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ON THE NON-DEFECTIVITY AND NON WEAK-DEFECTIVITY
OF SEGRE-VERONESE EMBEDDINGS OF PRODUCTS OF
PROJECTIVE SPACES
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Abstract: Fix integers s > 2 andn > 1. Set &; :=n+i—1if 3 < i < s and
@2 = max{3,n + 1}. Set 71 :=9if n=1and 3 = nl(n+ 1) — n if n > 2. Fix integers
r; > &, 1 <i < s. Here we prove that the line bundle Opn y(p1ys-1(71,...,74) is not
weakly defective, i.e. for every integer z such that z(n +s) +1 < ("77) [T7_, (2 + 1)
the linear system |[Zz(z1,...,z,)| has dimension ("*™) [T°_,(2; +1) — z2(n+s) — 1 and
a general T € |Zz(x1,...,2,)| has an ordinary double point at each point of Z,..q as only
singularities, where Z C P"x(P!)*~! is a general union of z double points.

1 — Introduction

The main aim of this paper is to use the so-called Horace Method introduced
by A. Hirschowitz to prove the non-defectivity and non-weak defectivity (in the
sense of [10]) of “many” line bundles in P"x (P)*~!. See [6], [7], [8] and [13]
for several results on the defectivity or non-defectivity on certain multiprojective
spaces and the linear algebra translation of any non-defectivity result for line
bundles on arbitrary multiprojective spaces. First, we will prove the following
result.

Received: November 22, 2004; Revised: May 11, 2005.

AMS Subject Classification: 14N05.

Keywords: Segre—Veronese variety; Segre—Veronese embedding; multiprojective space;
products of projective spaces; weakly defective variety; zero-dimensional scheme; double point;
fat point.

*The author was partially supported by MIUR and GNSAGA of INAAM (Italy).



102 EDOARDO BALLICO

Theorem 1. Fix integers k >0, s > 2andn > 1. Set £; :=n+1i— 1 if
3<i<s and 79 :=max{3,n+1}. Set 1:=9 if n=1 and 1 =n!(n+1) —n
if n>2. Fix integers z; > %;, 1<i<s. Let ZCP"x (PY)*"! be a gene-
ral union of k double points. If k(n+s) < (") [[;_o(z;+1), then
MP < (P Ty(z1,...,25) = 0. If k(n+s) > (") [I{_o(x; + 1), then
RO(P?x (PY)*~ L Ty(xq,...,25)) = 0.

With the classical terminogy Theorem 1 says that for all & > 0 the line bundle
Opny(p1)s—1(21,...,%s) is not (k — 1)-defective, i.e. that this line bundle is not
defective. See Lemma 4 for a conditional inductive approach for an arbitrary
multiprojective space. Theorem 1 was just the only case in which we were able
to prove the initial step to carry over the inductive procedure.

Inspired from [15], Proof of Theorem 4.1, we will prove the following result.

Theorem 2. Fixintegerss>2andn>1. Setz;:=n+i—1if3<i<s
and To := max{3,n+1}. Set 1 :=9 ifn =1 and 3 = nl(n+1)—n ifn > 2. Fix
integers x; > %;, 1 < i < s. Then the line bundle OPnX(Pl)sfl(fIJl, ...,Ts) Is not
weakly defective, i.e. for every integer z such that z(n—+s)+1< ("77) [T*_y(2;+1)

n
the linear system |Iz(z1, ..., xs)| has dimension ("77%) [T;_o(zi+1)—z(n+s)—1
and a general T € |I;(x1,...,xs)| has an ordinary double point at each point of
Zy,ed as only singularities, where Z C P"x(PY)*~! is a general union of z double

points.

