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A. Agrachev

COMPACTNESS FOR SUB-RIEMANNIAN
LENGTH-MINIMIZERS AND SUBANALYTICITY

Abstract.

We establish compactness properties for sets of lengtimizimg admissi-
ble paths of a prescribed small length. This implies subkcity of small sub-
Riemannian balls for a wide class of real-analytic sub-Rienian structures: for
any structure without abnormal minimizers and for manycitmes without strictly
abnormal minimizers.

1. Introduction

Let M be aC® Riemannian manifold, ditM = n. A distribution onM is a smooth linear
subbundleA of the tangent bundi& M. We denote by\q the fiber ofA atqg e M; Aq C TqM.
A numberk = dim Ag is therank of the distribution. We assume thatdk < n. The restriction
of the Riemannian structure # is asub-Riemannian structure

Lipschitzian integral curves of the distributioh are calledadmissible pathsthese are
Lipschitzian curves — q(t), t € [0, 1], such thatj(t) € Aq() for aimost allt.

We fix a pointgg € M and study only admissible paths started from this point, we
impose the initial conditiom(0) = qg. Sections of the linear bundle are smooth vector fields;
iterated Lie brackets of these vector fields define a flag

Agy C Ajy C - C AR .- C TgM
in the following way:
Age = span{[Xg, [X2,[... . Xm]...1(@0) : Xj(@) € Aq, i =1,...,m, q € M}.

A distribution A is bracket generatingt qq if Agg) = TgyM for somem > 0. If A is bracket
generating, then according to a classical Rashevski-Chearém (see [15, 22]) there exist ad-
missible paths connectirgg with any point of an open neighborhoodagf. Moreover, applying

a general existence theorem for optimal controls [16] ortaiob that for anyy; from a small
enough neighborhood afy there exists a shortest admissible path connedjingith q;. The
length of this shortest path is tiseb-Riemanniaor Carnot-Caratheodory distandeetweengy
andqs.

For the rest of the paper we assume thais bracket generating at the given initial point
go- We denote byp(q) the sub-Riemannian distance betwegnandgq. It follows from the
Rashevsky-Chow theorem thatis a continuous function defined on a neighborhoodjgf
Moreover, p is Holder-continuous with the Holder expone#{t whereAgg) = TgyM. A sub-
Rielmannian sphere(B) is the set of all points at sub-Riemannian distandeom qg, S(r) =
p— ().
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In contrast to the Riemannian distance, the sub-Riemardigancep is never smooth in
a punctured neighborhood gf (see Theorem 1) and the main motivation for this research is
to understand regularity properties @f In the Riemannian case, where all paths are available,
the set of shortest paths connectiggwith the sphere of a small radiuds parametrized by the
points of the sphere. This is not true for the set of shortedtsissible paths connectilmg with
the sub-Riemannian spheBgr). The structure of the last set may be rather complicated; we
show that this set is at least compactr-topology (Theorem 2). The situation is much simpler
if no one among so called abnormal geodesics of lengtbnnectgg with S(r). In the last
case, the mentioned set of shortests admissible paths gaardmetrized by a compact part of a
cyIinderSk*1 x RNk (Theorem 3). In Theorem 4 we recall an efficient necessarglition for
a lengthr admissible path to be a shortest one. In Theorem 5 we staseils, ighich is similar
to that of Theorem 3 but more efficient and admitting nonyriabnormal geodesics as well.

We apply all mentioned results to the case of real-analytiand A. The main problem
here is to know whether the distance functj@is subanalytic. Positive results for some special
classes of distributions were obtained in [8, 17, 19, 20,&8] the first counterexample was
described in [10] (see [13, 14] for further examples and fody of the “transcendence” @f).

Both positive results and the counterexamples gave andtidicthat the problem is inti-
mately related to the existence of abnormal length-mingénsiz Corollaries 2, 3, 4 below make
this statement a well-established fact: they show very thed only abnormal length-minimizers
may destroy subanalyticity gf out of qg.

What remains? The situation with subanalyticity in a whaéghborhood includingyg is
not yet clarified. This subanalyticity is known only for alrat special type of distributions (the
best result is stated in [20]). Another problem is to passfexamples to general statements
for sub-Riemannian structures with abnormal length-mipérs. Such length-minimizers are
exclusive for rankk > 3 distributions (see discussion at the end of the paper) ygidal for
rank 2 distributions (see [7, 21, 24]). A natural conjectigre
If k =2andAZ # A3, thenp is not subanalytic.

2. Geodesics

We are working in a small neighborhody, of gop € M, where we fix an orthonormal frame
X1, ..., Xk € VectM of the sub-Riemannian structure under consideration. Asiitvie paths
are thus solutions to the differential equations

k
@ 4= ui(OX(), g€ Oy, q(0) = dp,
i=1
whereu = (U1 (), ... , uk() € LK[0, 1].
_(lvk 2 vz, 1k _
Below |ju]| = (/0 Dol (t)dt) is the norm inL3[0, 1]. We also sefiq(-)[| = [lufl,
whereq(-) is the solution to (1). Let

Ur = {ueLX0,1]: Jul=r}

be the sphere of radiusin Lg[o, 1]. Solutions to (1) are defined for dlle [0, 1], if u belongs
to the sphere of a small enough radiudn this paper we taka only from such spheres without

1/2
special mentioning. The lengtiiq() = fo- (Z!‘zl uiz(t)) /2 it is well-defined and satisfies
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the inequality

@ l@ae) < laGl=r.

The length doesn’t depend on the parametrization of theecwhile the normjju|| depends. We
say thatu andq(-) arenormalizedif Zikzl uiz(t) doesn’'t depend ot For normalizedu, and
only for them, inequality (2) becoms equality.

REMARK 1. The notationg|q(-)|| andl(q(-)) reflect the fact that these quantities do not
depend on the choice of the orthonormal fraxye . . . , Xk and are characteristics of thajec-
tory q(-) rather than theontrol u. L»-topology in the space of controls H;-topology in the
space of trajectories.

We consider the endpoint mappirfg: u — q(1). This is a well-defined smooth mapping
of a neighborhood of the origin dfg[o, 1] into M. We setf, = f|U,' Critical points of the
mapping f; : Uy — M are callecextremal controlsnd correspondent solutions to the equation
(1) are callecextremal trajectorie®r geodesics

An extremal control and the correspondent geodesic) areregularif u is a regular point
of f; otherwise they arsingularor abnormal

Let C; be the set of normalized critical points &f; in other wordsC; is the set of normal-
ized extremal controls of the length It is easy to check thatr_l(S(r)) C Cr. Indeed, among
all admissible curves of the length no greater thamly geodesics of the length exactlycan
reach the sub-Riemannian sph&e). Controlsu e fr’l(S(r)) and correspondent geodesics
are calledninimal

LetDyf : L'é[o, 1] — T¢ M be the differential off atu. Extremal controls (and only
them) satisfy the equation

3) ADyf = vu

with some “Lagrange multiplierst Tf*(u) M\O0,v € R. HereaADy f is the composition of the

linear mappinddy f and the linear form : T¢((yM — R, i.e.(ADyf) € LE[O, 1* = LE[O, 1].
We havev # 0 for regular extremal controls, while for abnormal corgrolcan be taken 0. In
principle, abnormal controls may admit Lagrange multigieith both zero and nonzero If it
is not the case, then the control and the geodesic are citietly abnormal

Pontryagin maximum principle gives an efficient way to sageiation (3), i.e. to find ex-
tremal controls and Lagrange multipliers. A coordinate fiamulation of the maximum princi-
ple uses the canonical symplectic structure on the cotahgewlleT*M. The symplectic struc-
ture associates a Hamiltonian vector figlé VectT*M to any smooth functioa: T*M — R
(see [11] for the introduction to symplectic methods).

We define the functionk;, i =1, ..., k, andh onT*M by the formulas

1 k
hi(w) = (. Xi@). hw)=3> hZw). YaeM. ¥ eTgM.
i=1

Pontryagin maximum principle implies the following

PrRopPosITION. Atriple (u, A, v) satisfies equation (3) if and only if there exists a solution
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¥(t), 0 <t <1, to the system of differential and pointwise equations

k
@) = Zui Ohi(¥), hi@®) =yt

i=1

with boundary conditiong (0) € T(;‘OM, P (1) = A

Here(y (1), v) are Lagrange multipliers for the extremal contwel: T — tu(tz); in other
words,y (t) Dy, f = vut.

Note that abnormal geodesics remain to be geodesics aftabéarary reparametrization,
while regular geodesics are automatically normalized. &lyetlsat a geodesic puasi-regularif
it is normalized and is not strictly abnormal. Setting= 1 we obtain a simple description of all
quasi-regular geodesics.

COROLLARY 1. Quasi-regular geodesics are exactly projections to M ofgbkitions to
the differential equationb = 5(1//) with initial conditionsy(0) € T&BM. If h(y(0)) is small
enough, then such a solution exists (i.e. is defined on théevdegmenfO, 1]). The length of
the geodesic equalg2h(y (0)) and the Lagrange multipliex = v (1).

The next result demonstrates a sharp difference betweenaRi@an and sub-Riemannian
distance functions.

THEOREM1. Any neighbourhood ofgin M contains a point g# qg, where the distance
functionp is not continuously differentiable.

This theorem is a kind of folklore; everybody agrees it iethut | have never seen the
proof. What follows is a sketch of the proof.

Supposep is continuously differentiable out afy. Take a minimal geodesig(-) of the
lengthr. Thent — q(tt) is a minimal geodesic of the length for anyt € [0, 1] and we have
p(q(t)) = rt; hence(dy)p, 4(t)) = r. Since any point of a neighborhood g belongs to
some minimal geodesic, we obtain thatas no critical points in the punctured neighborhood.
particular, the sphereS(r) = pfl(r) areCl-hypersurfaces itM. Moreover,S(r) = af (Uy);
hence(dg1)0) Dufr = 0 and we obtain the equalitfdg1)p) Duf = Lu, whereu is the
extremal control associated witl(-). Henceq(-) is the projection taM of the solution to the
equationjs = 5(1//) with the boundary conditiogr (1) = rdq1)p. Moreover, we easily conclude
thaty (t) = rdq() 0 and come to the equation

n

k
4t =1 (dgyp, Xi (@D X (@)
i=1

For the rest of the proof we fix local coordinates in a neighbod ofgg. We are going to prove
that the vector fieldV(q) = r Zikzl(dqp, Xi(@)Xi (@), g # g, has index 1 at its isolated
singularitygo. Let B; = {q € R" : |g — do| < &} be a so small ball that(q) < 12 vq €
B:. Lets — q(s; g:) be the solution to the equatiap = V(q) with the initial condition
g(0; g¢) = Qe € Be. Thenq(%; ge) € Be. In particular, the vector fieldlV; on B, defined by
the formulaW(qs) = q(iz; 0e) — Qe looks “outward” and has index 1. The family of the fields

Vs(Qe) = %(q(s; 0:) — Ge), 0 < s < 5 provides a homotopy d€/|B‘E and5W, henceV has
index 1 atqg as well.
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On the other hand, the fieM is a linear combination oK1, ... , Xk and takes its values
near thek-dimensional subspace sgafi (qp), - - . , Xk(dp)}. Such a field must have index 0 at
go- This contradiction completes the proof.

Corollary 1 gives us a parametrization of the space of queggiar geodesics by the poins
of an open subseb of Tg‘oM. Namely,¥ consists ofig € TO"“OM such that the solutiogt (t) to

the equation) = ﬁ(w) with the initial conditiony (0) = v is defined for alt € [0, 1]. The
composition of this parametrization with the endpoint niagpf is the exponential mapping
£V — M. Thusé (¥ (0)) = n (¥ (1)), wherer : T*M — M is the canonical projection.

The space of quasi-regular geodesics of a small enoughhlengste parametrized by the
points of the manifoldH (r) = h_l(g) al T(;"OM C V. Clearly, H(r) is diffeomorphic to
R"K x =1 andH (sr) = sH(r) for any nonnegative.

All results about subanalyticity of the distance functjpare based on the following state-
ment. As usually, the distancesre assumed to be small enough.

PrROPOSITION2. Let M and the sub-Riemannian structure be real-analytiqpg®se that
there exists a compact K hfl(%) N T&“OM such that &) c £(rK), Vvr € (rg,r1). Thenp is

subanalytic op~1 ((rg, r1)).

Proof. It follows from our assumptions and Corollary 1 that

p(@) =minfr : ¥ e K, Ery)=q}, Ygep L((ro.ry).

The mappingf is analytic thanks to the analyticity of the vector figld The compacK can
obviously be chosen semi-analytic. The proposition fooww from [25, Prop. 1.3.7].

|

3. Compactness

LetO C LE[O, 1] be the domain of the endpoint mappitig Recall thatO is a neighborhood
of the origin ofLE[O, 1llandf : © — M is a smooth mapping. We are going to use not only

defined by the norm “strong” topology in the Hilbert spacg{o, 1], but also weak topology. We
denote byO,yeakthe topological space defined by weak topology restrictefl.to

PrRoPOSITIONS. f : Oyeak— M is a continuous mapping.

This proposition easily follows from some classical reswaih the continuous dependence
of solutions to ordinary differential equations on the tipland side. Nevertheless, | give an
independent proof in terms of the chronological calcule® (&, 5]) since it is very short. We
have

f(u

1 k
qo@?pfo > Ui X dt
i=1

k 1 t k
Qo+ZO|o/O (ui(t)e—xbfo ZUj(t)de‘L’) dto X; .
i=1 j=1
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The integration by parts gives:
1 t K 1 1k
/(ui(t)e‘)?b/ ZUJ(t)de‘L’)dt:/ ui(t)dte‘ib/ ZUj(t)det
0 0ix 0 0 i:1

Kk r1 t t K
—Z/ <Uj(t)/ ui(r)dte_xb/ ZUJ(I)XJd‘E)dtOXj.
=170 0 0 i=1

It remains to mention that the mapping) — [, u(r) dz is a compact operator ih'é[o, 1]. A
detailed study of the continuity @&xp in various topologies see in [18].

