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Abstract: We consider a nonlinear age dependent and spatially structured popu-

lation dynamics model. In this model the birth process is nonlocal and we investigate

the existence of an optimal control which makes the density of the population as close as

possible of some given density. After necessary optimality conditions in the case where

the birth process is governed by the function F (α) = cα2/(b+ α2) are investigated.

1 – Introduction

We consider a population with age dependence and spatial structure, and we

assume that the population lives in a bounded domain Ω ⊂ Rm, m = 1, 2 or 3.

Let y(t, a, x) be the distribution of individuals of age a at time t and location

x ∈ Ω, µ(a) and β(a) respectively the natural death rate and the natural fertility

rate of individuals of age a. Let ∂/∂η be the normal derivative oriented towards

the exterior of Ω, ω be the maximal age of an individual and T a strictly positive

real.

Let J(v) = ‖y(v)− zd‖
2
L2(Q) +N‖v‖2L2(Σ), v ∈ Uad, where

Uad =
{
v ∈ L2(]0, T [× ]0, ω[× Γ), v ≥ 0 a.e. in Σ

}

is the set of admissible controls, N a strictly positive real, and y(v) the solution
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of the following system:





∂y/∂t+ ∂y/∂a−∆y + µy = 0 in Q

∂y/∂η = v on Σ

y(0, a, x) = y0(a, x) in Qω

y(t, 0, x) = F

(∫ ω

0
β y da

)
in QT

(1.1)

where Q = ]0, T [×]0, ω[×Ω, QT = ]0, T [×Ω, Qω= ]0, ω[×Ω, Σ = ]0, T [×]0, ω[×Γ

and ∆ the laplacian with respect to the variable x. In the sequel we shall denote

by ∇ the gradient with respect to the variable x. Here, F is the function which

governes the birth process. From the biological point of view,
∫ ω
0 βy(t, a, x) da

is the distribution of newborn individuals at time t and location x, and

F (
∫ ω
0 βy(t, a, x) da) is the proportion of those individuals which attains the min-

imum age of the species. In this paper, we investigate an optimal boundary

control which makes the distribution of individuals as close as possible of some

suitable density zd.

In the sequel we study the following problem:

(P): Find v ∈ Uad such that J(v) = Infv∈Uad
J(v) .

Optimal harvesting problems for linear age-structured population has been

treated extensively in the literature. See for example Barbu [4], Brokate [6],

Gurtin et al [10].

Optimal harvesting problem for nonlinear initial value age-structured popula-

tion was studied later by some authors like B.Ainseba et al [2] and S.Anita [3].

In [7] and [8] Chan and Zhu studied some optimal birth control problems for

an age-structured population of Mc-Kendrick type but, without diffusion. In [7],

they established maximum principles for problems with free end condition and

fixed final horizon. In the same paper, the time optimal control problem, the

problem with target set and the infinite planning horizon case are investigated.

Further, in [8], Chan and Zhu studied the problem with free final time, phase

constraints and min-max costs.

In [1], B. Ainseba proved exact and approximate controllability results for a

linear age and space population dynamics structured model by using a derivative

of Carlemann inequality.

However, these results may not be applied in our context since here, the

system is nonlinear and one want to make the density of the population as close

as possible of some suitable density zd.
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The remainder of the paper is organized as follows. In section 2, we give the

hypotheses and we examine the existence of an optimal control. In section 3, we

investigate necessary optimality conditions.

2 – Existence of an optimal control

For the sequel we assume the following hypotheses

(H1) Ω is a bounded domain of Rm with a smooth boundary Γ.

(H2) µ ∈ L∞(0;ω), µ ≥ 0 a.e. in ]0;ω[ .

(H3) β ∈ C1([0;ω]), β ≥ 0 a.e. in [0;ω] .

(H4) v ∈ L2(Σ)+ = {u ∈ L
2(Σ), u ≥ 0 a.e. onΣ}.

(H5) F is a positive lipschitz function such that F (0) = 0.

We denote by KF the lipschitz constant.

(H6) y0 ∈ L
2(Qω) and y0 ≥ 0 a.e. in Qω.

(H7) KF

∫ ω

0
β da ≤ 1.

In the sequel we shall denote by dσ the measure on Γ .

Let V = H1(Ω), and

W (T, ω) =
{
θ ∈ L2(]0, T [×]0, ω[, V ); ∂θ/∂t+ ∂θ/∂a ∈ L2(]0, T [×]0, ω[, V ′)

}

where ∂/∂t and ∂/∂a indicate partial differentiation in the sense of

D′(]0, T [×]0, ω[, V ′) (cf. [14]).