Theorem 2 will be an easy corollary of Theorems 1 and 3. To state Theorem 3
we need to introduce the following notation. Fix integers s > 1, n1 > --- > ng >0
and t; > 0, 1 <14 < s. In some inductive step we will allow the case ngs = 0, just
taking a point as P™+. Even if n; = 0 for some ¢ define the integers a(,, . n.it,...0)»
D(ni,msstiyets)s Cnnynsitrynts) A0 Ainy noity e,y Dy the following relations:

S S
n; +t;
(1) (1 + an> a(nlv-"»ns;tlwwts) + b(nl,...7n5;t1,...,t5) = H ( Z,nA Z) )
=1 1

=1
s
(2) 0< b(m,...,ns;tlw-,ts) < an ’
=1
s * i+t
(3) (1 _'_ Zn,L) C(nl,..‘,ns;tl,u-,tS) + d(nl,...,ns;tlm..’ts) + 1 - H ( 7'n. 74) 9
P i=1 !

S
(4) 0 < d(m,---,ns;tl,---yts) S an )
=1
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Notice that

a(nl,...,ns;tl,...,ts) C(nlv--wns?tl:mvts)

and
d(nl,.‘.,ns;tl,“.,ts) - b(nl,‘..,ns;tl,...,ts) -1

if b(nl,...,ns;tl,...,ts) > 07 while

a(”la--w”silr--is) = C(n17"'7n$;t17"'7ts) + 1

and s
d(nlv---vns§t17---7t5) = : :nl
=1

if by, msityts) = 0
Notice that

a(nl,...,ns_l,O;tl,..‘,ts) - a(nl,...,ns_l;tl,...,t$_1) )
b(m,---,nsf1,0;t1,---7ts) = b(m,---,nsf1;t1,---7tsf1) )
C(n1,eyms—1,05t1,.000ts) = d(m,...,nsf1;t1,...,t571) )

d(nl,~~~:n57170§t17~-,ts) = d(m,u.,nsq;tl,...,trl) :

Theorem 3. Fixintegers k >0,s>2,n; > --->ng>0,2;>3,1<i<s,
such that k(ni +--- +ns+1) > [[7, ("fszz) Fix a hyperplane H of P™ and
set M :=[[_,P™, E = Hz;ll PrixHx [[;_; 1, P". Assume the existence of
an integer j such that 1 < j < s and the following properties hold:

(a) The line bundles Op(x1,...,Tj-1,%j, Tjq1,...,Ts), Om(z1,...,2Tj-1,

xj — L xjq1,...,x5) and Oy (a1, ..., Tj-1,25 — 2,%j41,...,L) are not
defective.

(b) For every integer z > 0 such that

(5) Z(nl ++ns+ 1) + Q141,10 =1, 11y T3 T Y ey T ) <
i-1 s
(© ST () I
L n; n; L n;
=1 i=j+1
and any general union W C M of z double points of M a general hyper-
surface of multidegree (x1,...,zj—1,2;—1,Zj41,...,2s) of P" x...xP"s

singular at each point of Z..q has an isolated singularity at at least one
point of Wi.eq.
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Let Z C P™ x --- x P™ be a general union of k double points. Then a general
hypersurface of multidegree (x1,...,xs) of P™ x ... x P™ singular at each point
of Z..q has an ordinary node at each point of Z..q and no other singularity.

With the terminology of [10], Theorem 2 means that the Segre—Veronese
embedding of P™ x --. x P" with multidegree (x1,...,2zs) is not weakly
(k — 1)-defective.

We work over an algebraically closed field K with char(K) = 0. Our proof of
Theorem 1 will be characteristic free, while our proofs of Theorems 2 and 3 depend
heavily from the characteristic zero assumption: a key tool will be [10], Th. 1.4.
To prove Theorems 2 and 3 we will use an idea of Mella ([15], proof of Th.4.1).
To start the induction we will also use a theorem of weak non-defectivity for
P ([15], Cor. 4.5).See [1], [2], [3], [4] or [9] for Alexander—Hirschowitz theorem
on non-defectivity of line bundles on P". For several results on non-defectivity
for Segre—Veronese embeddings of multiprojective spaces (many of them with
low x; not covered by Theorem 1), see [6] (which also contain a linear algebra
interpretation of Theorem 1), [7], [8]. For related results for P! x P1x P! and a
similar inductive proof, see [13]. See [12], [9], Remark 6.2, (which quotes [16]) and
[15], Remark 4.4, for several examples of weak defective line bundles on projective
spaces.