THEOREM2. The set of minimal geodesics of a prescribed length r is cemipaH;-
topology for any small enoughr.

Proof. We have to prove thatr_l(S(r)) is a compact subset &f; . First of all, fr_l(S(r)) =
f=1(S(r)) N convU;, where conW; is a ball in L'E[O, 1]. This is just becaus&(r) cannot
be reached by trajectories of the length smaller thaThen the continuity ofp implies that
S(r) = p~L(r)is a closed set and the continuity bin weak topology implies that —1(S(r)) is
weakly closed. Since coy; is weakly compact we obtain thzi;_l(S(r)) is weakly compact.
What remains is to note that weak topology resricted to theigdJ, in the Hilbert space is
equivalent to strong topology.

|

THEOREM 3. Suppose that all minimal geodesics of the length r are ragiilaen we have
that£~1(S(r)) N H(r) is compact.

Proof. Denote byuy ) the extremal control associated with0) € H(r) so thatf (¢ (0)) =
f(uy (o)) We haveuy, o) = (h1 (¥ (), ... , hk(¥(-))) (see Proposition 1 and its Corollary). In
particular,uy, ) continuously depends afa(0).

Take a sequencém(0) € EXSrH NHE), m= 1,2 ...; the controlsuy, ) are
minimal, the set of minimal controls of the lengths compact, hence there exists a convergent
subsequence of this sequence of controls and the limit is @gainimal control. To simplify
notations, we suppose without losing generality that trisaceuy, ), m = 1,2,..., is
already convergenglimm— co Uy, ) = U.

It follows from Proposition 1 tha¢m(1) Du,,,, o f = Uy, 0)- Suppose thaM is endowed
with some Riemannian structure so that the length(1)| of the cotangent vectafm(1) has a
sense. There are two possibilities: eitfigm(1)] — co (M — oo) or ym(), m = 1,2, ...,
contains a convergent subsequence.

In the first case we come to the equatioDg f = 0, wherex is a limiting point of the
sequencm ¥m(1), || = 1. Henced is an abnormal minimal control that contradicts the
assumption of the theorem.

In the second case letm (1), | = 1, 2,..., be a convergent subsequence. Tiigq (0),

I =1,2,...,is also convergeng lim|_, oc ¥m (0) = ¥(0) € H(r). Theni = Uz and we
are done.

O

COROLLARY 2. Let M and the sub-Riemannian structure be real-analyticpg®se that
all minimal geodesics of the lengtl are regular for somed < r. Thenp is subanalytic on
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p~((ro. rD.

Proof. According to Theorem 3Kg = £~1(S(rg)) N H(rp) is a compact set anfliy o) :
¥ (0) € Kp} is the set of all minimal extremal controls of the lenggh The minimality of an
extremal controliy, (o) implies the minimality of the contralgy o) for s < 1, sinceugy, ) (r) =
Suy ) (7) and a reparametrized piece of a minimal geodesic is autoatigtiminimal. Hence

Stry) cé (% KO) forr1 > rg and the required subanalyticity follows from Proposition 2
Od

Corollary 2 gives a rather strong sufficient condition fobawalyticity of the distance func-
tion p out of gg. In particular, the absence of abnormal minimal geodesigdiés subanalyticity
of p in a punctured neighborhood gf. This condition is not however quite satisfactory because
it doesn’t admit abnormal quasi-regular geodesics. Thdigihg non generic, abnormal quasi-
regular geodesics appear naturally in problems with symesetMoreover, they are common in
so called nilpotent approximations of sub-Riemanniancstimes at (see [5, 12]). The nilpotent
approximation (or nilpotenization) of a generic sub-Riemian structureyy leads to a simplified
quasi-homogeneous approximation of the original distdnoetion. It is very unlikely thafo
loses subanalyticity under the nilpotent approximatidthcaigh the above sufficient condition
loses its validity. In the next section we give chekable sigfit conditions for subanalyticity,
wich are free of the above mentioned defect.

4. Second Variation

Letu € Uy be an extremal control, i.e. a critical point &f. Recall that the Hessian df atu
is a quadratic mapping
Hes, fr : kerDy fy — cokerDy f ,

an independent on the choice of local coordinates part of¢ksend derivative ofy atu. Let
(1, v) be Lagrange multipliers associated witlso that equation (3) is satisfied. Then the cov-
ectori : TfyM — R annihilates imDy, fr and the composition

(5) AHeg, fr : ker Du fr — R

is well-defined.

Quadratic form (5) is theecond variatiorof the sub-Riemannian problem @t, 2, v). We
have
MHesg, fr (v) = AD&f(u, v) — v|v|2, v € kerDy f .

Letq(-) be the geodesic associated with the confirdlVe set
(6) ind(q(-), A, v) = ind+ (AHeg, fr) — dim cokerDy f; ,

where ind-(AHesg, fy) is the positive inertia index of the quadratic forrhles, fr. Decoding
some of the symbols we can re-write:

ind(q(-). »,v) = sufdimV :V CkerDyfr, ADZf(v,v) > v|v|2, Vv € V \ 0}
—dlm{)»/ S T?(U)M . )\./Du fr = 0} .

The value of indq(-), A, v) may be an integer ofoco.
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REMARK 2. Index (5) doesn’t depend on the choice of the orthonormaahéX+, ... , Xk
and is actually a characteristic of the geodegi¢ and the Lagrange multiplier@., v). Indeed,
a change of the frame leads to a smooth transformation ofitbertimanifoldU, and to a linear
transformation of variables in the quadratic foxies, fr and linear mappin®y fr . Both terms
in the right-hand side of (5) remain unchanged.

PROPOSITION4. (u, A, v) +— ind(q(-), A, v) is a lower semicontinuous function on the
space of solutions of (3).

Proof. We have dim cokeby fr = codimkerDy fr. Here keDy fr = kerDyf N {u}t ¢
LE[O, 1] is a subspace of finite codimension |'u§[o, 1]. The multivalued mappingl —
(kerDy fr) N Uy is upper semicontinuous in the Hausdorff topology, justioseu — Dy f
is continuous.

Take (u, A, v) satisfying (3). Ifu’ is close enough ta, then keD,, fr is arbitraryly close
to a subspace of codimension

dim cokerDy, fr — dim cokerDy fr

in Dy fr. SupposeV C kerDyfy is a finite-dimensional subspace such thetes, fr\v is
a positive definite quadratic form. If’ is sufficiently close tau, then ke fy contains a
subspace/’ of dimension

dimV — (dimcokerDy fr — dim cokerD,y fr)

that is arbitrarily close to a subspace\of If A’ is sufficiently close ta., then the quadratic form
V'Hesy fr |,/ is positive definite.
We come to the inequality irid’(-), A’, v") > ind(q(-), A, v) for any solution(u’, A’, v") of
(3) close enough teu, A, v); hereq’(-) is the geodesic associated to the control
Od

THEOREMA4. If q(-) is minimal geodesic, then there exist associated with bagrange
multipliers ., v such thatnd(q(-), A, v) < 0.

This theorem is a direct corollary of a general result angedrin [2] and proved in [3]; see
also [8] for the updated proof of exactly this corollary.

THEOREMS5. Suppose thahd(q(-), A, 0) > 0for any abnormal geodesiag of the length
r and associated Lagrange multiplie¢s, 0). Then there exists a compact K H (r) such that
Sr) = E(Ky).

Proof. We use notations introduced in the first paragraph of thefbdheorem 3. Letyy (o
be the geodesic associated to the contigly). We set

M Kr = {¥(0) € H(r) N ETX(Sr)) : ind(ay o). (D). 1) < 0}

It follows from Theorem 4 and the assumption of Theorem 5 &#; ) = S(r). What remains
is to prove thaK; is compact.
Take a sequencgm(0) € Ky, m = 1,2,...; the controlsuy, ) are minimal, the set
of minimal controls of the length is compact, hence there exists a convergent subsequence
of this sequence of controls and the limit is again a minineaitol. To simplify notations, we
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suppose without losing generality that the sequenggo), m= 1, 2, ..., isalready convergent,
FliMm— oo Uym(0) = U.

It follows from Proposition 1 that/m(1) Duy,, o f = Uy (0)- There are two possibilities:
either|ym(1)| — oo (M — oo) or ym(1), m= 1,2, ..., contains a convergent subsequence.

In the first case we come to the equatioBg f = 0, wherex is a limiting point of the
sequencmwm(l), || = 1. Lower semicontinuity of in¢fj(-), A, v) implies the inequality
ind(q(-), »,0) < 0, whereq(-) is the geodesic associated with the confrolWe come to a
contradiction with the assumption of the theorem.

In the second case letm (1), | = 1,2,..., be a convergent subsequence. Tiigh (0),
I =1,2,..., is also convergeng lim|_, o, ¥m (0) = ¥(0) € H(r). Thend = Ui 0 and
ind(q(-), ¥ (1), 1) < 0 because of lower semicontinuity of ifef-), 1, v). Hencey (0) € Ky
and we are done.

|

COROLLARY 3. Let M and the sub-Riemannian structure be real-analytipp®se p < r
is such thatind(q(-), », 0) > 0 for any abnormal geodesic(q of the length g and associated
Lagrange multipliergi, 0). Thenp is subanalytic or)o—1 ((ro,rD.

Proof. Let Kr, be defined as in (7). TheK;, is compact anduy ) : ¥ (0) € Ky} is the
set of all minimal extremal controls of the lengty. The minimality of an extremal control
Uy (o) implies the minimality of the controligy, () for s < 1, sinceugy )(z) = Sy () ()
and a reparametrized piece of a minimal geodesic is autoatigtiminimal. HenceS(r{) C
£ (% Kro) forry > rg and the required subanalyticity follows from Proposition 2

a

Among 2 terms in expression (6) for i@-), A, v) only the first one, the inertia index of the
second variation, is nontrivial to evaluate. Fortunatidgre is an efficient way to compute this
index for both regular and singular (abnormal) geodesiksvell as a good supply of conditions
that garantee the finiteness or infinity of the index (see [B, 8]). The simplest one is th@&oh
condition(see [6]):

If ind(q(-), ¥ (1), 0) < +oo, theny (t) annihilatesAg(t), vt € [0, 1].

Recall thaty (t) annihilatesAq(t), 0 <t <1, for any Lagrange multipliefy (1), 0) associated
with gq(-). We say that(-) is aGoh geodesidf there exist Lagrange multiplierg/ (1), 0) such
thaty (t) annihilatesAg(t), vVt € [0, 1]. In particuar, strictly abnormal minimal geodesics must
be Goh geodesics. Besides that, the Goh condition and @ordlimply

COROLLARY 4. Let M and the sub-Riemannian structure be real-analytic gne r. If
there are no Goh geodesics of the lengghthenp is subanalytic orp~1((rg, r]).

I'll finish the paper with a brief analysis of the Goh conditio Suppose that(-) is an
abnormal geodesic with Lagrange multipli€ig(1), 0), andk = 2. Differentiating the iden-
tities hy (¥ (1)) = ha(y(t)) = 0 with respect tat, we obtain ux(t) {hy,h1} (¥ (t)) =
up () {h1, ha}(¥ (1)) = 0, wherefhq, ho} (v (1)) = (¥ (1), [ X1, X2](q(t))) is the Poisson bracket.
In other words, the Goh condition is automatically satisbigdiny abnormal geodesic.

The situation changes dramaticallykif> 2. In order to understand why, we need some
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notation. Take. € T*M and set

bo(%) = (thg, h2}(b), th1, ha}(V), ..., {hk_1, he} (),

. kk=1) . . . . .
a vector inR™ 2 whose coordinates are numbélg, hj W), 1 <i < j <k, with lexico-

graphically ordered indecsds, j). Set alsofg = @ The Goh condition foq(-), ¥ (1)
implies the identityog (v (1)) = 0, Vt € [0, 1]. The differentiation of this identity with respect to
t in virtue of (4) gives the equality

k
® > uihi bol(¥ () =0, 0<t<1.
i=1
Consider the spac)e\kRﬂO, thek-th exterior power oRf0. The standard lexicographic basis in

(%)

br(3) = (bo(1), {h1, bo}(A) A -+ A {hy, bo}(h) € RPL.
Equality (8) implies:by(y(t)) =0,0<t < 1.

AKRAo gives the identificatiop\ K R =~ R .Wesetp; = + ( /?(0 ) and

Now we set by inductiorBj 1 = B + ( i ) i =0,1,2, ..., and fix identifications
Bi
(7)

bi 100 = (b (W), (hy, B} A -~ A fh, b})) e RFI+L i =12, ... .

RA xR = RFi+1. Finaly, we define

Successive differentiations of the Goh condition give theagionsb; (¥ (t)) = 0,i =1,2,....
Itis easy to check that the equatibn_q (A) = Ois not, in general, a consequence of the equation
b; () = 0 and we indeed impose more and more restrictive conditionthe locus of Goh
geodesics.

A natural conjecture is that admitting Goh geodesics distibns of rankk > 2 form a set
of infinite codimension in the space of all rakklistributions, i.e. they do not appear in generic
smooth families of distributions parametrized by finiteadnsional manifolds. It may be not
technically easy, however, to turn this conjecture intottiemrem.

Anyway, Goh geodesics are very exclusive for the distrdngiof rank greater than 2. Yet
they may become typical under a priori restictions on thevgjiosector of the distribution (see

[6])-

Note in proof. An essential progress was made while the paper was waitimgédublication.

