qm−1 divides P ′.

If deg(P ) = 1, then Qm−1 divides 1, which is impossible.

Hence, deg(P ) > 1.

Thus, m deg(Q) = 2n deg(P ) > 2n deg(P ′) ≥ 2n(m− 1) deg(Q). I.e.

2n <
m

m− 1
≤ 2 ,

that is impossible since n ≥ 1.

A simple, but useful, observation is:
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Lemma 2.2. For P (x) ∈ F4[x], P (x) is perfect if and only if for all a ∈ F4,

P (x+ a) is perfect.

Necessary and sufficient conditions to have some special factorizations:

Lemma 2.3. Let h ∈ N be a non-negative integer. We have:

i) h even implies that Q(x) = xh+1 + 1 is square free in F4[x].

ii) Let P ∈ F4[x] \ F4 be a nonconstant polynomial. Then:

1 + P + · · ·+ P h = (1 + P )h if and only if h = 2n − 1 for some n ∈ N.
Observe that the equality can be written also in the form

(1 + P )h+1 = 1 + P h+1.

iii) 1+ x+ · · ·+ xh = 1+ (x+1)+ · · ·+ (1+ x)h if and only if h = 2n − 2 for

some n ∈ N.
iv) 1 + x+ · · ·+ x2h = (1 + x+ x2)h if and only if h ∈ {0, 1}.

v) 1 + x+ · · ·+ xh = (1 + x+ x2)(x+ 1)h−2 if and only if h = 2.

vi) 1 + x+ · · ·+ (x+ α)h = x(x+ 1)(x+ α+ 1)h−2 if and only if h = 2.

Proof:

i) Assume h even. Differentiating Q(x) we get Q′(x) = xh. This proves the

result.

We prove only the necessity for each statement:

ii) If h is even, then we have: 1 + P h+1 = (1 + P )h+1 = 1 + P + P 2A,

for some A ∈ F4[t] i.e. P
h = 1 + PA which is impossible.

If h is odd, then put h+ 1 = 2nu, where u is odd. We obtain:

1 + P 2nu = (1 + P )2
nu = (1 + P 2n

)u = 1 + P 2n
+ P 2n+1A.

If u ≥ 3, then P 2nu−1 = 1 + PA which is impossible.

We conclude that u = 1 and h+ 1 = 2n.

iii) follows from ii) by multiplying both sides by x(x+ 1) to get

xh+2 + 1 = (1 + x)h+2.

iv), and v) with h even, follow from i) by multiplying both sides by x + 1.

When h is odd in v) we have

xh+1 + 1 = (1 + x+ x2)(x+ 1)h−1

that implies the contradiction: x2 + x+ 1 is a square.

Finally, vi) follows from v) replacing x by x + α, thereby finishing the proof of

the lemma.

The next lemma is a special case of Theorem 2.47 in [5].
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Lemma 2.4 (see Theorem 2.47 in [5]). Let p be an odd prime number and

let n ∈ N∗. If d is the smallest positive integer such that (2n)d = 1 (mod p),

and if µ is the number of irreducible distinct factors of degree d, in F2n [x], of

1 + · · ·+ xp−1, then µ =
p− 1

d
.

An easy corollary is:

Lemma 2.5. For all integer m ≥ 2, the polynomial xm + · · · + x + 1 is

reducible over F4.

Proof:

Case m+ 1 is not a prime number:

Write: m+ 1 = ab, with a, b ≥ 2. We have:

xm + · · ·+ x+ 1 =
1 + xab

1 + x
=
1 + (xa)b

1 + x
=
1 + xa

1 + x
. (1 + xa + · · ·+ (xa)b−1) ,

which is reducible.

Case m+ 1 = p is a prime number:

If xm+· · ·+x+1 is irreducible, then, by Lemma2.4 (with n=2), µ=
p−1

d
=1.

So, 22=4 is of order d = p−1 in F∗
p. It is impossible.

Lemma 2.6. For all a, b ∈ F4 such that a + b ∈ {α, α + 1} , the monomial

x+ a divides P (x) = 1 + · · ·+ (x+ b)n if and only if n ≡ 2 (mod 3).