2 — The proofs

For any scheme A and any P € A,cq let 2P (or 2{P, A} if there is any dan-
ger of misunderstandings) denote the first infinitesimal neighborhood of P in
A, i.e. the closed zero-dimensional subscheme of A with (Zp)? as its ideal sheaf.
We have length(2P) = dimp(A)+ 1. We will say that 2P is the double point of A
with P as its support. For any finite subset S C A,¢q set 2{S, A} := Upcs2{P, A}
and write 25 instead of 2{S, A} if there is no danger of misunderstandings.
Let D C A be an effective Cartier divisor of A and Z C A any closed subscheme
of A. Let Resp(Z) denote the residual subscheme of Z with respect to D, i.e.
the closed subscheme of A with Zz 4 : O4(—D) as its ideal sheaf. For instance,
Resp(2P) = {P} if P € Dy¢y and Resp(2P) = 2P if P ¢ D,.q. By the very
definition of residual scheme for any L € Pic(A) we have the following exact
sequence:

(7) 0 = TResp2a®L = Iz249L — Izapp®Lp — 0.



SEGRE-VERONESE 105

From the cohomology exact sequence of the exact sequence (7) we get at once
the following lemma which is a very elementary version of the so-called Horace
Lemma and that we will always call “the Horace Lemma”.

Lemma 1. Let A be a projective scheme, D an effective Cartier divisor of A,
Z a closed subscheme of A and L € Pic(A). Then:

(i) WA T74® L) < WA IReg, (2).4 ® L) +h(D,Zz0p,0 @ Lip);
(il) WA, Zz4® L) < WA TReg, (74 © L) +h' (D, Iz0p,0 @ Lip). w

The following result is a very particular case of [5], Lemma 2.3 (see in partic-
ular Fig. 1 at p. 308).

Lemma 2. Let A be an integral projective variety, L € Pic(A), D an integral
effective Cartier divisor of A, Z C A a closed subscheme of A not containing D
and s a positive integer. Let U be the union of Z and s general double points
of A. Let S be the union of s general points of D. Let E C D be the union
of s general double points of D (not double points of A, i.e. each of them has
length dim(A)). To prove h*(A,Zya ® L) = 0 (resp. h°(A,Zya ® L) = 0) it is
sufficient to prove h'(D, I znpyus ® (Lip)) = hl(A7ZResD(Z)uE,A ®L(-D))=0
(resp. h°(D, L znpyus @ (Lip)) = hO(A’IResD(Z)uE,A ®@L(=D))=0).n

Remark 1. Here we assume s = 2 and ny = 1. The following inequality
ny+x
) (") 2 2
ny

is satisfied if and only if either ny =1 and 1 > 8 or n; > 2 and 1 > 3. ©

Remark 2. Fix integers s > 2, n; > --->ng>0and z; > 0,1 <17 <s.
Here we will discuss when the inequality

ns +xs — 1\ ¢ (i + 2 ® ®
9 # # J 7> (1+ n; ng
o (TI() = () (3
j:l =1 =1

holds. However, since in all applications of this inequality we will need to use
an induction on s starting from the case s = 2,ns = 1, we will need to assume
also that the inequality (8) is satified, i.e. we need to assume also either n; =1
and x1 > 8 or n; > 2 and z1 > 3. Under these assumptions the inequality (9) is
always satisfied. o
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The following lemma will be used implicitly several times in the proofs of
Theorems 1, 2 and 3 to avoid that a certain set has negative cardinality.

Lemma 3. Fixintegerss >2,n1 > --->ngs>0andz; > 0,1 <1 < s,such
that either ny = 1 and x1 > 8 or ng > 2 and w1 > 3. Then a(y,, n,—1:2y,..2,) =
ny+ -+ n.