In particular, the conjecture on Goh geodesics has beeregras well as the conjecture stated
at the end of the Introduction. These and other results wiihigsluded in our joined paper with
Jean Paul Gauthier, now in preparation.
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M. Bardi * — S. Bottacin

ON THE DIRICHLET PROBLEM
FOR NONLINEAR DEGENERATE ELLIPTIC EQUATIONS
AND APPLICATIONS TO OPTIMAL CONTROL

Abstract.

We construct a generalized viscosity solution of the Digthroblem for fully
nonlinear degenerate elliptic equations in general dosaynthe Perron-Wiener-
Brelot method. The result is designed for the Hamilton-Ba&eliman-lsaacs
equations of time-optimal stochastic control and difféi@rgames with discon-
tinuous value function. We study several properties of #megalized solution, in
particular its approximation via vanishing viscosity aegularization of the do-
main. The connection with optimal control is proved for asdgtinistic minimum-
time problem and for the problem of maximizing the expectschpe time of a
degenerate diffusion process from an open set.

Introduction

The theory of viscosity solutions provides a general frapréwor studying the partial differ-
ential equations arising in the Dynamic Programming apgrda deterministic and stochastic
optimal control problems and differential games. This tigés designed for scalar fully nonlin-
ear PDEs

Q) F (X, u(x), Du(x), D2u(x)) =0inQ,
whereQ is a general open subsetRN , with the monotonicity property

@ Fx,r,p, X) < F(x,s,p,Y)
if r <sandX — Y is positive semidefinite
so it includes &t order Hamilton-Jacobi equations andd?order PDEs that are degenerate
elliptic or parabolic in a very general sense [18, 5].
The Hamilton-Jacobi-Bellman (briefly, HIB) equations ie theory of optimal control of
diffusion processes are of the form

(3) supL®u =0,

aeA

** Partially supported by M.U.R.S.T., projects “Probleminfioeari nell’analisi e nelle applicazioni
fisiche, chimiche e biologiche” and “Analisi e controllo djieazioni di evoluzione deterministiche e stocas-
tiche”, and by the European Community, TMR Network “Vis¢gsiolutions and their applications”.
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whereq is the control variable and, for eaeh £ is a linear nondivergence form operator

92u au
b* — 4+ c%u— 2,
0 X +o X +

4) L% = —ai"J?

where f andc are the running cost and the discount rate in the cost fumalib is the drift of
the systema = %aaT ando is the variance of the noise affecting the system (see Se8tR).
These equations satisfy (2) if and only if

5) & (0] > 0andc () = 0, forall x € 2, a € A, & RV,

and these conditions are automatically satisfied by operatoming from control theory. In the
case of deterministic systems we h = 0 and the PDE is of 4t order. In the theory of
two-person zero-sum deterministic and stochastic diffiegames the Isaacs’ equation has the
form

6 sup inf £%Pu=0,
( ) aeEﬂGB

whereg is the control of the second player aé-# are linear operators of the form (4) and
satisfying assumptions such as (5).

For many different problems it was proved that the value fionds the unique continuous
viscosity solution satisfying appropriate boundary ctinds, see the books [22, 8, 4, 5] and the
references therein. This has a number of useful consegsiebeeause we have PDE methods
available to tackle several problems, such as the numeraallation of the value function,
the synthesis of approximate optimal feedback controlgnasotic problems (vanishing noise,
penalization, risk-sensitive control, ergodic problesisgular perturbations.. ). However, the
theory is considerably less general for problems wiidtontinuousvalue function, because it
is restricted to deterministic systems with a single cdl@rowhere the HIB equation is of first
order with convex Hamiltonian in thp variables. The pioneering papers on this issue are due
to Barles and Perthame [10] and Barron and Jensen [11], wditferent definitions of non-
continuous viscosity solutions, see also [27, 28, 7, 39, th4] surveys and comparisons of the
different approaches in the books [8, 4, 5], and the refa®titerein.

For cost functionals involving the exit time of the statenfrthe set2, the value function
is discontinuous if the noise vanishes near some part of dhedary and there is not enough
controllability of the drift; other possible sources of atigitinuities are the lack of smoothness
of 32, even for nondegenerate noise, and the discontinuity anipatibility of the boundary
data, even if the drift is controllable (see [8, 4, 5] for exdes). For these functionals the value
should be the solution of the Dirichlet problem

F(x,u, Du,D2u) =0 ing,
) { ( )

u=g onag,

whereg(x) is the cost of exiting2 atx and we assumg € C(3€2). For 2nd order equations, or
1st order equations with nonconvex Hamiltonian, there are nalldefinitions of weak solution
and weak boundary conditions that ensure existence andemégs of a possibly discontinuous
solution. However a global definition of generalized santbf (7) can be given by the following
variant of the classical Perron-Wiener-Brelot method iteptial theory. We define

S {w € BUSQQ) subsolution of (1) w < g on 3}
Z = {W e BLSQXQ) supersolution of (L)W > gon iR},
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where BU SQ(Q) (respectively,BL SC(Q2)) denote the sets of bounded upper (respectively,
lower) semicontinuous functions @@, and we say that : @ — R is a generalized solution of
) if
(8) u(x) = supw(x) = inf W(x).

weS WeZ
With respect to the classical Wiener’s definition of genieeal solution of the Dirichlet problem
for the Lapalce equation in general nonsmooth domains BEg &lso [16, 26]), we only replace
sub- and superharmonic functions with viscosity sub- ampessolutions. In the classical theory
the inequality sup.s w < infyycz W comes from the maximum principle, here it comes from
theComparison Principléor viscosity sub- and supersolutions; this important itdsalds under
some additional assumptions that are very reasonabled®tiB equations of control theory, see
Section 1.1; for this topic we refer to Jensen [29] and Crinighii and Lions [18]. The main
difference with the classical theory is that the PWB solufir the Laplace equation is harmonic
in Q and can be discontinuous only at boundary points wherés very irregular, whereas here
u can be discontinuous also in the interior and even if the Bagnis smooth: this is because
the very degenerate ellipticity (2) neither implies regidiag effects, nor it guarantees that the
boundary data are attained continuously. Note that if ailcoatis viscosity solution of (7) exists
it coincides withu, and both the sup and the inf in (8) are attained.

Perron’s method was extended to viscosity solutions byi [8] (see Theorem 1), who
used it to prove general existence results of continuougisak. The PWB generalized solution
of (7) of the form (8) was studied indipendently by the authand Capuzzo-Dolcetta [4, 1] and
by M. Ramaswamy and S. Ramaswamy [38] for some special chsgsiations of the form (1),
(2). In [4] this notion is calle@nvelope solutioand several properties are studied, in particular
the equivalence with the generalized minimax solution dftfiin [41, 42] and the connection
with deterministic optimal control. The connection withrpuit-evasion games can be found in
[41, 42] within the Krasovskii-Subbotin theory, and in oaper with Falcone [3] for the Fleming
value; in [3] we also study the convergence of a numericaseh

The purposes of this paper are to extend the existence aial fraperties of the PWB
solution in [4, 1, 38] to more general operators, to prove s@@w continuity properties with
respect to the data, in particular for the vanishing viggasiethod and for approximations of
the domain, and finally to show a connection with stochagttintal control. For the sake of
completeness we give all the proofs even if some of themviottee same argument as in the
quoted references.

Let us now describe the contents of the paper in some detafbubsection 1.1 we recall
some known definitions and results. In Subsection 1.2 weeptiog existence theorem under
an assumption on the boundary datdhat is reminiscent of the compatibility conditions in
the theory of $t order Hamilton-Jacobi equations [34, 4]; this conditiorpli®s that the PWB
solution is either the minimal supersolution or the maximabsolution (i.e., either the inf or
the sup in (8) is attained), and it is verified in time-optirnahtrol problems. We recall that the
classical Wiener Theorem asserts that for the Laplace iequeaty continuous boundary function
g is resolutive(i.e., the PWB solution of the corresponding Dirichlet desb exists), and this
was extended to some quasilinear nonuniformly ellipticagiqums, see the book of Heinonen,
Kilpelainen and Martio [25]. We do not know at the momenthifstresult can be extended to
some class of fully nonlinear degenerate equations; haweeg@rove in Subsection 2.1 that the
set of resolutive boundary functions in our context is atbgeder uniform convergence as in the
classical case (cfr. [26, 38]).

In Subsection 1.3 we show that the PWB solution is consistéthtthe notions of general-
ized solution by Subbotin [41, 42] and Ishii [27], and it s#s the Dirichlet boundary condition
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in the weak viscosity sense [10, 28, 18, 8, 4]. Subsectioris2devoted to the stability of the
PWB solution with respect to the uniform convergence of therlary data and the operatér
In Subsection 2.2 we consider merely local uniform perttioba of F, such as the vanishing
viscosity, and prove a kind of stability provided the Sets simultaneously approximated from
the interior.

In Subsection 2.3 we prove that for a nested sequence of getsQ, of Q such that
Un ©@n = @, if un is the PWB solution of the Dirichlet problem p, the solutionu of (7)
satisfies

9) u(x) = Iirr1n un(X), X €.

This allows to approximate with more regular solutions, whena < is not smooth an®2n are
chosen with smooth boundary. This approximation procedoes back to Wiener [44] again,
and it is standard in elliptic theory for nonsmooth domairteere (9) is often used tdefine

a generalized solution of (7), see e.g. [30, 23, 12, 33]. IbsBation 2.3 we characterize the
boundary points where the data are attained continuousigrins of the existence of suitable
local barriers.

The last section is devoted to two applications of the previheory to optimal control. The
first (Subsection 3.1) is the classical minimum time probfendeterministic nonlinear systems
with a closed target. In this case the lower semicontinuouelepe of the value function is the
PWB solution of the homogeneous Dirichlet problem for thdéiiBan equation. The proof we
give here is different from the one in [7, 4] and simpler. Theand application (Subsection 3.2)
is about the problem of maximizing the expected discounted that a controlled degenerate
diffusion process spends fa. Here we prove that the value function itself is the PWB sofut
of the appropriate problem. In both cagps: O is a subsolution of the Dirichlet problem, which
implies that the PWB solution is also the minimal supersotut

It is worth to mention some recent papers using related msthd@he thesis of Bettini
[13] studies upper and lower semicontinuous solutions ef@auchy problem for degenerate
parabolic and 4t order equations with applications to finite horizon diffetial games. Our
paper [2] extends some results of the present one to bouwdéug problems where the data
are prescribed only on a suitable partaget. The first author, Goatin and Ishii [6] study the
boundary value problem for (1) with Dirichlet conditionsthre viscosity sense; they construct
a PWB-type generalized solution that is also the limit ofragpmations ofQ2 from the outside,
instead of the inside. This solution is in general differieom ours and it is related to control
problems involving the exit time frorg, instead of.

1. Generalized solutions of the Dirichlet problem
1.1. Preliminaries
Let F be a continuous function
F:QxRxRN x S(N) > R,

whereQ is an open subset &N, S(N) is the set of symmetritl x N matrices equipped with
its usual order, and assume thkasatisfies (2). Consider the partial differential equation

(10) F(x, u(x), Du(x), D2u(x)) =0inQ,
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whereu : Q@ — R, Du denotes the gradient afand D2u denotes the Hessian matrix of second
derivatives ofu. From now on subsolutions, supersolutions and solutiotisi@equation will be
understood in the viscosity sense; we refer to [18, 5] fordb#nitions. For a general subdet

of RN we indicate withU SC(E), respectivelyL SC(E), the set of all function€ — R upper,
respectively lower, semicontinuous, and wBitJ SCG(E), BLSC(E) the subsets of functions
that are also bounded.

DEFINITION 1. We will say that equation (10) satisfies tBemparison Principlé for all
subsolutionay € BU SQ(Q) and supersolutions W BL SG(Q) of (10) such thaiv < W on
9%, the inequalityw < W holds inQ.

We refer to [29, 18] for the strategy of proof of some compariprinciples, examples and
references. Many results of this type for first order equestican be found in [8, 4].

The main examples we are interested in are the Isaacs eqggiatio

(11) supinf £%Pu(x) = 0
a B
and
(12) inf supL*Pu(x) = 0,
B«
where
3%u

+ b?"’g(x)—u +c®Bou— P (x).

o ]
£4Pux) = —a”-’ﬁ(x) ™
1

9% 9X|
HereF is

F(X,r, p, X) = supiréf{—trace(a“’ﬂ(x)X) +b%Bx) - p+ctPor — F4B ).
o

If, forall x € Q,a%# (x) = %O‘a’ﬁ(X)(O‘a’ﬁ(X))T, whereo®# (x) is a matrix of ordeiN x M, T
denotes the transpose matiat-#, b*-# c*# {28 are bounded and uniformly continuous in
Q, uniformly with respect tax, 8, thenF is continuous, and it is proper if in additia®? > 0
for all a, 8.

Isaacs equations satisfy the Comparison Principke i bounded and there are positive
constantK 4, K5, andC such that

(13) F(x, t, p, X) — F(X, 8,0, Y) <max{Kjtrace(Y — X), K1t —=9)}+ Kolp—ql,
forallY < Xandt <s,

(14) lo®P(x) — a®P(y)|
(15) Ib%P (x) — b*P (y)|

< Clx—y| forallx,y e Qandalle, 8

< Clx—y| forallx,y e Qandalle, g,

see Corollary 5.11 in [29]. In particular condition (13) &tisfied if and only if
max(A%P(x), <P (x)} > K > 0forallx e Q, « € A, B B,

wherer®# (x) is the smallest eigenvalue &®-#(x). Note that this class of equations contains
as special cases the Hamilton-Jacobi-Bellman equatiomptdhal stochastic control (3) and
linear degenerate elliptic equations with Lipschitz caéfits.
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Given a functioru : Q — [—o0, +0o¢], we indicate withu* andu,, respectively, the upper
and the lower semicontinuous envelopaupthat is,

u*(xX) = lim supu(y) : Q, ly—x|<r},
x) o puly) iy e ly —X| <r}

Us (X) rIiQnOinf{U(y) YEQ, ly—Xx =r}.