∀ θ ∈W (T, ω), we set:

‖θ‖2W (T,ω) = ‖θ‖2L2(]0,T [×]0,ω[,V ) + ‖∂θ/∂t+ ∂θ/∂a‖2L2(]0,T [×]0,ω[,V ′) .

We recall the following well known lemma (cf. [9] or [13]).

Lemma 1. W (T, ω) is continuously embedded respectively in C([0,T ], L2(Qω))

and in C([0, ω], L2(QT )).

Let y ∈ W (T, ω) then, y has a trace at t = t0 in L2(Qω) (resp at a = a0 in

L2(QT )).
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Moreover, the “trace applications” are continuous in the strong and weak

topology and we have the following formula: ∀z, ẑ ∈W (T, ω)

∫ T

0

∫ ω

0
〈∂z/∂t+ ∂z/∂a, ẑ〉 dt da +

∫ T

0

∫ ω

0
〈∂ẑ/∂t+ ∂ẑ/∂a, z〉 dt da =(2.1)

=

∫

QT

(zẑ) (t, ω, x) dt dx −

∫

QT

(zẑ) (t, 0, x) dt dx

+

∫

Qω

(zẑ) (T, a, x) da dx −

∫

Qω

(zẑ) (0, a, x) da dx .

Remark 2. Under hypotheses H1, ..., H6 one can adapt the method of [9],

[13] to prove that (1.1) admits a unique solution in the following sense:

〈∂y/∂t+ ∂y/∂a, z〉(H1(Ω))′,H1(Ω) +

∫

Ω
[∇y.∇z + µyz] dx =

∫

Γ
vz|Γ dσ ,

∀z ∈ H1(Ω), a.e. in U = ]0, T [×]0, ω[ ,

y(0, a, x) = y0(a, x) a.e. in ]0, ω[×Ω ,

y(t, 0, x) = F

(∫ ω

0
β y(t, a, x) da

)
a.e. in ]0, T [×Ω .

One can see this proof in [15].

Moreover, if v1≤ v2 a.e. on Σ then y(v1) ≤ y(v2) a.e. in Q [15].

In the same manner, by using the positivity of the solution one can prove like

in [9] or [15] that if y10 ≤ y20 (resp. µ
2 ≤ µ1; f1 ≤ f2, 0 ≤ y1 ≤ y2) then y

1≤ y2,

where y1 and y2 are solution of:




∂y1/∂t+ ∂y1/∂a−∆y1 + µy1 = f1 in Q

∂y1/∂η = v1 on Σ

y1(0, a, x) = y10(a, x) in Qω

y1(t, 0, x) = y1(t, x) in QT

(2.2)

and 



∂y2/∂t+ ∂y2/∂a−∆y2 + µy2 = f2 in Q

∂y2/∂η = v2 on Σ

y2(0, a, x) = y20(a, x) in Qω

y2(t, 0, x) = y2(t, x) in QT .

(2.3)

Note that, this is natural, because a strong initial distribution or a weak natural

mortality rate of individuals implies a strong density of individuals.
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We have the following result.

Proposition 3. Under hypotheses H1, ..., H6, (1.1) admits a unique solu-

tion y(v). The map v 7→ y(v) is globally a lipschitz function on L2(Σ) onto

L2(]0, T [×]0, ω[, H1(Ω)).

Moreover, under H7 if y0 ∈ L
∞(Qω), v0 ∈ H

1/2(Γ) and 0 ≤ v ≤ v0 then

y(v) ∈ L∞(Q).

Proof: Thanks to Remark 2, we have to prove that the map v 7→ y(v) is a

globally lipschitz function.

Let y = e−λty(v), where y(v) is the unique solution of (1.1), then y is the

solution of




∂y/∂t+ ∂y/∂a−∆y + (µ+ λ)y = 0 in Q

∂y/∂η = e−λt v on Σ

y(0, a, x) = y0(a, x) in Qω

y(t, 0, x) = e−λtF

(∫ ω

0
β eλty da

)
in QT .