Proof:  Since ag,, . n,—1:1,..2,) — 71 — *++ — ng is a non-decreasing
function of xo,...,xs, we may assume xzo = --- = x; = 1. By the definition
(1) of awmy,.ns—1w1,1,...0,) 15 sufficient to show 7(ni,x1,n2,...,n5) =
("1;13“) Hj;i(nj—i-l)ns—(m—i—- --+n,)? > 0. It is easy to check that function 7 is a
non-decreasing function of ng, ..., ns. One easily verifies that 7(1,8,1,...,1) >0
and 7(2,3,1,...,1) > 0, concluding the proof. =

Lemma 4. Let X be an integral m-dimensional projective variety and
L,R very ample line bundles on X such that h'(X,L) = h'(X,L ® R) =
hY(X, Lo R®?%) = 0 for alli > 0. Fix an integral D € |R|. For all integersi > 0 set
arener i= [O(X, L& R¥)/(m+1)], bygpo: = (X, L& R®) - (m+ agepe:,
a = |(RO(X, LoR®?) — hO(X, LoR)/m| and § := hO(X, LoR®?) — hO(X, LRR) —
mao. Assume:

(i) WX, Toa ® L® R) = h'(D,Iyp py,p ® (L ® R®?)p) = 0 for general
A C X, B C D such that §(A) = apgre2 — o and §(B) = «a.

(i) R%(X,Zos® L) < h%(X,L®R) — (m+1)apgre2 + (3 for a general S C X
such that §(S) = apgpe2 —a — .

Then L is not defective, i.e. for every integer k > 0 we have h®(X,T;Q L@ R®?) =
max{0, h’(X, L ® R®?) — k(m + 1)} (or, equivalently, h'(X,7; ® L @ R®?) =
max{0, k(m + 1) — h°(X, L ® R®?)}) for a general union of k double points of X.

Proof: We will only check that h'(X,Z; ® L ® R®?) = 0 for a general union
Z of aygpe2 double points of X, because the proof that h®(X, Iyy ® L@ R®?) = 0
for a general union W of a4 re2 +1 double points of X is similar and all cases in
which k < apgpre2 (the surjectivity range of the restriction map) follow from the
case k = apgpe2, while all cases with k > ajgge2 + 1 (the injectivity range for
the restriction map) follow from the case k = ajgre2 +1. Since k' (X, L& R) = 0,
we have h%(D, (L ® R®?)p) = h°(X,L ® R®?) — h°(X,L ® R). By assumption
WD, Iyp,py.0 ® (L® R¥?)p) = 0 (i.e. h%(D,Typ py,p®(L®R??)p) = B)for
a general B C E such that §(B) = «. Hence hl(D,IFUQ{B’DLD ® (L®R®2)‘D) =
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hO(D,IFu2{B’D}’D ® (L ® R®2)‘D) = 0 for a general F' C E such that §(F) = S.
Fix a general S C X such that §(5) = apgre2 —a — 5. To check the vanishing of
h'(X,T7 ® L ® R®?) it is sufficient to prove h!(X, Zoguasues ® L ® R®?), where
G C X is a general subset such that §(G) = 8. We have Resp(2B) = B and
2BN D = 2{B,D}. By Lemma 2 it is sufficient to prove h'(X,Zp osu2(c,p} @
L ® R) = 0. First, we will check that h'(X, Zysu9c,py ® L ® R) = 0. Since
2{G, D} C 2G, it is sufficient to prove h!(X, Tosuec ® L ® R) = 0. By assump-
tion we have h'(X,Zo5 ® L ® R) = 0. Even more is true. Indeed, by assumption
we have h'(X,Tos 27 ® L ® R) = 0 for a general J C X such that #(J) = ;
more precisely, it is sufficient to assume that S U J is general in X. By semi-
continuity we may assume that our vanishing is true not only for D, but for a
general D’ € |D|. Since R is very ample, there is an integral D’ € |D| pass-
ing through m general points of X. Since 8 < m and we may choose S after
choosing G, the condition G C D is not restrictive, i.e. we may take G as J.
Hence h'(X,Tosue¢ ® L ® R) = 0 and thus hl(X,IQSu2{G7D} ®L®R) =0.
Since Resp(2S U B U 2{G,D}) = 285, hl(X,I%wUQ{G’D} ®L®R) = 0 and
B is general in D, we have h'(X,Zp osu2(c,py ® L ® R) = 0 if and only if
W (X, Tosuz(e,py @ LOR)—h° (X, Tos @ L) > §(B) ([9], Lemma 3). i.e. if and only
if WO(X,L®R)—(m+1)argre: +(m+1)a+(m+1)3—mB—h%(X,Zos® L) > a,
i.e. if and only if (X, Zos® L) < h%(X, L& R) — (m+1)aygpe2 + 3 for a general
S C X such that §(S) = apgre2 —a — 5, which is true by our last assumption. m