PrRoPOSITION]. Let S (respectively Z) be a set of functions such that fowadt S (re-
spectively We Z) w* is a subsolution (respectively Ws a supersolution) of (10). Define the
function

u(x) := supw(x), x € , (respectively x) := inf W(x)).
weS Wez

If u is locally bounded, then®uis a subsolution (respectively s a supersolution) of (10).

The proof of Proposition 1 is an easy variant of Lemma 4.2 8}.[1

PrROPOSITION2. Letwn € BUSC(2) be a sequence of subsolutions (respectively &V
BL SC(Q) a sequence of supersolutions) of (10), such thatx) N\, u(x) for all x € Q (respec-
tively Wh(X) ' u(x)) and u is a locally bounded function. Then u is a subsolutiesfectively
supersolution) of (10).

For the proof see, for instance, [4]. We recall that, for aggale subseE of RN andx € E,

the second order superdifferentialwht X is the subseﬂé’Jru()?) of RN x S(N) given by the
pairs(p, X) such that

1
ux) < u®) + p~(x—f<)+§x<x—f<)~(x—>%)+o(|x—>%|2)

for E > x — X. The opposite inequality defines the second order subeiffel ofu at X,
IZTu).
LEMMA 1. Let u* be a subsolution of (10). If,ufails to be a supersolution at some point
X € ©, i.e. there existp, X) € Jé’fu*(i) such that
F(X, ux(%), p, X) <0,

then for all k > 0 small enough, there existsU € — R such that |} is subsolution of (10)
and

Uk (X) > u(x), supy(Ug —u) >0,
Uk(X) = u(x) for all x € 2 such thatx — X| > k.

The proof is an easy variant of Lemma 4.4 in [18]. The lastltegthis subsection is Ishii's
extension of Perron’s method to viscosity solutions [27].

THEOREM1. Assume there exists a subsolutignamnd a supersolutionuof (10) such that
Uy < up, and consider the functions
UX) := supw(X):u; <w <Up, w* subsolution 0f10)},
W(x)

inf{w(X) : Uy < w < up, wy supersolution of10)} .

Then U*, W* are subsolutions of (10) and.,lJJW, are supersolutions of (10).



On the Dirichelet problem 19

1.2. Existence of solutions by the PWB method

In this section we present a notion of weak solution for theratary value problem

2 _ .
(16) { F(x,u, Du, D%u) =0 ing,

u=g onoag,
whereF satisfies the assumptions of Subsection 1.1@ndQ — R is continuous. We recall
thatS, Z are the sets of all subsolutions and all supersolutions&fdéfined in the Introduction.

DEFINITION 2. The function defined by

Hg(¥) = supw(x),
weS

is thelower envelope viscosity solutippr Perron-Wiener-Brelot lower solutionf (16). We will
refer to it as thdower e-solution The function defined by
Hg(X) := inf W(x),
g(X) WAt (x)

is theupper envelope viscosity solutipor PWB upper solutionof (16), brieflyjupper e-solution
IfHg = Hg, then

is the envelope viscosity solutionr PWB solutionof (16), brieflye-solution In this case the
data g are calledesolutive

Observe thaH j < Wg by the Comparison Principle, so the e-solution exists ifitlegual-
ity > holds as well. Next we prove the existence theorem for etisols, which is the main
result of this section. We will need the following notion dbbal barrier, that is much weaker
than the classical one.

DEFINITION 3. We say thatw is alower (respectivelyuppe) barrier at a point xe 9 if
w € S (respectivelyw € Z) and

Jim w(y) = g00).

THEOREM2. Assume that the Comparison Principle holds, and $iag are nonempty.
i) If there exists a lower barrier at all points & 9<2, then Hy = miny.z W is the e-solution
of (16).
ii) Ifthere exists an upper barrier at all points& 02, then Hy = max, s w is the e-solution
of (16).
Proof. Let w be the lower barrier at € 32, then by definitiorw < ﬂg. Thus
(Hg)«(Xx) = Il)r)ggf Hg(y) = Ilg;lr;(f w(y) =g(x).

By Theorem 1(ﬂg)* is a supersolution of (10), so we can conclude (@é)* € Z. Then
(Hg)x = Hg > Hg,s0Hg = HgandHq € 2.
|



20 M. Bardi — S. Bottacin

ExampPLE 1. Consider the problem

17 {—aumwm¢m+uawmuy+amwm=o inQ,

u(x) = g(x) onag,

with the matrixajj (x) such thata;(x) > u > 0 for all x € Q. In this case we can show
that all continuous functions o#2 are resolutive. The proof follows the classical one for the
Laplace equation, the only hard point is checking the sugsitipn principle for viscosity sub-
and supersolutions. This can be done by the same methodsidadthe same assumptions as
the Comparison Principle.

1.3. Consistency properties and examples

Next results give a characterization of the e-solution astpise limit of sequences of sub and
supersolutions of (16). If the equation (10) is of first ordkis property is essentially Subbotin’s
definition of (generalized) minimax solution of (16) [41,]42

THEOREM 3. Assume that the Comparison Principle holds, and $iag are nonempty.

i) If there exists ue S continuous at each point @2 and such that u= g ond<, then there
exists a sequenaen € S such thatwn  Hg.

ii) If there existal € Z continuous at each point 6f2 and such thati = g ona<2, then there
exists a sequence ¢ Z such that W \ Hg.

Proof. We give the proof only foii), the same proof works fdi). By Theorem 2Hg =
miny <z W. Givene > 0 the function

(18) Ue (X) :=sugw(X) : w € §, w(x) = u(x) ifdist (x, Q) < €},
is bounded, ands < uc for e < §. We define

V(X):

Aim_(Ug/n)(X)

and note that, by definitionHg > ue
supersolution of (10) in the set

v

(ue)s, and thenHg > V. We claim that(ue)x is

Qe = {Xx e Q:dist(x, Q) > ¢}.

To prove this claim we assume by contradiction thab, fails to be a supersolution gte Q..
Note that, by Proposition Iuc)* is a subsolution of (10). Then by Lemma 1, for kI~ 0
small enough, there exist such thatJ is subsolution of (10) and

(19) supUk — Ue) > 0, Ur(X) = Ue(X) if |x —y| > k.
Q

We fix k < dist(y, 0Q2) — €, so thatUg(X) = ue(x) = u(x) for all x such that distx, 92) < e.
ThenUy (x) = u(x), soUy e S and by the definition ofie we obtainU)® < u.. This gives a
contradiction with (19) and proves the claim.

By Proposition 2V is a supersolution of (10) i®. Moreover ifx € 3, for all ¢ > 0,
(Ue)x(X) = g(x), becauselc (x) = u(x) if dist (x, 32) < € by definition,u is continuous and
u=gondQ. ThenV > gona, and soV € Z.
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To complete the proof we defingn := (uz/n)*, and observe that this is a nondecreasing
sequence i whose pointwise limit is= V by definition ofV. On the other hand, < Hg by
definition of Hg, and we have shown théig =V, sown ' Hg.

|

CoROLLARY 1. Assume the hypotheses of Theorem 3. Thgislthe e-solution of (16 if
and only if there exist two sequences of functionse S, Wh € Z, such thatwn = Wh = g on
aQ and forall x e Q

wn(X) = Hg(X), Wh(X) = Hg(x) asn— oo.

REMARK 1. Itis easy to see from the proof of Theorem 3, that in ¢asiie e-solutiorHg
satisfies

Hg(X) = supue(x) X € Q,
€

where
(20) Ue(X) ;= sugw(X) :w € S, w(X) =ux) forx € Q\ O},

and @, € €]0, 1], is any family of open sets such tha@, < Q, ® 2 ©s for e < § and
U, ©c = €.

EXAMPLE 2. Consider the Isaacs equation (11) and assume the suffioieditions for the
Comparison Principle.

o If
g=0andf*f(x)>0forallx e Q, a € A, BB,

thenu = 0 is subsolution of the PDE, so the assumptipof Theorem 3 is satisfied.
¢ If the domaing2 is bounded with smooth boundary and there exist A andu > 0 such
that
aiPoogig) > pgPforall pe B, xe @, £ e RN,

then there exists a classical solutioof

inf £%Pu=0 inQ,
peB
ng OnaQ,

see e.g. Chapt. 17 of [24]. Thenis a supersolution of (11), so the hypothesis of
Theorem 3 is satisfied.

Next we compare e-solutions with Ishii’s definitions of noomtinuous viscosity solution
and of boundary conditions in viscosity sense. We recatlatianctionu e BU SQ(Q) (respec-
tively u € BLSQ(Q)) is aviscosity subsolutiofrespectively aviscosity supersolutigrof the
boundary condition

(22) u=gorF(,u, Du, D2u) =00ndQ,
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ifforall x € 9 andg € C2(Q) such thati—¢ attains a local maximum (respectively minimum)
atx, we have

(U= g)(x) <0 (resp. > 0) or F(x, u(x), Dp(x), D?p(x)) < 0 (resp. = 0).

An equivalent definition can be given by means of the semi]ét‘s%(x), J%fu(x) instead of
the test functions, see [18].

PropPOSITIONS. If Hg: Q — Ris the lower e-solution (respectiveIHg is the upper

e-solution) of (16), then_ﬁl is a subsolution (respectivelﬁg* is a supersolution) of (10) and
of the boundary condition (21).

Proof. If H is the lower e-solution, then by Propositionﬂ;ﬁ is a subsolution of (10). It
remains to check the boundary condition.

Fix any € 9Q such thaﬂi;(y) > g(y), and¢ € C2(Q) such thaﬂia — ¢ attains a local
maximum aty. We can assume, without loss of generality, that

Hiy =¢(y). HE—d)x) <—[x—yPforallx e QN B(y.r).

By definition ofﬂa, there exists a sequence of poirts— y such that

1
Hg = )xn) = = foralin.

Moreover, sincelig is the lower e-solution, there exists a sequence of funstign € S such
that

1
Hg(xn) — n< wn(Xn) for all n.

Since the functionun — ¢ is upper semicontinuous, it attains a maximunygag Q N B(y, r),
such that, fon big enough,

2 3
- < (wn — @) (Yn) < —Iyn = YI°.
Soasn — o©

Yn =Y, wn(yn) = ¢(y) = HG(Y) > 9(y).

Note thatyn ¢ 92, becausen € 92 would imply wn(yn) < 9(yn), Which gives a contradiction
to the continuity ofg aty. Therefore, sincevn, is a subsolution of (10), we have

F(Yn, wn(Yn), D (yn), D%p(yn)) <0,

and lettingn — oo we get

F(y. Hy(). Dg(y). D% (y)) <0,

by the continuity ofF.
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REMARK 2. By Proposition 3, if the e-solutiokig of (16) exists, it is a non-continuous
viscosity solution of (10) (21) in the sense of Ishii [27]. €Be solutions, however, are not
unique in general. An e-solution satisfies also the Dirichieblem in the sense that it is a non-
continuous solution of (10) in Ishii's sense aRg(x) = g(x) for all x € 9%, but neither this
property characterizes it. We refer to [4] for explicit exales and more details.

REMARK 3. Note that, by Proposition 3, if the e-solutiéty is continuous at all points of
91 with Q1 C @, we can apply the Comparison Principle to the upper and Isesticontinu-
ous envelopes dflg and obtain that it is continuous @;. If the equation is uniformly elliptic
in 21 we can also apply if21 the local regularity theory for continuous viscosity sauas
developed by Caffarelli [17] and Trudinger [43].

2. Properties of the generalized solutions

2.1. Continuous dependence under uniform convergence ofétdata

We begin this section by proving a result about continuoyseddence of the e-solution on
the boundary data of the Dirichlet Problem. It states thatgét of resolutive data is closed
with respect to uniform convergence. Throughout the papedenote with/ the uniform
convergence.

THEOREM4. Let F : @ x R x RN x S(N) — R be continuous and proper, and let

On : 92 — R be continuous. Assume th@n}n is a sequence of resolutive data such that
gn=3g 0ndQ. Then g is resolutive and §{= Hg on Q.

The proof of this theorem is very similar to the classical forehe Laplace equation [26].
We need the following result:

LEMMA 2. Forallc > 0, H(gic) < Hg+¢ andﬁ(g+c) <Hg+c.
Proof. Let
Sc ;= {w € BUSQER) : w is subsolution of (1Q) w < g+ conaQ}.

Fix u € 8¢, and consider the functiom(x) = u(x) — c. SinceF is proper it is easy to see that
vedS. Then

ﬂ(g+c) = Supu < supv+c:= ﬂg +cC.
ueSc veS

a

of Theorem 4.Fix ¢ > 0, the uniform convergence impli@s:Vn>m: ghn—e < g < gn+e.
Sincegn is resolutive by Lemma 2, we get

Hg, —€ = H(g,—e) = Hg = H(g,4¢) = Hgy t€.

ThereforeHg, = H 4. The proof thatHg, = Hyg, is similar.
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Next result proves the continuous dependence of e-sokutidgih respect to the data of the
Dirichlet Problem, assuming that the equatidhsare strictly decreasing in uniformly inn.

THEOREMS5. Let iy : © x R x RN x S(N) — R is continuous and proper, go$2 — R
is continuous. Suppose that, V§ > 0 Je such that

Fn(X,r _57 p’ X) +€ =< Fn(x’rv p’ X)

forall (x,r, p, X) € @ xR xRN x S(N),and ;=F onQ x R x RN x S(N). Suppose g is
resolutive for the problems

Fn(x,u, Du,D2u) =0 inQ,

(22) { u=g onos2.