Proof: This statement is true if and only if P (a) = 1 + · · · + (a + b)n = 0,

i.e. 1 + (a+ b)n+1 = 0. So we are done.

The next lemma describes possible factorizations of xh+1+1
x+1

with only linear

factors in F4[x] :

Lemma 2.7. If P (x) = 1+ x+ · · ·+ xh = (x+1)a(x+α)b(x+α+1)c, then

b = c. Furthermore:

i) a = 0 if and only if h is even. In this case, h = 2b = 2c = 2.

ii) b = c = 0 if and only if h 6≡ 2 (mod 3). In this case, h = 2n − 1 for some

n ∈ N.

iii) (h ≡ 2 (mod 3) and h is odd) if and only if h = 3.2n− 1, for some n ∈ N∗.

In this case, a = 2n − 1, b = c = 2n.
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Proof: We consider the Galois automorphism τ such that τ(α) = α + 1.

Since τ(P (x)) = P (x), we obtain b = c.

i): It is clear that a = 0 if and only if h is even. In this case, we obtain

h = 2b = 2c. We conclude by Lemma 2.3 part iii).

ii): b = c = 0 if and only if P (α) and P (α + 1) do not equal 0. So we are

done. Thus, in this case, we obtain a = h and we conclude by Lemma 2.3 part

i).

iii): We can put h = 3s− 1, with s = 2nu, u odd.

So, we obtain:

Q(x) = (1+x)(1+ · · ·+xh) = (1+(xu)3)
2n

= (xu+1)2
n
(xu+α)2

n
(xu+α+1)2

n
.

We can write:

(xu + 1)2
n
= (x+ 1)a1(x+ α)b1(x+ α+ 1)b1 ,

(xu + α)2
n
= (x+ 1)a2(x+ α)b2(x+ α+ 1)c2 ,

(xu + α+ 1)2
n
= (x+ 1)a3(x+ α)b3(x+ α+ 1)c3 ,

where a1 + a2 + a3 = a+ 1, b1 + b2 + b3 = b = b1 + c2 + c3.

The integers a2 and a3 equal 0 since (1 + α)2
n
6= 0 and α2n

6= 0.

• If u is prime to 3, then αu + 1 6= 0, so b1 = 0 and a1 = 2
nu.

Therefore, 1 + x2nu = (1 + xu)2
n
= (1 + x)2

nu.

We conclude that 2nu = 2m, for some m ∈ N, so u = 1, h = 3.2n − 1, a1 = b2 =

c3 = 2
n and a2 = a3 = b3 = c2 = 0.

• If 3 divides u, then αu+α = 1+α 6= 0, so b2 = b3 = c2 = c3 = 0 = a2 = a3.

It is impossible.

3 – Main results

3.1. Perfects of the forms: xh(x+ 1)k(x+ α)l(x+ α+ 1)t

We characterize here below in Theorem 3.4 all perfect polynomials that have

only linear irreducible factors in F4.

Canaday (see [1]) called “trivial” the perfect polynomials over F2 of the form

(x2 + x)2
n−1(3)

for some n ∈ N∗. Beard et al. proved in Theorem 5 of [2] a result that holds

for all prime numbers p and that specialized to p = 2 say that the only perfect
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polynomials over F2 of the form xk(x+1)h for some non-negative integers k, h ∈ N
are described in (3).

First of all we present a direct proof of the above result for F4:

Proposition 3.1. The polynomials xh(x + 1)k, (x + α)h(x + α + 1)k are

perfect over F4 if and only if h = k = 2n − 1, for some n ∈ N.

Proof:

– Sufficiency: by direct computations.

– Necessity: if xh(x+ 1)k is perfect, then we have:

xh = 1 + · · ·+ (x+ 1)k, (x+ 1)k = 1 + · · ·+ xh .

So, h = k = 2n − 1 for some n ∈ N, by Lemma 2.3.
For (x+ α)h(x+ α+ 1)k : by Lemma 2.2.