Proof of Theorem 1: Set M := P"x(P!)*"!. Fix P € P! and set FE :=
P x(P1)*=2x{P} (seen as a hypersurface of multidegree (0,...,0,1) of M).
We divide the proof into 5 steps.

(a) Here we assume s =2, n>2,no =1, 21 =nl(n+1)—nand 290 =n+ 1.
Set o == (") /(n + 1) = ("!(Trl))/(n + 1). Notice that a € Z and that

n

(") (@ +1)/(n+2) = (") (n+2)/(n+2) = (n1 + 1)a. Fix a general union
S C E of a points of E. Notice that Og(x,t) = Opn(z) for all z,t. Take n + 1
distinet points Q1,...,Qni1 € P! and set E; := P" x {Q;} & E C M. Let
S; C E; be a general union of « points of F;. Hence 25; N E; = 2{S;, E;} and
Resg, (2S;) = S;. Set Zy := Z := U?;TIQSZ-. To prove Theorem 1 it is sufficient
to prove h'(M,Zz(z1,n + 1)) = 0 (or, equivalently, h%(M,Zz(x1,n + 1)) = 0).
For2<i<n+1set Z; = Uz;l 25, U U;_:ll Sy. Hence Resg,(Z;) = Z;41 for all
1 <4 <n. By Lemma 1 to prove h'(M,Zz, (x1,n +2 — 1)) = 0 it is sufficient to
prove h'(M,Zyz,,,(z1,n+1—14)) = 0. Hence after n+ 1 steps we reduce to check
that hl(M, ZU?iji (21,0)) = 0. Let S be the union of the projections on E of all
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sets S;, 1 < i <mny+ 1. By the generality of each S; the set S is a general union
of (n + 1)a points of E and hence h*(E,Zs(x1,0)) = 0 for i = 0,1, concluding
the proof in this case.

(b) Here we assume s = 2, n > 2, 1 = nl(n+ 1) —n and 23 = n + 2.
Take a general S C E such that §(S) = a and general A, B C M such that
t(A)=|(n+Dan+3)/(n+2)] —aand §(B) = [(n+ Da(n+3)/(n+2)] — a.
To prove Theorem 1 in this case it is sufficient to prove h'(M, Zoguza (21, n+2)) =
hO(M, Zas2(z1,n + 2)) = 0. By the definition of o and Horace Lemma 1 it is
sufficient to prove h'(M,Zsuoa(z1,n + 1)) = h%(M, Zs2p(z1,n + 1)) = 0. We
will only check h'(M,Zsuoa(z1,n + 1)) = 0, the other vanishing being similar.
By the generality of S in E it is sufficient to prove h'(M,Zoa(z1,n + 1)) = 0
and hO(M, Zoa(z1,n + 1)) — hO(M, Toa(x1,n)) > #(S) = a (see e.g. [9], Lemma
3). Since [(n+ a(n+3)/(n+2)] —a < (n+ 1)a and A is general in M, we
have h'(M,Zoa(x1,mn + 1)) = 0 by part (a) and hence h®(M,Zoa(z1,n + 1)) =
(n+2)(n+1)a—(n+2)[(n+1)a(n+3)/(n +2)] — a. Hence it is sufficient
to prove h'(M,Zoa(w1,n)) < a. Let J C M be a general union of na points.
We repeat the proof of part (a) taking only n hypersurfaces F;, 1 < j < n, and
obtain h'(M,Zy;(x1,n)) = 0. Since |(n + 1)a(n + 3)/(n + 2)] > na, we have
hO(M, Zoa(x1,n)) < hO(M,Zaa(x1,n)), concluding this case.