Suppose g: 32 — R is continuous, g=>g ond2 and g, is resolutive for the problem

2 _ .
23) { Fn(X,u, Du, D?u) =0 in <,

Uu=gn onog.

Then g is resolutive for (16) andgr;l:g Hg, where I—,Qn is the e-solution of (23).

Proof. Step 1. For fixed > 0 we want to show that there existssuch that for alih > m:
|ﬂ8 —Hgl <3, whereHé‘ is the e-solution of (22).
We claim that there exists such thatHg —§ < Hg andHg < Hg +dforalin > m.

Then
n o =n _yn
Hg—-d<Hg<Hg=Hg+é=Hg+3.
This proves in particuIaHé‘zgﬂg and Hé‘j)ﬁg, and thenﬁg = Hg, sog is resolutive for

(16).
It remains to prove the claim. Let

Sg := {v subsolution ofF, = 0N, v < gonadQ}.

Fix v € 88, and consider the functiom = v — §. By hypothesis there exists ansuch that

Frn(X, u(x), p, X) + € < Fn(X, v(X), p, X), for all (p, X) € JSZZ’Jru(x). Then using uniform
convergence oFy at F we get

F(x, u(x), p, X) < Fn(X, u(x), p, X) + € < Fa(x, v(x), p, X) <0,

sov is a subsolution of the equatidfy, = 0 because]é”rv(x) = Jé’+u(x).

We have shown that for all € 88 there exista) € S such thatv = u + §, and this proves
the claim.

Step 2. Using the argument of proof of Theorem 4 with the Enabl

Fm(x,u, Du, D2u) =0 inQ,

(24) { Uu=gn onag,

we see that fixing > 0, there exist such that for alh > p: |ﬂ$ - ﬂg‘| < §forallm.

Step 3. Using again arguments of proof of Theorem 4, we sedixiveg § > 0O there exists
g such that foralh,m > q: [Hg — Hg' | < 6.
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Step 4. Now také > O, then there existp such that for alh, m > p:

IHG — Hgl < [HG — HG |+ HG — H'l + [HF' — Hgl < 35.

Similarly |ﬁgmm — Hgl < 3. ButHg, = ﬁg‘m, and this complete the proof.

2.2. Continuous dependence under local uniform convergeerof the operator

In this subsection we study the continuous dependence oluéiens with respect to perturba-
tions of the operator, depending on a parambtehat are not uniform over aft x R x RN x
S(N) as they were in Theorem 5, but only on compact subse®s:oR x RN x S(N). A typical
example we have in mind is the vanishing viscosity approkimna but similar arguments work
for discrete approximation schemes, see [3]. We are ablags f the limit under merely local
perturbations of the operator by approximatidgvith a nested family of open se®, solving
the problem in eacl., and then letting, h go to 0 “withh linked toe” in the following sense.

DEFINITION 4. Letvﬁ, Uu:Y > R, fore >0,h>0Y cRN. we say thatzﬁ converges
tou as(e, h) N\ (0, 0) with h linked toe at the point x, and write

(25) v (X) = u(X)

lim
(,M)\(0,0)
h<h(e)

if for all y > 0, there exist a functioh :]0, +-00[—]0, +00[ andé > 0 such that
lvfy(y) —u(x)| <y, forally e Y : |x — y| < h(e)

forall e < h < he).

To justify this definition we note that:

i) it implies that for anyx anden Y\ O there is a sequend®g, \, 0 such thatvf]: (Xn) — u(x)
for any sequenca such thaix — xn| < hp, e.9.xy = x for all n, and the same holds
for any sequenchy, > hp;

i) iflimpy o vf,(x) exists for all smalk and its limit ase “\ 0 exists, then it coincides with the
limit of Definition 4, that is,

lim (X)) = lim lim vE(X) .
(e.n)\(0,0) h(X) e\.0h\,0 h 0
h<h(e)

REMARK 4. If the convergence of Definition 4 occurs on a compacksethere the limit
u is continuous, then (25) can be replaced, foxadl K and redefinindh if necessary, with

i, (y) —u(y)| <2y, forally € K : |[x—y| < h(e),

and by a standard compactness argument we obtain the unifamsergence in the following
sense:

DEFINITION 5. Let K be a subset @N andvﬁ, u: K — Rforall ¢, h > 0. We say that
vy, converge uniformlyon K to u as(e, h) N\ (0, 0) with hlinked toe if for any y > Othere are

€ > 0andh :]0, +00[—]0, +o0[ such that

suplvf, —ul <y
K
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forall € <€, h < h(e).

The main result of this subsection is the following. Recadltta family of functionsy, :
Q — Ris locally uniformly bounded if for each compact d€tC 2 there exists a consta@tc
such that sup |vf,| < Ck for all h, e > 0. In the proof we use the weak limits in the viscosity
sense and the stability of viscosity solutions and of théchiet boundary condition in viscosity
sense (21) with respect to such limits.

THEOREM6. Assume the Comparison Principle hold®,# ¢ and let_ ube a continuous
subsolution of (16) such that & g ond. For anye €]0, 1], let ©¢ be an open set such that
O¢ C Q, and for h€]0, 1] let v, be a non-continuous viscosity solution of the problem

(26)

Fh(X, u, Du, D2u) = 0 in O,
u(x) = u(x) or Fy(X, u, Du, D2u) =0 0ndO,

where F, : © x R x RN x S(N) — R is continuous and proper. Suppogé, } is locally
uniformly boundedyy, > uin , and extendy, := U in Q \ ©. Finally assume that
converges uniformly to F on any compact subsef2ok R x RN x S(N) as h N\, 0, and
B¢ 2 Os if € <8, Jgee<1 Oc = Q2.

Thenvy, converges to the e-solutiongtdf (16) with h linked tae, that is, (25) holds for all

X € Q; moreover the convergence is uniform (as in Def. 5) on anypeminsubset of2 where
Hg is continuous.

Proof. Note that the hypotheses of Theorem 3 are satisfied, so thieities Hg exists. Consider
the weak limits

v(X) = Iirr]r]\lr(;f*vﬁ(x) = Bsgginf{vﬁ(y) iIX—y| <8, 0<h<é},
Ve(x) = limsup‘vf(x) = inf sup{vf(y): [x —y| <&, O<h <38}.
h\.0 >0

By a standard result in the theory of viscosity solutions, [46, 18, 8, 4]y, andv, are respec-
tively supersolution and subsolution of

20 in@
@7) { F(x,u, Du, D?u) =0 in O,

u(x) = u(x) or F(x, u, Du, D2u) =0 0NJO .

We claim tha®, is also a subsolution of (16). Indeef] = uin 2\ ©, sove = u in the interior
of 2\ ©¢ and then in this set it is a subsolution. @ we have already seen that = (v¢)* is
a subsolution. It remains to check what happen®®a. GivenX € 90, we must prove that
forall (p, X) € JSZZ’JTS (X) we have

18t Caseve (X) > u(X). Sincev, satisfies the boundary condition 86®, of problem (27),
then for all(p, X) € J(%’Jrie (X) (28) holds. Then the same inequality holds for (@l X) €

JSZZ’JTS (X) as well, becausészz’Jri6 X) C Jé‘*ﬂe (X).
€

2" Casewe (R) = UR). Fix (p, X) € 325 (%), by definition

Te(X) <Ve(R)+ p- (X=X + %X(X—ﬁ)-(X—ﬁ)JrO(IX—)?IZ)
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for all x — X. Sinceve > u andve (X) = u(X), we get
1
UOO < UR) + P (X = ) + 5 XX = %) - (X = %) +0(lx = 1),

thatis(p, X) € J£’+g()?). Now, sinceu is a subsolution, we conclude
F(X,0e(X), p, X) = F(X, u(x), p, X) <0.
We now claim that
(29) Ue < v, <Te < HginQ,

whereuc is defined by (20). Indeed, sinag is a supersolution i®, andv, > u, by the
Comparison Principle, > w in ®¢ for anyw € § such thatw = u on3®,. Moreoverv, = u
on§2\ B¢, SO We geb, > Uc in . To prove the last inequality we note thag is a supersolution
of (16) by Theorem 3, which impliege < Hg by Comparison Principle.

Now fix x € 2, ¢ > 0,y > 0 and note that, by definition of lower weak limit, there exist
h =h(x, ¢, y) > 0such that

ve(X) —y < vR(Y)
forall h < handy € & n B(x, h). Similarly there existk = k(x, ¢, y) > 0 such that
vh(Y) S Te(X) +¥

forallh < kandy € QN B(x, k). From Remark 1, we know thalg = sup. U, so there exists
€ such that

Hg(X) — ¥ < Ue(x), foralle <€.
Then, using (29), we get
Hg(X) — 2y < vi(y) < Hg(X) + ¥

for all e <&, h < h:=min{h, k} andy € € n B(x, h), and this completes the proof.
Od

REMARK 5. Theorem 6 applies in particulanif, are the solutions of the following vanish-
ing viscosity approximation of (10)

(30) { —hAv+ F(x,v, Dv,D%) =0 in®,,

v=u ondO¢ .
SinceF is degenerate elliptic, the PDE in (30) is uniformly ellgpfor all h > 0. Therefore
we can choose a family of nestéd with smooth boundary and obtain that the approximating
vy, are much smoother than the e-solution of (16). Indeed (38)ahelassical solution if, for
instance, eitheF is smooth and~(x, -, -, -) is convex, or the PDE (10 is a Hamilton-Jacobi-
Bellman equation (3 where the linear operat6fs have smooth coefficients, see [21, 24, 31].
In the nonconvex case, under some structural assumptibas;antinuity of the solution of
(30) follows from a barrier argument (see, e.g., [5]), anehtiit is twice differentiable almost
everywhere by a result in [43], see also [17].
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2.3. Continuous dependence under increasing approximatioof the domain

In this subsection we prove the continuity of the e-solutib(l6) with respect to approximations
of the domain2 from the interior. Note that, if¢ = v¢ for all h in Theorem 6, then¢ (x) —
Hg(x) for all x € Q ase \ 0. This is the case, for instanceff is the unique e-solution of

F(x,u,Du,D2u) =0 in@®,
u=u onoo.,

by Proposition 3. The main result of this subsection extehisremark to more general ap-
proximations ofQ2 from the interior, where the conditioB, C € is dropped. We need first a
monotonicity property of e-solutions with respect to ther@asing of the domain.

LEMMA 3. Assume the Comparison Principle holds andigt< @, < RN, H&, respec-

tively Hg be the e-solution if21, respectively2,, of the problem
2 — in O
31) { F(x,u, Du,D%u) =0 inQ;,
u=g onoaQ; ,

with g : ©, — R continuous and subsolution of (31) witkd 2. If we define

H~1(X) _ Hgl(X) ifx e 51 _
g gx)  ifxeQ\Qq,
then I—g > I—Té in Q.

Proof. By definition of e-solutioan2 > gin Qo, SO Hg is also supersolution of (31) if24.
ThereforeHg > H& in Q1 becausd—léL is the smallest supersolution €&y, and this completes
the proof.

|

THEOREM7. Assume that the hypotheses of Theorem t®id with ucontinuous and2
bounded. Let2n} be a sequence of open subset®psuch that2n € Q1 andJ,, @n = Q.
Let un be the e-solution of the problem

F(x,u, Du,D2u) =0 inQp,
u=u onagy.

(32) {

Ifwe extend y ;= uin Q \ Qn, then Lk(x) 7 Hyg(x) for all x € Q, where Hj is the e-solution
of (16).

Proof. Note that for aln there exists amn > 0 such that2,, = {x € Q : dist(x, Q) > en} <
Qn. Consider the e-solution,, of problem

F(x,u,Du,D2u)=0 inQ,.
u=u on a2, -

If we setue, = uin Q\Qe,, by Theorem 6 we get,, — Hgin 2, as remarked at the beginning
of this subsection. Finally by Lemma 3 we havg > un > Ue, in 2, and saup — Hg in Q.

|
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REMARK 6. If Q2 is not smooth and- is uniformly elliptic Theorem 7 can be used as
an approximation result by choosisgh with smooth boundary. In fact, under some structural
assumptions, the solutiam, of (32) turns out to be continuous by a barrier argument @eg,
[5]), and then it is twice differentiable almost everywhégea result in [43], see also [17]. If, in
addition,F is smooth and~ (X, -, -, -) is convex, or the PDE (10) is a HIB equation (3) where the
linear operator€£® have smooth coefficients, ther is of cIassCz, see [21, 24, 31, 17] and the
references therein. The Lipschitz continuityupf holds also ifF is not uniformly elliptic but it
is coercive in thep variables.

2.4, Continuity at the boundary

In this section we study the behavior of the e-solution atolany points and characterize the
points where the boundary data are attained continuousiyéans of barriers.

PrRoPOSITION4. Assume that hypothesis(respectively i)) of Theorem 2 holds. Then the
e-solution H of (16) takes up the boundary data g continuouslygé&x €, i.e. limy— x, Hg(X)
= g(Xp), if and only if there is an upper (respectively lower) barrig xqo (see Definition 3).

Proof. The necessity is obvious because Theoreimitplies thatHg € Z, soHg is an upper
barrier atx if it attains continuously the data at

Now we assum&V is an upper barrier at. ThenW > Hg, becauséV € Z andHyg is the
minimal element ofZ. Therefore

<H < liminf H < limsupH < lim W(y) = s
900 < Hg0 < liminf Ho(y) < limsupHg(y) < fim W(y) = g9

S0 limy— x Hg(y) = g(x) = Hg(X).
a

In the classical theory of linear elliptic equations, lotarriers suffice to characterize
boundary continuity of weak solutions. Similar results ¢snproved in our fully nonlinear
context. Here we limit ourselves to a simple result on thedhiet problem with homogeneous
boundary data for the Isaacs equation

: a,B o, B , B ;
(33) Sgplrt}f{_a” Ux;x; + b uy, +ctPu— 2Py =0 inQ,
u=20 onoQ.