(2.4)

Let v1 and v2 be two controls functions, then z = y(v1)− y(v2) verifies




∂z/∂t+ ∂z/∂a−∆z + (µ+λ)z = 0 in Q

∂z/∂η = e−λt(v1 − v2) on Σ

z(0, a, x) = 0 in Qω

z(t, 0, x) = e−λt
[
F

(∫ ω

0
βy(v1)

)
−F

(∫ ω

0
βy(v2)

)]
in QT

(2.5)

where β = eλtβ. Multiplying the first equation of (2.5) by z, and integrating over

Q yield, after some calculations:

−
1

2
‖z(., 0, .)‖2L2(QT )

+ ‖∇z‖2(L2(Q))m + λ‖z‖2L2(Q) ≤

∫

Σ
e−λt(v1− v2)z dt da dσ .

Hence,

‖∇z‖2(L2(Q))m + λ‖z‖2L2(Q) ≤
1

2
‖z(., 0, .)‖2L2(QT )

+

∫

Σ
e−λt(v1 − v2)z dt da dσ .

It is obvious that

‖z(., 0, .)‖2L2(QT )
=

∥∥∥∥e
−λt

[
F

(∫ ω

0
βy(v1)

)
− F

(∫ ω

0
βy(v2)

)]∥∥∥∥
2

L2(QT )

≤ K2
F

∥∥∥∥
∫ ω

0
βz

∥∥∥∥
2

L2(QT )

≤ K2
F ω ‖β‖

2
L∞(0,ω) ‖z‖

2
L2(Q) .
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Let λ0 = λ− 1
2K

2
Fω‖β‖

2
L∞(0,ω), with λ >

1
2K

2
Fω‖β‖

2
L∞(0,ω) we obtain:

‖∇z‖2(L2(Q))m + λ0‖z‖
2
L2(Q) ≤

∫

Σ
e−λ0t(v1 − v2)z dt da dσ .

Using the continuity of the map ϕ 7→ ϕ|Γ on H
1(Ω) onto L2(Γ)[14], one can

choose λ0 such that:

‖z‖2L2(]0,T [×]0,ω[,H1(Ω)) ≤ C ‖e−λ0t(v1 − v2)‖
2
L2(Σ) .

This means that the map v 7→ y(v) is a lipschitz function on L2(Σ) onto

L2(]0, T [×]0, ω[, H1(Ω)).

Now, assuming that H7 holds, y0 ∈ L
∞(Qω), v0 ∈ H

1/2(Γ) and 0 ≤ v ≤ v0 we

will prove that y(v) ∈ L∞(Q). For this, we introduce here a function f ∈ L∞(Ω)

such that f ≥ ‖y0‖L∞(Qω) a.e. in Ω.

Let us consider the following system:

{
−∆θ + λθ = f in Ω

∂θ/∂η = v0 on Γ .
(2.6)

We note that (2.6) admits a unique solution θ∈H2(Ω) and we have θ≥‖y0‖L∞(Qω)

a.e. in Ω ([5]).

Let θ̃(t, a, x) = θ(x), then, θ̃ is the unique solution of





∂θ̃/∂t+ ∂θ̃/∂a−∆θ̃ + λθ̃ = f in Q

∂θ̃/∂η = v0 on Σ

θ̃(0, a, x) = θ(x) in Qω

θ̃(t, 0, x) = 1/ω

∫ ω

0
θ̃ da in QT .

(2.7)

Let S be a functional defined on L2(Q) by the formula: ∀ϕ ∈ L2(Q),

S(ϕ) = yϕ with yϕ the solution of the following system:





∂yϕ/∂t+ ∂yϕ/∂a−∆yϕ + (λ+ µ)yϕ = 0 in Q

∂yϕ/∂η = ve−λt on Σ

yϕ(0, a, x) = y0(a, x) in Qω

yϕ(t, 0, x) = e−λt F

(∫ ω

0
eλtβϕda

)
in QT .

Like in [15] or [9], using the lipschitz condition on F , it follows that one can

choose a judicious λ such that S admits a fixed point y, solution of (2.4).
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Let (yn) be a sequence defined by:

{
y0 = S(θ̃)

yn+1 = S(yn) for n ∈ N .

Then, with the previous choice of λ, the sequence (yn) converges strongly to

y in L2(Q).

Thanks to hypotheses H5, H7 and the positivity of the functions F, θ̃ and β

we get F (
∫ ω
0 βθ̃ da) ≤ θ̃ =

∫ ω
0
1
ω θ̃ da. Now, because θ ≥ y0 a.e. in Qω, v ≤ v0,

µ+ λ ≥ λ and f ≥ 0, it follows from Remark 2 that y0 ≤ θ̃.