(c) Here we assume s = 2, n > 2, 1 = nl(n+1) —n and 29 > n + 1.
By parts (a) and (b) and induction on the integer xo we may assume zg > n + 2
and that the result is true for all 2} such that n +1 < 2§, < 23 — 1 and in
particular for 2, = 9 — 1 and 2z, = 29 — 2. We may repeat the proof of part
(b); actually, now this case is easier because we may assume that the lemma
is true for the integer x5 — 2 and hence h'(M,Zoa(z1, 72 — 2)) = 0 and hence
hO(M,IQA(.%'l,.%'Q - 1)) — h1<M,_'Z-2A(a}1,a}2 — 2)) = (n + 1)04.

(d) Here we assume s = 2, n > 2, 1 > nl(n+ 1) —n and zo > n + 1.
By parts (a), (b) and (c) and induction on the integer x; we may assume that
the result is true for the integers x9 — 1 and z9 — 2. Hence we may repeat (with
heavy simplifications) the proof of part (b).

(e) Now assume n = 1. By Remarks 1 and 2 the same proof work taking
T1 = 9 as starting point, because the integer h°(P!, Op1(9)) = 10 is even, i.e. it
is divible by n + 1. m

The proof of the following lemma was suggested from the proofs in [15],
83 and §4.
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Lemma 5. Let X be an integral m-dimensional projective variety and
L,R very ample line bundles on X such that h'(X,L) = h'(X,L ® R) =
h{(X,L@R®?%) = 0 for alli > 0. Fix an integral D € |R|. For all integersi > 0 set
aperen = (WX, LO R)/(m+1)], bygpe: := X, LOR®) — (m+Daggpe,
a:= | (h°(X, LeR®?) - h°(X, LeR)/m| and (3 := h°(X, LaR®?) — h'(X, LYR) —
ma. Set cpgpe: = | (h°(X,L® R®?) —1)/(m +1)|. Assume:

(i) h'(X,Zoa ® L ® R) = k' (D, Ty py,p @ (L © R®?)p) = 0 for general
A C X, B C D such that §(A) = cpgre2 —a and §(B) = a.

(i) h%(X,Tos® L) < hY(X,L®R)— (m+1)cpgre2 + B for a general S C X
such that §(S) = cpgre2 —a — (.

(ili) L®R is not (cpgpe2 —a—[B—1) weakly defective, i.e. for a general U C X
such that §(U) = ¢ gge2 — a — [ a general element of |Zoy(L ® R)| has
an isolated singular point (which is an ordinary double point) at each
point of U and no other singularity contained in X,¢4.

Then L is not weakly defective, i.e. it is not defective and for every integer z > (
such that (m + 1)z +1 < h%(X,L ® R®?) and any general U C X such that
#(U) = 2z a general member of |Toy ® L ® R®?| has an isolated singular point at
each point of U and no other singularity contained in X,¢4.