DEFINITION 6. We say that We BLSQ(B(xg, 1) N ©) withr > Ois anupper local barrier
for problem (33) at y € aQ2 if
i) W > Ois a supersolution of the PDE in (33) in(&, r) N &,
i) W(xg) =0, W(x) > u > O0forall |[x —xg| =T,
iii ) W is continuous at
PROPOSITION5. Assume the Comparison Principle holds for (33%f > 0 for all «, 8,

and let Hy be the e-solution of problem (33). Ther kkes up the boundary data continuously
at xg € 992 if and only if there exists an upper local barrier W af.x
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Proof. We recall thatHg exists because the functian= 0 is a lower barrier for all points
x € 9§ by the fact thatf %# > 0, and so we can apply Theorem 2. Consider a supersolution
of (33). We claim that the functiow defined by

PW(X) Aw(x) if xe B r)Ne,

V(X)={ w(X) if x e 2\ B(xg,r),

is an upper barrier aty for p > 0 large enough. It is easy to check thdd/ is a supersolution
of (33) in B(xg,r) N 2, soV is a supersolution irB(xg, r) N Q (by Proposition 1) and in
Q\ B(xg, r). Sincew is bounded, by property) in Definition 6, we can fixo ande > 0 such
thatV (x) = w(x) for all x € @ satisfyingr — e < [x — Xg| < r. ThenV is supersolution even
on dB(xg, r) N Q. Moreover it is obvious tha > 0 ond2 andV (xg) = 0. We have proved
thatV is supersolution of (33) i2.
It remains to prove that lign, x, V (X) = 0. Since the constant 0 is a subsolution of (33) and

w is a supersolution, we have > 0. Then we reach the conclusion by andiii ) of Definition
6.

|

ExamMPLE 3. We construct an upper local barrier for (33) under theragsions of Propo-
sition 5 and supposing in addition

IQisC2%ina neighbourhood ofy € 922,

there exists an™ such that for al8 either

(34) aﬁ*’ﬂ(Xo)ni (Xp)nj(x0) =c>0
or
(35) o (xo) by x; (x0) + B P (x)i (x) = € > 0

wheren denotes the exterior normal o andd is thesigned distancérom 92

dist(x, 9Q) ifxeQ,

oo = { _dist(x, 9Q) ifx e RN\ Q.

Assumptions (34) and (35) are the natural counterpart f@eds equation in (33) of the con-
ditions for boundary regularity of solutions to linear etjoas in Chapt. 1 of [37]. We claim
that

W(x) =1— e—8(d00+AIx=Xol?)
is an upper local barrier a for a suitable choice of, A > 0. Indeed it is easy to compute
—at"’ (x0) W x; (x0) + b"*F (x0) Wi (x0) + < (x)Wi(xg) — 17 (xg) =
—sai""” (x0)d x; (X0) + 8%} (x0)dy, (X0)dx; (X0) + 855" (x0)dy, (%)
—250Tr[a%P (xg)] — TP (xg) .

Next we choose™ as above and assume first (34). In this case, since the ceefficire bounded
and continuous andlis C2, we can makaV a supersolution of the PDE in (33) in a neighborhood
of xg by takings large enough. If, instead, (35) holds, we choose firsmall and ther$ large

to get the same conclusion.
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3. Applications to Optimal Control

3.1. A deterministic minimum-time problem

Our first example of application of the previous theory is tinge-optimal control of nonlinear
deterministic systems with a closed and nonempty tafget RN. For this minimum-time
problem we prove that the lower semicontinuous envelopketalue function is the e-solution
of the associated Dirichlet problem for the Bellman equatidhis result can be also found in
[7] and [4], but we give here a different and simpler proofn€ider the system

(36)

{ yr(t) = f(yt),at)) t>0,
y(0) =X,

wherea € A :={a: [0, co) — A measurablgis the set of admissible controls, with

A a compact spacd, : RN x A — RN continuous

@87 3L > Osuchthat f(x,a) — f(y,a) - (x—y) < L|x — y[2,

forall x,y € RN, a € A. Under these assumptions, for amye A there exists a unique
trajectory of the system (36) defined for glithat we denotg/x(t, a) or yx(t). We also define
the minimum time for the system to reach the target using tinérala € A:

inf{t >0:yx(t,a) eT}, if{t>=0:yx(t,a)el}#4d,
400 otherwise

tx(a) := {

Thevalue functiorfor this problem, namechinimum timdunction, is

Tx) = inf ty@), xeRN.
acA

Consider now the Kruzkov transformation of the minimum time

1-eT® | jf T(x) < o0,

v = { 1, otherwise

The new unknown is itself the value function of a time-optimal control prebi with a discount
factor, and from its knowledge one recovers immediatelyrtti@mum time functionT. We
remark that in general has no continuity properties without further assumptidnsyever, it is
lower semicontinuous iff (x, A) is a convex set for alk, so in such a case = v, (see, e.g.,
[7, 4]).

The Dirichlet problem associated tdyy the Dynamic Programming method is

(38)

v+HX Dv)=0, inRN\T,
v=20, inol’,

where
H(x, p) :=max{—f(x,a) - p} —1.
acA
A Comparison Principle for this problem can be found, fotamsge, in [4].

THEOREMS8. Assume (37). Then is the e-solution and the minimal supersolution of (38).
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Proof. Note that by (37) and the fact that = 0 is a subsolution of (38), the hypotheses of
Theorem 3 are satisfied, so the e-solution exists and it ipersalution. Itis well known that,

is a supersolution aof + H(x, Dv) = 0in RN \ T, see, e.g., [28, 8, 4]; moreovef > 0 onaT,

SO vy is a supersolution of (38). In order to prove thatis the lower e-solution we construct a
sequence of subsolutions of (38) converging.to

Fix e > 0, and consider the set
e :={x e RN :dist(x, aT) < ¢},
let Te be the minimum time function for the problem with tard&t, andve its Kruzkov trans-

formation. By standard results [28, 8, 4] is a non-continuous viscosity solution of

v+ H(x, Dv) =0, inRN \ ¢,
v=0orv+ H(X,Dv)=0, inal,.

With the same argument we used in Theorem 6, we can seetlimta subsolution of (38). We
define

u(x) = supv’(x)
€

and will prove thau = v,.

By the Comparison Principle} < vy for all ¢ > 0, thenu(x) < v«(x). To prove the
opposite inequality we observe it is obviouslinand assume by contradiction there exists a
pointX ¢ I" such that:

(39) SUPYe (X) < SUpv; () < v« (X).

Consider first the casg. (X) < 1, thatis, T« (X) < 4+o00. Then there exist$ > 0 such that
(40) TXR) < Te(R) — 8 < +oo, foralle > 0.

By definition of minimum time, for alk there is a controde such that
¢ R 1)
(41) tz (@) §T€(x)+§ < 4o00.

Let zc € I'¢ be the point reached at timg(ag) by the trajectory starting from, using control
a.. By standard estimates on the trajectories, we have fer all

1261 = Iyg (5 @) = (IR +V2MT(R)) MTH

whereM := L + sup| f (0, a)| : a € A}. So, for someR > 0, z € B(0, R) for all . Then we
can find subsequences such that

(42) Ze, > € 0T, th:=t"(a,) > T, asn - oo.

From this, (40) and (41) we get

(=2}

(43) T<TR) —=.

N
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Lety,, be the solution of the system

{ y=f(y.a,) t<t,
y(tz(@e,)) =2,

that is, the trajectory moving backward franusing control,,, and sekn := ¥ (0). In order
to prove thatxn — X we consider the solutiog,, of

{ y=f(y,a, t<tn,
y(tn) = Zep »

that is, the trajectory moving backward frazg, and using controd,,. Note thatyc,(0) = X.
By differentiating|ye, — Ve, 12, using (37) and then integrating we get, fortak tp,

th
Yen ) — Ve, (DI < |2ey — 212 +/t 2L 1Yen (S) — Ve, (9)12ds.

Then by Gronwall’s lemma, for atl < tp,

Yen ) = Ve, O] < |26, — zleb7Y

which gives, fort = 0,

1% = Xn| < |z, — zle"™.
By lettingn — oo, we get thakn — X.

By definition of minimum timeT (xn) < tp, S0 lettingn — oo we obtainT,(X) < T, which
gives the desired contradiction with (43).

The remaining case i8,(X) = 1. By (39) T*(X) < K < +oo for all €. By using the
previous argument we get (42) with< +oo and T,(X) < t. This is a contradiction with
T«(X) = 400 and completes the proof.

|

3.2. Maximizing the mean escape time of a degenerate diffusi process

In this subsection we study a stochastic control problemnigass a special case the problem
of maximizing the expected discounted time spent by a cthetraliffusion process in a given
open set? € RN. A number of engineering applications of this problem aséelil in [19],
where, however, a different cost criterion is proposed andralegeneracy assumption is made
on the diffusion matrix. We consider a probability spa€g, F, P) with a right-continuous
increasing filtration of complete sub-ields {#;}, a Brownian motiorB; in RM Fi-adapted, a
compact setd, and callA the set of progressively measurable procesgédaking values inA.
We are given bounded and continuous mapsom RN x A into the set ofN x M matrices
andb : RN x A — RN satisfying (14), (15) and consider the controlled stodhasfferential
equation

dX; = o%(Xt)d B — b* (Xp)dt, t >0,

soB | S0

For anya. € A (SDE) has a pathwise unique solutidfs which is 7 -progressively measurable
and has continuous sample paths. We are given also two bdwarde uniformly continuous
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mapsf,c: RN x A R, c*(x) > cp > O for all x, «, and consider the payoff functional
tx(c.) t
Jx,a):=E (/ fot(Xp)e™ Jo C"‘S(Xs)dsdt> i
0

whereE denotes the expectation and
tx(a) :=inf{t > 0: Xt ¢ Q},

where, as usualy (¢) = +oo if Xt € @ forallt > 0. We want to maximize this payoff, so we
consider the value function

v(X) == sup J(X, ).
acA

Note that forf = ¢ = 1 the problem becomes the maximization of the mean discduirte
E(1 — e (@) spent by the trajectories 68 DE) in .

The Hamilton-Jacobi-Bellman operator and the Dirichlaeihpem associated to by the
Dynamic Programming method are

F(x, u, Du, D2u) := miR{—aﬁ ()Ux;x; +b¥(X) - Du+c*()u — F(x)},
oxe
where the matrixajj ) is 3001, and

2 _ .
(44) { F(x,u, Du,D?u)=0 inQ,

u=20 onos2,

see, for instance, [40, 35, 36, 22, 32] and the referencesithé he proof that the value function
satisfies the Hamilton-Jacobi-Bellman PDE is based on theabByc Programming Principle

9/\tx t O AL
(45) v(X) = sup E (/ fot (Xp)e™ Jo S X St 4 yy(Xgap )€ o”C"S<Xs>dS),
0

acA

wherety = tx(a.), for all x € Q and all Fi-measurable stopping timés Although the DPP
(45) is generally believed to be true under the current aptions (see, e.g., [35]), we were able
to find its proof in the literature only under some additiocahditions, such as the convexity of
the set

{@*(x), b*(x), F¥(X), c¥(X)) : @ € A}

for all x € , see [20] (this is true, in particular, when relaxed comstrarle used), or the inde-
pendence of the variance of the noise from the control [18],d% (x) = o (x) for all X, or the
continuity ofv [35]. As recalled in Subsection 1.1 a Comparison Principtg€44) can be found
in [29], see also [18] and the references therein.

In order to prove that is the e-solution of (44), we approximaewith a nested family of
open sets with the properties

(46) O CQ, €€]0,1], O 2 B;fore <3, | O =Q.
€

For eache > 0 we callve the value function of the same control problem wiithreplaced with

te (@) == inf{t > 0: Xt ¢ Oc}
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in the definition of the payoffl. In the next theorem we assume that eaclsatisfies the DPP
(45) withty replaced withtg.
Finally, we make the additional assumption

(47) f¥x)>0forallx e Q, o € A.

which ensures that = 0 is a subsolution of (44). The main result of this subsectiothe
following.

THEOREM9. Under the previous assumptions the value functiesithe e-solution and the
minimal supersolution of (44), and

v= Sup ve = lim ve.
O<e<1 e\O

Proof. Note thatve is nondecreasing as \; 0, so lim\ ove exists and equals the sup. By
Theorem 3 withg = 0, u = 0, there exists the e-solutidfig of (44). We consider the functions
ue defined by (20) and claim that

Uge < (ve)s < v} < Hp.
Then

(48) Ho= sup wve,
O<e<1
becauseHp = sup. up. by Remark 1. We prove the claim in three steps.

Step 1. By standard methods [35, 9], the Dynamic Programmnmgiple forve implies
thatve is @ non-continuous viscosity solution of the HamiltonaldeBellman equatiorr = 0
in ®¢ andv is a viscosity subsolution of the boundary condition

(49) u=0orF(x,u,Du, D2u) =00nd0O,,

as defined in Subsection 1.3.

Step 2. Sincéve )« is a supersolution of the PDE = 0 in © and(ve)« > 0 0nd©,, the
Comparison Principle implie@¢ )+« > w for any subsolutionw of (44) such thatv = 0 on9®..
Sinced®, C Q\ Oy by (46), we obtairuy. < v, by the definition (20) ofiy,.