We can deduce the

Corollary 3.2. If h = k = 2n − 1, and l = t = 2m − 1, for some n,m ∈ N
then the polynomial xh(x+ 1)k(x+ α)l(x+ α+ 1)t is perfect.

We require ( for the sufficiency of our main result) the following result of

Beard et al. (see the Introduction) obtained by the specialization q = 4 in ([2],

Theorem 3).

Proposition 3.3 (see [2], Theorem 3). For all n ∈ N, the polynomial
(

x(x+ 1)(x+ α)(x+ α+ 1)
)N2n−1

is perfect over F4 if and only if N = 1, 3.

We present here below our first main result, i.e. the characterization of the

perfect polynomials over F4 that split into linear factors:

Theorem 3.4. The polynomial xh(x+1)k(x+α)l(x+α+1)t is perfect over

F4 if and only if one of the following conditions is satisfied:

i) h = k = 2n − 1, l = t = 2m − 1 for some n,m ∈ N.

ii) h = k = l = t = N.2n − 1 for some n ∈ N and for N ∈ {1, 3}.

iii) h = l = 3.2r − 1, k = t = 2.2r − 1, for some r ∈ N.
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Proof: We obtain the sufficiency by Corollary 3.2, by Proposition 3.3 and

by direct computations.

Necessity:

We can write:



























1 + · · ·+ xh = (x+ 1)a1(x+ α)b1(x+ α+ 1)c1

1 + · · ·+ (x+ 1)k = xd1(x+ α)b2(x+ α+ 1)c2

1 + · · ·+ (x+ α)l = xd2(x+ 1)a2(x+ α+ 1)c3

1 + · · ·+ (x+ α+ 1)t = xd3(x+ 1)a3(x+ α)b3

(4)

with b1 = c1, b2 = c2, d2 = a2, d3 = a3, d1 + d2 + d3 = h etc...

We observe, by Lemma 2.2, that:

– h and k (resp. l and t) play symmetric roles (substitute x by x+ 1),

– the couples (h, k) and (l, t) play symmetric roles (substitute x by x+ α),

– l and t play symmetric roles since α and α+ 1 play symmetric roles.

Thus, it suffices to consider the following cases:

• h, k 6≡ 2 (mod 3)

• h, l ≡ 2 (mod 3) and k, t 6≡ 2 (mod 3)

• h, k, l, t ≡ 2 (mod 3).

Case h, k 6≡ 2 (mod 3):

By Lemma 2.6, the monomials x + α and x + α + 1 do not divide the two

polynomials 1+· · ·+xh and 1+· · ·+(x+1)k. Thus, we have: (x+α)l(x+α+1)t =

(1 + · · ·+ (x+ α)l)(1 + · · ·+ (x+ α+ 1)t),

i.e. the polynomial (x + α)l(x + α + 1)t is perfect. So, by Proposition 3.1,

l = t = 2m − 1, for some m ∈ N.
Therefore, the polynomial xh(x+1)k is perfect too and h = k = 2n− 1, for some

n ∈ N.

Case h, l ≡ 2 (mod 3) and k, t 6≡ 2 (mod 3):

We have: b2 = c2 = 0, d3 = a3 = 0.

So, 1 + · · ·+ (x+ 1)k = xd1 and by Lemma 2.3, d1 = k = 2n − 1 for some n ∈ N.
Analogously, 1 + · · ·+ (x+ α + 1)t = (x+ α)b3 and substituting x by x+ α, we

obtain b3 = t = 2m − 1 for some m ∈ N.
• If h is even, then h = 2 by Lemma 2.7. Thus k = 1.

Using the fact that x2(x+ 1)(x+ α)l(x+ α+ 1)t is perfect, we obtain:

x(x+ 1)(x+ α)l−1−t(x+ α+ 1)t−1 = 1 + · · ·+ (x+ α)l,

So, l = t+ 1 and l = 2 by Lemma 2.3.
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• If l is even, then l = 2 by Lemma 2.7. Substitute x by x+α lead us to the

previous case (h even).