On the other hand, using the fact that F (
∫ ω
0 βy0 da) ≤

∫ ω
0
1
ω θ̃ da, one can

prove easily and inductively that yn ≤ θ̃. Then, we infer that y ≤ θ̃.

Since m = 1, 2 or 3 we have θ ∈ C(Ω), then because 0 ≤ y a.e. in Q, we

obtain finally that y ∈ L∞(Q).

Now, we examine the existence of an optimal control.

Theorem 4. Under assumptions H1,..., H6, the problem (P) admits at least

one optimal control.

Proof: Let (vn) be a sequence such that limn→+∞ J(vn) = Infv∈Uad
J(v).

We deduce that (vn) is bounded in L
2(Σ). Using the fact that the map v 7→y(v) is

a lipschitz function, we obtain that (y(vn)) is bounded in L
2(]0, T [×]0, ω[, H1(Ω)).

We also deduce that (∂y(vn)/∂t + ∂y(vn)/∂a) is bounded in L2(]0, T [×]0, ω[,

(H1(Ω))′). Then, one can extract a subsequence also denoted (y(vn)) such that

vn → v weakly in L2(Σ), y(vn)→ y(v) weakly in L2(]0, T [×]0, ω[;H1(Ω)) and

∂y(vn)/∂t+∂y(vn)/∂a→ ∂y(v)/∂t+∂y(v)/∂a weakly in L2(]0,T [×]0,ω[, (H1(Ω))′).

It follows easily that y satisfies:
{
∂y(v)/∂t+ ∂y(v)/∂a−∆y(v) + µy(v) = 0 in Q

∂y(v)/∂η = v on Σ .
(2.8)

Applying Lemma 1 and the fact that: y(vn)(0, ., .) = y0 a.e. in Qω we get

y(vn)(0, ., .)→ y(v)(0, ., .) weakly in L2(Qω) and we deduce that:

y(v)(0, ., .) = y0 a.e. in Qω .(2.9)

In the same manner, we get y(vn)(., 0, .)→ y(v)(., 0, .) weakly in QT .

Now, let us prove that:

y(v)(., 0, .) = F

(∫ ω

0
β y da

)
.(2.10)
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Multiplying by β the first equation of the following system:





∂y(vn)/∂t+ ∂y(vn)/∂a−∆y(vn) + µy(vn) = 0 in Q

∂y(vn)/∂η = vn on Σ

y(vn)(0, a, x) = y0(a, x) in Qω

y(vn)(t, 0, x) = F

(∫ ω

0
βy(vn) da

)
in QT

integrating over ]0;ω[ and letting zn =
∫ ω
0 βy(vn) da we deduce the following

system





∂zn/∂t− (βyn)(t,0,x) + (βyn)(t,ω,x)−∆zn +

∫ ω

0
(yn∂β/∂a+ µβyn) da = 0

∂zn/∂η = wn

zn(0, x) = z0(x)
(2.11)

where yn = y(vn), wn =
∫ ω
0 βvn da and z0 =

∫ ω
0 βy0 da.

It is obvious that (2.11) can be equivalently written as





∂zn/∂t−∆zn = fn in ]0, T [×Ω

∂zn/∂η = wn on Σ

zn(0, x) = z0(x) in Ω

(2.12)

where fn(t, x) = (βyn)(t, 0, x)− (βyn)(t, ω, x)−
∫ ω
0 (yn∂β/∂a+ µβyn)da.

Since β ∈ C1([0, ω]) and (yn) is bounded in L
2(Q), we deduce from the conti-

nuity of “trace application” at a = 0 and at a = ω that fn is bounded in L
2(QT ).

Then, one gets that (2.12) admits a unique solution zn in L
2(0, T ;H1(Ω)), the

sequence (zn) and (∂zn/∂t) are bounded respectively in L
2(0, T ;H1(Ω)) and in

L2(0, T ; (H1(Ω))′).

Consequently, we obtain the compactness of (zn) in L
2(0, T ;L2(Ω)). So, one

can extract a subsequence, also denoted (zn) such that zn→ z strongly in

L2(0, T ;L2(Ω)).

We recall that yn→ y(v) weakly in L2(Q), then z =
∫ ω
0 βy(v) da. Keeping in

mind that F is a lipschitz function, one obtains:

yn(t, 0, x) = F

(∫ ω

0
β yn da

)
−→ F

(∫ ω

0
β y(v) da

)
in L2(QT ) .