Step 3. We claim that; is a subsolution of (44). In fact we noted before that it is a
subsolution of the PDE i@, and this is true also i€ \ ®. wherev} = 0 by (47), whereas the
boundary condition is trivial. It remains to check the PDRlapoints ofd®,. Givenx € 90,
we must prove that for ah € C2(Q) such that} — ¢ attains a local maximum &, we have

(50) F(%, v} (R), D (R), D2 (R)) < 0.

1st Case:w}(X) > 0. Sincev; satisfies (49), for alp € C2(®,) such thab? — ¢ attains a
local maximum ak (50) holds. Then the same inequality holds forgak C2(Q) as well.

2nd Casew} (X) = 0. Sincev} — ¢ attains a local maximum &, for all x nearX we have
Vi) = vER) = ¢(X) — d(R) .
By Taylor’s formula forg atX and the fact that} (x) > 0, we get

Do (X) - (x — X) = o(|x — X]) ,
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and this impliedD¢ (X) = 0. Then Taylor’s formula fop gives also
(x = %) - DZpR)(x — %) = o(x — &),
and this impliesD2¢ (%) > 0, as it is easy to check. Then
F(%, v (%), D$(%), D% (%)) = F(%,0,0, D?p(R) <0

becaus@® > 0 andf® > 0 for all x andw. This completes the proof thaf is a subsolution of
(44). Now the Comparison Principle yield$ < Hg, sinceHg is a supersolution of (44).

It remains to prove that = supy_.<1 ve- To this purpose we take a sequergey, 0 and
define

" (@) ¢ s %o
IhX,a):=E / faT(Xt)e*fo (Xs)dsyy ) .
0

We claim that

Iian In(X, @) =supdn(X, o) = J(X, ) for all . andx .
n

The monotonicity oty follows from (46) and it implies the monotonicity df, by (47). Let

T= supt§”(a.) <tx(a),

and note thaty(«.) = +o0 if T = +00. Inthe case < +o0, Xten € 90, implies X; € 9%,
sot = tx(a.) again. This and (47) yield the claim by the Lebesgue monotmmyergence
theorem. Then

v(X) = supsupJIn(X, «.) = supsupIn(X, «,) = SUPvVe, = SUPVe ,
o N n o n €

S0 (48) givesy = Hp and completes the proof.
|

REMARK 7. From Theorem 9 it is easy to get\erification theorenby taking the su-
persolutions of (44) as verification functions. We considgresynthesig®), that is, a map
a) 1 Q@ > A, and say it is optimal ato if J(Xo, @*) = v(xo). Then Theorem 9 gives im-
mediately the following sufficient condition of optimalityf there exists a verification function
W such that Wo) < J(Xo, a®), thena () is optimal at %; moreover, a characterization of
global optimality is the followingz(") is optimal in€2 if and only if J(-, «(")) is a verification
function

REMARK 8. We can combine Theorem 9 with the results of SubsectiotoZa@proximate
the value functiorv with smooth value functions. Consider a Brownian moti&nin RN F;-
adapted and replace the stochastic differential equati¢8DE) with

d% = o (X)d B — b* (Xp)dt + v/2h dBt, t >0,

for h > 0. For a family of nested open sets with the properties (46%icter the value function

vy, of the problem of maximizing the payoff functiondlwith t replaced withtg. Assume for
simplicity thata®, b%, c*, f% are smooth (otherwise we can approximate them by molliboati
Thenuy, is the classical solution of (30), whefe is the HIB operator of this subsection and
u = 0, by the results in [21, 24, 36, 31], and it is possible to kgeize an optimal Markov
control policy for the problem witla, h > 0 by standard methods (see, e.qg., [22]). By Theorem
6 vﬁ converges t@ ase, h \ 0 with h linked toe.
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R. M. Bianchini

HIGH ORDER NECESSARY OPTIMALITY CONDITIONS

Abstract.

In this paper we present a method for determining some amg&of a sin-
gular trajectory of an affine control system. These vanetiprovide necessary
optimality conditions which may distinguish between maizimg and minimizing
problems. The generalized Legendre-Clebsch conditionsuarexample of these
type of conditions.

1. Introduction

The variational approach to Majer minimization control lggams can be roughly summarized
in the following way: letx* be a solution on the intervat;[ te] relative to the control*; if
the pair(x*, u*) is optimal, then the cone of tangent vectors to the reachsdtlatx*(te) is
contained in the subspace where the cost increase. If thereoastraints on the end-points,
then the condition is no more necessary; nevertheless iit fiHs been proved that particular
subcones of tangent vectors, the regular tangent cones,tbaye contained in a cone which
depends on the cost and on the constraints. Tangent vedtogewollection is a regular tangent
cone are named good trajectory variations, see [8].

The aim of this paper is to construct good trajectory vasiaiof a trajectory of an affine
control process which contains singular arcs, i.e. arcsajédtory relative to the drift term of
the process. It is known, [2], that the optimal trajectoryaafaffine control process may be of
this type; however the paix*, 0) may satisfy the Pontrjagin Maximum Principle without being
optimal. Therefore it is of interest in order to single outnaaier number of candidates to the
optimum, to know as many good trajectory variations as we can

In [5] good trajectory variations of the paix*, 0) have been constructed by using the
relations in the Lie algebra associated to the system atdimgoof the trajectory. The variations
constructed in that paper are of bilateral type, i.e. bothdhections+v and —v are good
variations. In this paper | am going to find conditions whidhgte out unilateral variations,
i.e. only one direction need to be a variation. Unilateraiatéons are of great interest because,
contrary to the bilateral ones, they distinguish betweerimizing and minimizing problems.

2. Notations and preliminary results

To each familyf = (fg, f1, ..., fm) of C® vector fields on a finite dimensional manifdid
we associate the affine control procégson M

m
) X=fo00+ Y uifio  uj| <e
i=1

41
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where the control = (uq, ..., um) is a piecewise constant map whose values belong to the
hypercubdluj| < «. We will denote by(t, tg, v, u) the value at time of the solution of%s
relative to the controli, which at timetg is equal toy. We will omit tg if it is equal to 0, so that
S, y,u) = §(,0,y,u); we will also use the exponential notation for constant cdnhap,
for example exgfg -y = §(t, y, 0).

We want to construct some variations of the trajectory x(t) = exptfg - Xg, t € [to, t1]
at timet € [tg, t1]. We will consider trajectory variations produced by neelike control
variations concentrated at The definition is the following:

DEFINITION 1. A vectorv € Ty, ()M is a right (left) trajectory variation of kat « if for
eache € [0, €] there exists a control map(e) defined on the interv40, a(e)], lim._, o+ a(e) =
0, such that ge) depends continuously erin the L topology and the map— exp(—a(e) fg)-
S@le), X¢(1), u(e)), (¢ — S(ale), Xs(r — a(e)), u(e))) hasv as tangent vector at = 0.

The variations at indicates the controllable directions of the referencgettary from
x¢(7); they are local objects at(r) and in any chart ak(z) they are characterized by the

property
@) S(@(e), X (1), U(e)) = Xs(r + ale)) + € v+ 0(e) € R(r + a(e), x¢(to))

whereR(t, x) is the set of points reachable in tirhérom x.

The transport along the reference flow generated by the @atdram timer to timet; of a
variation atr is a tangent vector to the reachable set at tifnia the pointx;(t1). The transport
of particular trajectory variations, the good ones, givss to tangent vectors whose collection
is a regular tangent cone. The definition of good variatigrthé following:

DEFINITION 2. Avectorv € Tyx(;)M is a goodright variation (left variation) at of order
k if there exists positive numbets € and for eache € [0, €] a family of admissible control
maps, ¥ (c), ¢ € [0, T] with the following properties:

1. uc(c) is defined on the intervd0, ac]
2. for eache, ¢ — Uc(C) is continuous in the & topology

3. exp[-(1 + a)ek] fo - Sf(aek,xf(r + ek), Uc(C)) = X¢(r) + ecv + 0(¢) (expekfo .
Sf(aek, X(t — (1+ a)ek), Ue(C)) = X¢(t) 4+ ecv + 0(¢€)) uniformly w.r.t. c.

The good trajectory variations will be simpler named g-aoins. Standing the definitions,
the variations of a trajectory are more easily found thamitariations. However a property
proved in [8] allows to find g-variations as limit points ofifectory ones. More precisely the
following Proposition holds:

PROPOSITIONL. Let | be an interval contained iffitg, t1] and let g € L1(1) be such
that g(t) is a right (left) trajectory variation at t for each t in the sk, (L ™), of right (left)
Lebesgue points of g. For eachet L™, (t € L™), let[0, a; (¢)] be the interval as in Definition
1 relatively to the variation ¢). If there exists positive numbers N and s such that for each
relLt, (t €eL7),0< ar(e) < (Ne)S, then for each te LT g(t) is a right variation, (for
eachte L™, g(t) is a left variation), at t of order s.

Let r be fixed; to study the variations atwve can suppose without loss of generality that
is an open neighborhood of @ R". Moreover by Corollary 3.3 in [5], we can substitute to the
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family f the family¢ whereg; is the Taylor polynomial off; of order sufficiently large. We can
therefore suppose thats an analytic family of vector fields dR".

Let me recall some properties of analytic family of vectoedds. LetX = {Xq, X1, ...,
Xm} be(m+ 1) indeterminatel (X) is the Lie algebra generated Bywith Lie bracket defined
by

[ST]=ST-TS.
L(X) denotes the set of all formal serigs > 4 Pk, eachP homogeneous Lie polynomial of
degreek. For eachs e L (X) we set

X, sk
expS= ) ol
k=0

and k+1 -k
28]
(=Dktlz
| = -
og(ld + 2) kZ "
=0
The following identities hold
expllogZ) =Z log(expS) = S.

Formula di Campbell-Hausdor{B]
For eachP, Q e L(X) there exists an uniqug € L (X) such that

expP -expQ = expZ
andZ is given by
1
Z=P+Q+5[P.Ql+

Letu be an admissible piecewise constant control defined on teevai [0, T (w)]; by the Camp-
bell Hausdorff formula we can associateutan element ot (X), logu, in the following way: if
ut) = (@}, ..., o) inthe interval(tj _1. tj) then

m m
explogu = exp(T (U) — tg_1) (xO + ZwM) S expy (XO + Zw%xi>
i=1 i=1

If f is an analytic family, then log is linked to & (T (u), y, u) by the following proposition [6]
ProPOSITIONZ2. If f is an analytic family of vector fields on an analytic maniféMidthen
for each compact KC M there exist T such that, [bg; u denotes the serie of vector fields

obtained by substituting ilegu, f; for X;, thenvy € K andvu, T(u) < T, the serieexp log u-
y converges uniformly tof & (u), y, u).

In the sequel we will deal only with right variations. The saitieas can be used to construct
left variations.

To study the right trajectory variations it is useful to oduce Logu defined by
exp(Logu) = exp—T (u)Xq - exp(logu) .

By definition it follows that ify belongs to a compact set afidu) is sufficiently small, then
exp(—T (u)) fo - S(T (u), y, u) is defined and it is the sum of the serie éxpg;u)y; notice that
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exp(Logsu)y is the value at timd (u) of the solution of the pullback system introduced in [4]
starting aty.

Let u(e) be a family of controls which depend continuouslyeand such thaT (u(e)) =
0(1). Such a family will be named control variation if

(3) Logu(e) = Zeji Y!

with Yi' € LieX andjj < jj4+1. Let jj be the smallest integer for Whid‘f(xf(r)) # 0; Yiis
namedf-leading termof the control variation at because it depends on the famiilgnd on the
timer.

The definition of exp and Proposition 2 imply that¥if is anf-leading term of a control
variation, then

exp(—T (U(e)) - ST (U(e)), X¢ (1), U(€)) = X¢(7) + €)1 Y (x¢(1)) + o(e 1) ;

therefore by Definition 1,ij (X()) is a variation ofxs at t of order YVjj. Since the set of
variation is a cone, we have:

PROPOSITION3. Let® be an element dfie X; if a positive multiple of® is thef-leading
element at of a control variation, ther®: (x¢ (7)) is a variation atzr.

3. General Result

The results of the previous section can be improved by usiegelations in Lid at x¢ (7). The
idea is that these relations allow to modify the leading t@fma given control variation and
therefore one can obtain more than one trajectory varidit@mn a control variation.

Let us recall some definitions given by Susmann, [6], [7].

DeFINITION 3. Anadmissible weighfor the process (1) is a set of positive numbérs;
(o, 11, - .., Im), which verify the relationgyl < l;, Vi.

By means of an admissible weight, one can give a weight to kemtket in LieX, [6]. Let
A be a bracket in the indeterminaXés; |Al; is the number of times that; appears im.

DEFINITION 4. Letl = {lg, 14, ...,Im} be an admissible weight, theveight of a bracket

@ is given by
m
Il =Y lil®}; .
i=0

An elemen® € Lie X is saidl-homogeneous if it is a linear combination of brackets wiith t
samel-weight, which we name theweight of the element.

The weight of a bracketd, with respect to the standard weight {1, 1, ..., 1} coincides
with its length and it is denoted By®||.

The weight introduce a partial order relation in e

DEFINITION 5. Let® € Lie X; following Susmann [7] we say tha& is | f-neutralizedat
a point y if the value at y o8y is a linear combination of the values of brackets with less
weight, i.e.9¢(y) = >« <I>f1 ), 1® ], < 1©]). The numbemax||®j || is theorder of the
neutralization
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Let N be a positive integer; witlsy we denote the subspace of Xespanned by the
brackets whose length is not greater tidrand with Qy we denote the subspace spanned by
the brackets whose length is greater tiNarLie X is direct sum ofSy and Q.

DEFINITION 6. Let u be any controllogy u andLogy u are the projections dbgu and
Logu respectively, on$.