• If h and l are odd, then by Lemma 2.7, we can write:

1 + · · ·+ xh = (x+ 1)a1(x2 + x+ 1)b1 , with h = 3.2r − 1, a1 = 2
r − 1, b1 = 2

r,

1+ · · ·+(x+α)l = (x+α+1)c3(x2+x)a2 , with l = 3.2s−1, c3 = 2
s−1, a2 = 2

s.

Thus:

1 + · · ·+ xh = (x+ 1)2
r−1(x+ α)2

r
(x+ α+ 1)2

r

1 + · · ·+ (x+ 1)k = x2n−1

1 + · · ·+ (x+ α)l = x2s
(x+ 1)2

s
(x+ α+ 1)2

s−1

1 + · · ·+ (x+ α+ 1)t = (x+ α)2
m−1 .

Since xh(x+ 1)k(x+ α)l(x+ α+ 1)t is perfect, we obtain:

h = 3.2r − 1 = 2n − 1 + 2s

k = 2n − 1 = 2r − 1 + 2s

l = 3.2s − 1 = 2m − 1 + 2r

t = 2m − 1 = 2s − 1 + 2r .

Therefore, r = s and n = m = r + 1 = s+ 1.

So h = l = 3.2r − 1, and k = t = 2.2r − 1.

Case h, k, l, t ≡ 2 (mod 3):

• Case h, k even

In this case, we have h = k = 2 (see Lemma 2.7). Thus, the polynomial

x2(x+ 1)2(x+ α)l(x+ α+ 1)t is perfect if and only if

1 + · · ·+ (x+ α)l = x(x+ 1)(x+ α+ 1)t−2

1 + · · ·+ (x+ α+ 1)t = x(x+ 1)(x+ α)l−2 .

So, l = t = 2 by Lemma 2.3.

• Case h even and k odd

In this case, l and t are not both even (if they were, h and k should be even by

the previous case). Suppose that l is even and t is odd. We obtain, by Lemma

2.7, h = l = 2 and k = 3.2n − 1, t = 3.2m − 1.

Thus, the polynomial x2(x + 1)k(x + α)2(x + α + 1)t is perfect if and only if

(1 + · · ·+ (x+ 1)k) (1 + · · ·+ (x+ α+ 1)t) = x(x+ 1)k−1(x+ α)(x+ α+ 1)t−1.

It is impossible since x divides 1 + · · ·+ (x+ 1)k and 1 + · · ·+ (x+ α+ 1)t.
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• Case h, k odd

This implies that l and t are odd too. So, by Lemma 2.7, we have in equations

(4):

h = 3.2n − 1, a1 = 2
n − 1, b1 = c1 = 2

n ,

k = 3.2m − 1, d1 = 2
m − 1, b2 = c2 = 2

m ,

l = 3.2r − 1, c3 = 2
r − 1, d2 = a2 = 2

r ,

t = 3.2s − 1, b3 = 2
s − 1, d3 = a3 = 2

s ,

for some n,m, r, s ∈ N∗.

Using the fact that the polynomial is perfect, and putting x1 = 2
n, x2 = 2

m,

x3 = 2
r, x4 = 2

s, we obtain:



















3x1 − x2 − x3 − x4 = 0
x1 − 3x2 + x3 + x4 = 0
x1 + x2 − 3x3 + x4 = 0
x1 + x2 + x3 − 3x4 = 0

which gives us: x1 = x2 = x3 = x4. Thereby finishing the proof of the theorem.

3.2. Perfects of the form: xh(x+1)kP l, P irreducible and deg(P ) > 1

Working over F2, Canaday (see Theorem 9 in [1]) proves that the only perfect

polynomials over F2, of the form xh(x + 1)kP l with P irreducible, deg(P ) > 1

and h, k, l ≥ 1 are

A1(x) = x2(x+ 1)(x2 + x+ 1) and A2(x) = x4(x+ 1)3(x4 + x3 + x2 + x+ 1)

together with Ai(x+ 1) for i = 1, 2 .

We prove in this section that there are no perfect polynomials of this form

over F4.