Proof: Notice that cpgpe2 = apgpre? if bygre2 # 0and cpgre? = argre2—1
if by ope2 = 0. Hence the non defectivity of L ® R®? follows from Lemma 4. To
check its non weak defectivity it is sufficient to check the case of ¢y ge2 singular
points. More precisely, by semicontinuity and [10], Th. 1.4, it is sufficient to prove
the existence of W C X4 such that §(W) = crgpe2, hH(X,Zow ® L ® R®?) =0
and a general I' € |Zoy ® L ® R®?| has an isolated singularity at one point of
W. We will copy the proof of Lemma 4 using the integer cjgre2 instead of the
integer ay g pre2 and use the notation of that proof. By assumption (iii) a general
Y € |ZTesuee ® L ® R| has an isolated singular point at each point of S for a
general SUG C X such that §(SUG) = ¢ gpe2 —a. Set Y :=YUD € |L® R¥?|.
The proof of Lemma 4 gives that Sing(f’) contains a finite set W containing S
and such that h' (X, oy ® L ® R®?) = 0. Since DN S = 0, Y has an isolated
singular point at each point of S, concluding the proof. m

Proof of Theorem 3: It is sufficient to prove Theorem 3 for the integer
k= coy,nsizr,ws). St M = P™" x ... x P". By assumption z; > 3
for all ¢ and there is an integer j such that 1 < j < s and the line bun-
dles Ong(z1, ..., Zj—1, T4, Tjg1, -+, Ts), Om (@1, ..., xj—1, 25— 1,241, ..., 25) and
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Om(z1,...,2j-1,2;—2,2j41,...,2,) are not defective. Notice that E is a hyper-
surface of M with multidegree (0,...,0,1,0,...,0). We want to apply Lemma
4 taking X = M, D := E, L := Oy(z1,...,2j-1,%5 — 2,Zj41,...,%s) and
R := Op(0,...,0,1,0,...0). Since L x R®" is not defective for i = 0,1,2, as-
sumptions (i) and (ii) of Lemma 4 are satisfied by our assumptions. Since L is
not defective, the assumption (iii) of Lemma 4 is true by Remarks 1 and 2. u

Proof of Theorem 2: Set M := P" x (P!)*71. Fix P € P! and set E :=
P x (P1)*=2 x {P} (seen as a hypersurface of multidegree (0,...,0,1) of M).
Set 7;:=n+i—1if2<i<s. Setz1:=9ifn=1and 53 =nl(n+1)—nif
n > 2. Set o := ("J“fl)/(n + 1). Notice that « € Z.

n

(a) Assume s = 2, n > 2, 1 = 27 and fix a general S C F = P" such
that §(S) = @ — 1. By [15], Cor. 4.5, the linear system |Z(g gy g(71,0)| on E
has the expected dimension at its general member has isolated singularities at
each point of S. We immediately get that the linear system |log(x1,1)| on M
has the expected dimension and that it contains hypersurfaces whose singular
locus is S x P!, i.e. hypersurfaces whose singular set has finitely many points
as projection in the first factor P™ of M. Counting dimension we get that a
general Y € |Zy(g gy p(21,0)| has not this property and hence that it has an
isolated singularity at at least one point of S. By [10], Th. 1.4, the line bundle
O (z1,1) is not weakly (o — 2)-defective. Then we continue as in part (b) of
the proof of Theorem 1, but using Lemma 5 instead of Lemma 4, obtaining that
for every integer ¢ such that 1 <t < 25 the line bundle O/ (21,¢) is not weakly
(taw — 2)-defective.

(b) Assume s =2, n > 2, x; = 21 and x2 > 2. We use part (a), Lemma 5
and induction on the integer x5 to obtain the theorem in this case.

(c) Assume s =2, n > 2, 1 > 1 and x9 > @2. Use induction on z, and
Lemma 5 to check this case.

(d) Assume s = 3 and n > 2. Use the inductive proof of parts (a), (b) and
(c). The starting point of the induction is the line bundle Oy (21, . .., Zs-1,0) on
E (whose non weak defectivity when s = 2 was checked at the end of part (a))
instead of [15], Cor. 4.5.

(e) Assume n = 1. The same inductive proof works, since our bounds in the
case s = 2 are very far from being sharp: for instance, the conditions x; > 3 and
xg > 3 are sufficient for the non-defectivity of the line bundle Opiypi(z1,z2)

([14])). =
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