Hence, we obtain (2.10). Finally, from (2.8), (2.9), (2.10) we deduce that y(v)

is a solution of (1.1) and this ends the proof.
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Remark 5. We recall that, we have only used the globally lipschitz condition

on F. In order to get more, we will make more hypotheses on F .

3 – Necessary optimality conditions

In this section, we are concerned by necessary optimality conditions, for this,

we will assume the following assumption:

(H8): F (α) = cα2/(b+ α2), where c and b are positive real numbers.

Remark 6. We have F ′(α) = 2bcα/(b+ α2)2 and we see that F satisfies a

lipschitz condition.

When the birth process is governed by the function F (α) = cα2/(b + α2),

with c and b two strictly positive and fixed constants, the model (1.1) is said

to be a “depensatory model” [11]–[12]. This reproduction function models the

situation in which there is a threshold level such that if the population size falls

below this threshold, the species are overwhelmed by predators and driven to

extinction, but if the population size exceeds this threshold, the predators are

satisfied, and the population of prey is viable. The constants c and b depend only

on the populations size of species in competition.

Note that, one can get analogous result by taking another globally lipschitz

birth process which verifies H7.

The following result give the Gateaux derivative of y(v) with respect to the

function v.

Proposition 7. Let y0 ∈ L
∞(Qω) and Uad = {v ∈ L

2(]0, T [×]0, ω[×Γ),

v0 ≥ v ≥ 0 a.e. in Σ}, and assume that hypotheses H1–H8 hold.

Let v ∈ Uad, u ∈ Uad and s > 0 such that su+ v ∈ Uad.

Let zs = [y(su+ v)− y(v)]/s, then (zs) converges strongly in L2(Q), as s→ 0

to a function ζ solution of





∂ζ/∂t+ ∂ζ/∂a−∆ζ + µζ = 0 in Q

∂ζ/∂η = u on Σ

ζ(0, a, x) = 0 in Qω

ζ(t, 0, x) =

∫ ω

0
βζ da F ′

(∫ ω

0
βy da

)
in QT .

(3.1)
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Proof: It is easy to consider the auxiliary system of the section 2. Hence,

zs satisfies the following system





∂zs/∂t+ ∂zs/∂a−∆zs + (µ+ λ)zs = 0

∂zs/∂η = ue−λt

zs(0, a, x) = 0

zs(t, 0, x) = γs(t, x)

(3.2)

where

γs(t, x) =
e−λt

s

[
F

(∫ ω

0
βeλt y(su+ v) da

)
− F

(∫ ω

0
βeλt y(v) da

)]
.(3.3)

From (3.3), we get:

‖zs(., 0, .)‖
2
L2(QT )

≤ K2
F ‖β‖

2
L∞(0,ω) ω ‖zs‖

2
L2(Q) .

Then, as in the proof of Proposition 3, we get that the sequence (zs) is bounded

in L2(U,H1(Ω)), and then (∂zs/∂t+∂zs/∂a) is also bounded in L
2(]0, T [×]0, ω[ ;

(H1(Ω))′). There exist a subsequence still denoted (zs) such that (zs) converge

weakly to a function ζ in L2(]0, T [×]0, ω[, H1(Ω)) and (∂zs/∂t+∂zs/∂a) converges

weakly to χ.

It is known that the derivative in D(]0, T [×]0, ω[, (H1(Ω))′) is continuous,

so one gets χ = ∂ζ/∂t+ ∂ζ/∂a.

Thanks to the weak convergence of these sequences, we finally deduce that

ζ verifies:

∂ζ/∂t+ ∂ζ/∂a−∆ζ + µζ = 0 in Q(3.4)

and

∂ζ/∂η = u on Σ .(3.5)

The third equation of (3.2) is a consequence of the continuity of the “trace

applications” in the weak topology at t = 0.

Let us now prove the fourth equation of (3.2).

Let i(s) =
∫ ω
0 βe

λt y(su+ v) da, j =
∫ ω
0 βe

λtζ da, ps =
∫ ω
0 βe

λtzs da.

It suffices to show that: ‖F (i(s))− F (i(0))/s − F
′

(i(0))j‖L2(QT ) → 0 when

s→ 0, s > 0.
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By using H8 and the fact that y(v) ∈ L
∞(Q), we get after some calculations:

∥∥∥
(
F (i(s))− F (i(0))

)
/s− F ′(i(0))j

∥∥∥
L2(QT )

≤(3.6)

≤ C
[
‖ps − j‖L2(QT ) + ‖i(0)− i(s)‖

L2(QT )

]

where C is a strictly positive constant.