Case 1. The irreducible polynomial P satisfy P (0) = P (1) = 1.

Proposition 3.5. There are no perfect polynomials over F4 of the form

xh(x + 1)kP l, where P ∈ F4[x] is irreducible of degree d ≥ 2, P (0) = P (1) = 1

and h, k, l ≥ 1.

Proof: We use here the idea of the proof of Theorem 9 in [1].

We consider four cases.
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Case l = 2n even:

We denote A = xh(x+ 1)kP 2n. If A is perfect, then:

xh(x+ 1)kP 2n = (xh + · · ·+ 1)((x+ 1)k + · · ·+ 1)(P 2n + · · ·+ 1) .

This implies xh(x+ 1)k = (xh + · · ·+ 1)((x+ 1)k + · · ·+ 1) since x and x+ 1 do

not divide P 2n + · · ·+ 1.

Therefore, P 2n = P 2n + · · ·+ 1 which is impossible.

Case h, k even and l odd:

Put h = 2m, k = 2r, l = 2n− 1. If A is perfect, then:

x2m(x+1)2rP 2n−1 = (x2m+ · · ·+1)((x+1)2r+ · · ·+1)(1+P + · · ·+P 2n−1) (?)

Thus, we must have (x2m + · · ·+ 1)(((x+ 1)2r + · · ·+ 1) = P 2n−1. This implies,

by Lemma 2.1:

P = x2m + · · ·+ 1 = (x+ 1)2r + · · ·+ 1 .

It is impossible by Lemma 2.5.

Case h, k and l odd:

Put h = 2m− 1, k = 2r − 1, l = 2n− 1. If A is perfect, then:

x2m−1(x+ 1)2r−1P 2n−1 =

= (x+ 1)(xm−1 + · · ·+ 1)2x((x+ 1)r−1 + · · ·+ 1)
2
(P + 1)(P n−1 + · · ·+ 1)2 .

Since the greatest power of P dividing the right member is even, this equation is

impossible.

Case h even and k, l odd:

Put h = 2m, k = 2r − 1, l = 2n− 1. If A is perfect, then:

x2m(x+1)2r−1P 2n−1 = (x2m+· · ·+1)x((x+1)r−1+· · ·+1)
2
(P+1)(P n−1+· · ·+1)2.

The two monomials x and x + 1 do not divide x2m + · · · + 1. This requires

P = x2m + · · ·+ 1, by Lemma 2.1. It is impossible by Lemma 2.5.

Proposition 3.5 and Lemma 2.2 give us the

Corollary 3.6. There are no perfect polynomial over F4 of the form

(x + α)h(x + α + 1)kP l, where P ∈ F4[x] is irreducible of degree d ≥ 2, P (α) =

P (α+ 1) = 1 and h, k, l ≥ 1.
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Case 2. The irreducible polynomialP satisfies: either P (0) or P (1)∈{α, α+1}.

Proposition 3.7. There are no perfect polynomial over F4 of the form

xh(x + 1)kP l, where P ∈ F4[x] is irreducible of degree d ≥ 2, either P (0) or

P (1) belongs to {α, α+ 1} and h, k, l ≥ 1.

Proof: It suffices to consider the case P (0) = α.

If xh(x+ 1)kP l is perfect, then we have:

xh + · · ·+ 1 = (x+ 1)b1P c1

(x+ 1)k + · · ·+ 1 = xa1P c2

P l + · · ·+ 1 = xa2(x+ 1)b2

with either c1 ≥ 1 or c2 ≥ 1, and c1 + c2 = l.

We observe that τ(P c1) = P c1 and τ(P c2) = P c2 . So, P c1 , P c2 ∈ F2[x] and

P (0)c1 = P (0)c2 = 1.

If c1 ≥ 1, then αc1 = P (0)c1 = 1 and 3 divides c1.

It is the same for c2.

Furthermore, the integers h and k must be odd. If they were not, then a1= b1= 0,

and by Lemma 2.1, c1 = c2 = 1. It is impossible by Lemma 2.5.

We consider two cases.