Because zs → ζ weakly in L2(Q), we infer that ps →
∫ ω
0 βe

λtζ da weakly in

L2(QT ), and because the map v 7→ y(v) is continuous , we deduce that i(s) →∫ ω
0 βe

λty(v) da.

Consequently, one obtains

γs −→

∫ ω

0
βζ da F ′

(∫ ω

0
βeλty(v) da

)
in L2(QT ) .(3.7)

Therefore, it follows that ζ(t, 0, x) =
∫ ω
0 βζ da F

′(
∫ ω
0 βy(v) da).

Let us show now that zs → ζ in L2(Q) when s→ 0, s > 0.

Let ρ = zs − ζ, then ρ is solution of





∂ρ/∂t+ ∂ρ/∂a−∆ρ+ µρ = 0 in Q

∂ρ/∂η = 0 on Σ

ρ(0, a, x) = 0 in Qω

ρ(t, 0, x) =
(
F (i(s))−F (i(0))

)
/s−

∫ ω

0
βζ da F ′

(∫ ω

0
βy da

)
in QT .

One can prove that ρ → 0 strongly in L2(Q) when s → 0 by multiplying the

first equation of the previous system by ρ, integrating by parts and using (3.7).

From the uniqueness of the solution of (3.1), we infer that all the sequence

(zs) converge strongly to ζ in L
2(Q). This achieves the proof.

The necessary optimality conditions are given by the following result.

Theorem 8. Let y0 ∈ L
∞(Qω) and Uad = {v ∈ L

2(]0, T [×]0, ω[×Γ),

v0 ≥ v ≥ 0 a.e. in Σ}.

Under hypotheses H1–H8, (P) admits at least one optimal control.

Moreover if v∗ is an optimal control then:

v∗ =





0 a.e. on {θ|Σ ≥ 0}

v0 a.e. on {θ|Γ ≤ −Nv0}
−1

N
θ|Γ a.e. on {−Nv0 < θ|Γ < 0}

(3.8)
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where θ is the solution of




−∂θ/∂t− ∂θ/∂a−∆θ + µθ = y(v∗)− zd + β(a)F ′
(∫ ω

0
βy(v∗) da

)
in Q

∂θ/∂η = 0 on Σ

θ(T, a, x) = 0 in Qω

θ(t, ω, x) = 0 in QT .

(3.9)

Proof: By letting t′ = T− t et a′ = ω − a, one can easily prove that (3.9)

admits a unique solution.

Let v∗ be an optimal control function and u ∈ TUad
(v∗), the tangent cone to

Uad at v
∗.

Then:
(
J(v∗+su)− J(v∗)

)
/s = −2

((
y(v∗+ su)− y(v∗)

)
/s, zd

)
L2(Q)

+ N(u, 2v∗+ su)L2(Σ)

+
((
y(v∗+ su)− y(v∗)

)
/s, y(v∗+ su) + y(v∗)

)
L2(Q)

.

Applying Proposition 7, it follows when s→ 0: that

J ′(v∗, u) = −2 (ζ, zd)L2(Q) +N(u, 2v∗) + 2 (ζ, y(v∗))

= 2 (ζ, y(v∗)−zd)L2(Q) + 2N(u, v
∗)

L2(Σ)

where ζ is the solution of (3.1).

Since v∗is an optimal control, one gets for all s > 0 but small enough that
(
J(v∗+ su)− J(v∗)

)
/s ≥ 0 .

Consequently, (ζ, y(v∗)−zd)L2(Q) +N(u, v∗)
L2(Σ)

≥ 0 .

This last result means

N

∫

Σ
uv∗|Σ dt da dσ +

∫

Q
ζ(y(v∗)−zd) dt da dx ≥ 0 .

Let us multiply (3.9) by ζ and integrate the result by parts over Q we obtain:

∫

Σ
uθ|Γ dt da dσ =

∫

Q
ζ(y(v∗)−zd) dt da dx .

Then, ∫

Σ
u[Nv∗+ θ|Γ] dt da dσ ≥ 0 , ∀u ∈ TUad

(v∗) .
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Therefore,

−(Nv∗+ θ|Γ) ∈ NUad
(v∗)

where NUad
(v∗) is the normal cone to Uad at v

∗.

And then we easily deduce (3.8).
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