Case l ≡ 2 (mod 3):

If c1, c2 ≥ 1, then 3 divides c1, c2 and c1 + c2 = l. It is impossible.

If c1 = 0 then 3 divides c2 = l. It is impossible.

If c2 = 0 then 3 divides c1 = l. It is impossible.

Case l 6≡ 2 (mod 3):

In this case, since P (0) = α, x does not divide P l + · · ·+1. So, a2 = 0, P (1) = 1

and l is odd.

Put h = 2m− 1, k = 2r − 1 and l = 2s− 1.

If xh(x+ 1)kP l is perfect, then:

xh(x+1)kP l = (x+1)(xm−1+· · ·+1)
2
x((x+1)r−1+· · ·+1)

2
(P+1)(P s−1+· · ·+1).

Since the greatest power of P dividing the right member is even, this equation is

impossible.

Proposition 3.7 and Lemma 2.2 give us the
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Corollary 3.8. There are no perfect polynomials over F4 of the form

(x + α)h(x + α + 1)kP l, where P ∈ F4[x] is irreducible of degree d ≥ 2, either

P (α) or P (α+ 1) belongs to {α, α+ 1} and h, k, l ≥ 1.

Now, we summarize our main result of the section:

Theorem 3.9. There are no perfect polynomials over F4 of the form

xh(x + 1)kP l, where P ∈ F4[x] is irreducible of degree d ≥ 2 and the integers

h, k, l satisfy h, k, l ≥ 1.

Proof: Follows from Propositions 3.5 and 3.7.

3.3. Perfects of the form P hQk, where P,Q are irreducible

Canaday proves (see Theorem 17 in [1]) that there no perfect polynomials

over F2, that are squares, and that are divisible by 2 irreducible polynomials in

F2[x].We characterize here below the perfect polynomials over F4, not necessarily

squares, satisfying the same condition over F4.

Proposition 3.10. Let P,Q ∈ F4[x] be two distinct irreducible polynomials.

Then P hQk is perfect over F4 if and only if Q = P + 1 and h = k = 2n − 1, for

some n ∈ N.

Proof:

– The sufficiency is obtained by direct computations.

– Necessity:

If P hQk is perfect, then we have: Qk = 1 + · · ·+ P h and P h = 1 + · · ·+Qk.

If h is even, then k = 1 by Lemma 2.1. Therefore 1 + P h+1 = (1 + P )Q and

P h = 1 +Q.

So, 1 + P (1 + Q) = 1 + P h+1 = (1 + P )Q. Hence Q = P + 1 and h = 1. It is

impossible.

Analogous proof if k is even.

If h = 2m− 1 and k = 2r − 1, then:

1+ · · ·+P h = (1+P )(1+ · · ·+Pm−1)2, 1+ · · ·+Qk = (1+Q)(1+ · · ·+Qr−1)2

Thus, P hQk = (P + 1)(Q + 1)A2, where A = (1 + · · ·+ Pm−1)(1 + · · ·+Qr−1).

We conclude that P divides Q+1 and Q divides P +1. So, Q = P +1 and h = k.
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Thus 1+P h+1=(1 + P )(1 + · · ·+ P h) = QQh = Qh+1 = (1 + P )h+1. Lemma 2.3

give us: h = 2n − 1, for some n ∈ N.

In the special case where the two irreducible polynomials are both of degree

2, a more precise result holds:

First of all observe that there are exactly 6 irreducible polynomials of degree

2 in F4[x] :
x2 + x+ α , x2 + x+ α+ 1 ,

x2 + αx+ 1 , x2 + (α+ 1)x+ 1 ,

x2 + αx+ α , x2 + (α+ 1)x+ α+ 1 .

Secondly, we have:

Corollary 3.11. The only perfect polynomials over F4 of the form P hQk,

where P,Q ∈ F4[x] are irreducible of degree 2, are: (x
2+x+α)h(x2+x+α+1)k,

with h = k = 2n − 1, for some n ∈ N.

Proof: Follows from Proposition 3.10 and from the above list of irreducibles,

since we have Q = P + 1.
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