DEFINITION 7. An elementd € Sy is a N-good element if there exists a neighborhood
V of0in Sy and a a mapu:V — L1, such that V) is contained in the set of admissible
controls and
Logy u(@®) =+ 0.

Notice that there exidil-good elements whatever is the natuxal
We are going to present a general result.

- THEOREM1. Let Z be an N-good element and ldte an admissible weight. Z >yl
Y'! I-hnomogeneous element such thatitb | Y' ||, thenp < bj ifi < j. If there exists j such

that for eachi< j, Y! is|f-neutralized atr with order not greater than N andjb< bj 1, then

1. ij (X¢(7)) is a variation atr of order ||Yj I

2. if @ is a bracket contained inp§ [ @[l < bj, then£d¢(x¢ (7)) is a variation atr of
order || ®||;.

Proof. We are going to provide the proof in the case in which therailg one element which
is If-neutralized atr. The proof of the general case is analogous. By hypothesi® thxist
I-homogeneous elemeritg!, c; = |W! | < 1YL, such that:

@ YExe() =Y oW (x¢(1)) -
Letu be an admissible control; the control defined ine[bT(u)] by
Seu(t) = (€17 lougt/e), ..., em—loymt/eloy)

is an admissible control; such control will be denotedsby. The mape — Jcu is continuous
in the L1 topology andT (Scu) goes to 0 withe.

LetY be any element of (X); 8c(Y) is the element obtained by multiplying each indeter-
minateX; in Y by €i. The definition ofs.u implies:
Logdeu = §¢ Logu.
8¢ YL = ePry; andse (Y oy W) = Y o€ Wi therefore
8 (Y=Y aje®reiwly

vanishes ax; (7). By hypothesis there exists a neighborha6df 0 € Sy and a continuous map
u:V — L1such that

Logyu(@®) =Z+ .
Set®(e) = — Y ajeP1CWI; ©(e) depends continuously fromand since(by — ¢j) < 0,
®(e) € V if € is sufficiently small. Therefore the control variatiérau(® (¢)) proves the first
assertion.
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Let @ satisfies the hypothesis;df ande are sufficiently smalb-® + ®(¢) € V and
8cU(®(€) + o D)

ia a control variation which hasleading term equal t6®. The second assertion is proved.
|

For the previous result to be applicable, we need to know H@N-good controls are
made. The symmetries of the system give some informatiohisrstibject.

Let me recall some definitions introduced in [6] and in [4].

DEFINITION 8. Thebad bracketsre the brackets itie X which contain > an odd num-
ber of times and eachXan even number of times. LBtbe the set of bad brackets

B={A, |Algpisodd |Alj iseveni=1,..., m}.
The set of thebstructionss the set

B* =Lie (Xg,B) \ {aXg, aeR}.
PROPOSITION4. For each integer N there exists a N-good element which bsltm§*.

Proof. In [6] Sussmann has proved that there exists an eledeat3 and aclt map,T, from
a neighborhood of & Sy in L1 such that the image af is contained in the set of admissible
controls and

logyU(@®) =V + 0.
This result is obtained by using the symmetries of the pmcBtandard arguments imply that it
is possible to construct@! mapu from a neighborhood of @ Sy to L1 such that the image
of u is contained in the set of admissible controls and

Logyu(®) =E+06

with E € B*.
a

The previous proposition together with Theorem 1 imply tiat trajectory variations are
linked to the neutralization of the obstruction.

Theorem 1 can be used to find g-variations if fiheneutralization holds on an interval
containingz.

4. Explicit optimality conditions for the single input case

In this section | am going to construct g-variations of agcépry of an affine control process at
any point of an interval in which the reference control isstantly equal to 0. It is known that
if x* is a solution of a sufficiently regular control process surt t

go(X*(t1)) = ),

min
yeR(ty,x*(to))NS

then there exists an adjoint variablé) satisfying the Pontrjagin Maximum Principle and such
that for eachr and for each g-variation, of x* att

At)v <0.
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Therefore the g-variations | will obtain, provide necegsaonditions of optimality for the sin-
gular trajectory.

For simplicity sake | will limit myself to consider an affinéngle input control process
X = fo(x) +ufy(x)

and | suppose that the control which generate the refereajetory, x*, which we want to
test, is constantly equal to 0 on an intervatontainingz so thatx*(t) = xs(t), vt € I. The
fl-neutralization of the obstructions dnprovides g-variations at. In [4] it has been proved
that if each bad bracke®, ||©||| < pisfl-neutralized orx (1), then all the obstructions whose
I-weight is not greater thap arefl-neutralized orxs (). Moreover if® is a bracket which is
fl-neutralized orl, then [Xq, @] is fl-neutralized onl . Therefore to know which obstructions
arefl-neutralized onl it is sufficient to test those bad brackets whose first elenseagual to
X1. Letl be an admissible weighitinduces an increasing filtration in Lié

O=YcYlc.-.cYc..

vi = span{® : @]} < pi}, pi < pi+1- Let pj be such that each bad bracket whose weight is
less than or equal tpj is fl-neutralized on an interval containing We know thatYfJ X (7)) is

a subspace of g-variation atwhich are obviously bilateral variations. Unilateral gration can

be contained in the set dfhhomogeneous elements belonging‘(#oﬂ(xf(r)). Notice that each

subspace(f' (X¢ (7)) is finite dimensional and that the sequemtﬁ(xf(r))} become stationary for
i sufficiently large. Therefore we are interested only in tlegnents ofSy with N sufficiently
large. LetN be such that each[f' (X¢(7)) is spanned by brackets whose length is less than
The following Lemma proves that it is possible to modify theight! in order to obtain a weight
1 with the following properties:

1. each bracket which i-neutralized at is fI-neutralized at;
2. thel-homogeneous elements are linear combination of brackeishveontain the same

numbers both oK than of X1.

LEMMA 1. Letl be an admissible weight; for each integer N there exists amissible
weightl with the following properties: ifb and® are brackets whose length is not greater than
N, then

L [I®f < I©] implies|| @[ < IO
2. @[l = IO and | @]l1 < [IO]l1, implies|| @[y < [|O]lp
3. @[l = 1O1li, I*ll1 = ©l1 and [ @[lo < [IOllo, implies|| Pl < IOl

Proof. The set of brackets whose weight is not greater tNais a finite set therefore ifp, €3
are positive numbers sufficiently small, thies: {Ig — €g, |1 + €1} is an admissible weight for
which the properties 1), 2) and 3) hold.

a

In order to simplify the notation, we will use the multipltéze notation for the brackets:

XY =[X,Y], ZXY=[Z, XY], etc.



48 R. M. Bianchini

It is known, [10], that each brackeb, in Lie X is linear combination of brackets right normed,
i.e. of the following type:
XgXPZ...XP, ijefol...},

which contains bottXq than X1 the same number of times df; therefore it is sufficient to test
the neutralization of right normed bad brackets.

Any N-good elementZ, of Lie X can be written as:

Z= Z g D
®; right normed bracket; we nanag coefficienof ®; in Z.

LEMMA 2. Let N > 2n + 3. The coefficient of 3<X(2)n+1xl in any N-good element is
positive if n is even and negative if n is odd; the coefficiér)(%?‘lxoxl is always positive.

Proof. Let Z be aN-good element and let us consider the control process

X1 =u
X2=X1

X4+l = Xr21
Xn+2 = Xn+1 .

Take as reference trajectoxy(t) = 0. The reachable s&(t, 0) is contained, for any positive

t, in the half space,1 > 0 and hence- ax(:H cannot be a variation at any time. The only

elements in Lié which are different from 0 in O are:

9
X = —,
(Xt ox1
- C0
XhXps = (=1 ,i=1,...,n
0 9% +1
9
X X3 xr = (-2
Xn+1

If the coefficient olexgr‘HXl in Z were equal to 0, then O will be locally controllable [6],
which is an absurd. Therefore it is different from 0; its shys to be equal t6—1)" because
otherwise—ﬁ would be a variation. The first assertion is proved.

The second assertion is proved by using similar argumemigedo the system:

X1 =u
X2=X]2_n

Let us now compute explicitly some g-variations. We redsdkt

adkY =[X, Y], ad}"ly =[X,adY].
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THEOREM2. If there exists an admissible weightuch that each bad bracket bfveight
less than(2n + 1)Ig + 211 is fl-neutralized on an interval containing then

(—D)"[X1, ad X ] (¢ (1)

is a g-variation atr.

Proof. We can suppose that the weidhtas the properties 1), 2) and 3) asin Lemma 1. Therefore
the brackets of-weight equal to B + (2n + 1)l contains 2X41 and (2n+1)Xq. The brackets
which have as first elemeig are the adjoint with respect ¥ of brackets which by hypothesis
arefl-neutralized on the intervdl and therefore arél-neutralized. Since the only bad bracket
of I-weight (2n + 1)l + 211 which has as first elemerx4, is xle)”“xl the theorem is a
consequence of Theorem 1 and of Lemma 2.

O

Notice that the theorem contains as particular case thekwmeivn generalized Legendre-
Clebsch conditions. In fact it is possible to choesguch that each bracket whichfiseutralized
on | with respect to the weight0, 1) is f-neutralized with respect to the weight= (o, 1);
moreover bearing in mind that only a finite set of bracketsait®e considered, we can suppose
that if two brackets contain a different number Xf, then the one which contains le¥g
has lesd-weight and that two brackets have the sdrmneeight if and only if they contain the
same number both ofg than of X1. Since each bad bracket contains at least Xypthen the
only bad bracket whose weight is less th@n + 1)o + 2 contains twoX; and(2i + 1) Xo,

i =0,...,(n—1); among these the only ones which we have to conside)(@b%”rlxl. Set

s = span{®; which containg times X1} .

X XA X)e (1) € SHxe(1), =1 ..., (n—1)

Theorem 2 implies that—l)n(X1xgn+lX1)f(Xf(‘L')) is a g-variation ofx; at z; therefore ifx*
is optimal, then the adjoint variable can be chosen in suchyathat

EDMOXIXE XD (1) <0, tel

condition which is known as generalized Legendre-Clebscidition.

The following example shows that by using Theorem 2 one cdaimlfurther necessary
conditions which can be added to the Legendre-Clebsch ones.

ExAmMPLE 1. Let:

2 3 2
9 9 9 2 3\ a2 X2 9
fp = —4+X—+X3—+|=2-=5|—+=—
0 amf+zam'F3aM'F(2 6)8@ 2 a%g
9
f = —.
X2

The generalized Legendre-Clebsch condition implies #(atlxgxl)f(xf(r)) = % isag-
variation atr. Let us apply Theorem 2 with the weight (1, 1); the bad brackets dfweight

less than 7 are:

X1XoX1, X1X3X1, X3XoX1, XZXZX1XoX1, XZXoX1X3X1,
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the only one different from O along the trajectory(D.(lXSXl)f which is atxs (1) a multiple
(Xfxoxl)f(xf(l )). Therefore it if|-neutralized. Theorem 1 implies thﬁ(Xlxgxl)f(xf(r))
= iaiXS, and (X X3Xs(x(1)) = diXG are g-variations.

Another necessary optimality condition can be deduced ffbeorem 1 and Lemma 2.

THEOREM 3. If there exists an admissible weighsuch that all the bad brackets whose
I-weight is less thargl+ 2n |1 are fl-neutralized on an interval containing then

(X3 XX (x4(1))
is a g-variation atr.

Proof. We can suppose that the weidli$ such that the brackets with the salneeight contain
the same number both of; than of Xg. Since there is only one bracke)(%”_lxoxl which

contain 21 X; and 1Xq, the theorem is a consequence of Theorem 1 and of Lemma 2.
|

Notice that this condition is active also in the case in whiehdegree of singularity isoco.
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GEOMETRIC CONTROL APPROACH
TO SYNTHESIS THEORY

1. Introduction

In this paper we describe the approach used in geometricatdheory to deal with optimiza-
tion problems. The concept of synthesis, extensively dised in [20], appears to be the right
mathematical object to describe a solution to general aptition problems for control systems.

Geometric control theory proposes a precise proceduredongaish the difficult task of
constructing an optimal synthesis. We illustrate the gfiterof the method and indicate the
weaknesses that limit its range of applicability.

We choose a simple class of optimal control problems for whiwe theory provides a
complete understanding of the corresponding optimal ggab. This class includes various
interesting controlled dynamics appearing in Lagrangigstesns of mathematical physics. In
this special case the structure of the optimal synthesngptetely described simply by a couple
of integers, (cfr. Theorem 3). This obviously provides ayv&mple classification of optimal
syntheses. A more general one, for generic plane contfioeagystems, was developed in [18,
10].

First we give a definition of optimal control problem. We diss the concepts of solution
for this problem and compare them. Then we describe the gicroentrol approach and finally
show its strength using examples.

2. Basic definitions

Consider an optimal control proble(®) in Bolza form:

X = f(x,u), XxeM,uelU
min (/ L(x,u)dt+ §0(Xterm)>
Xin = X0, Xterm€ N C M

whereM is a manifold,U isaset,f : MxU - TM,L: MxU - R, ¢ : M —> R,
the minimization problem is taken over all admissible tc&jey-control pairgx, u), Xi, is the
initial point andxterm the terminal point of the trajectony(-). A solution to the probleniP)
can be given by an open loop controt [0, T] — U and a corresponding trajectory satisfying
the boundary conditions.

One can try to solve the problem via a feedback control, thnding a functioru : M —
U such that the corresponding ODE= f (x, u(x)) admits solutions and the solutions to the
Cauchy problem with initial conditior(0) = xg solve the problen{P). Indeed, one explicits
the dependence @) on X, considers the family of problen® = (P(Xp))x,em and tries to

53
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solve them via a unique functiom : M — U, that is to solve the family? of problems all
together.

A well-known approach to the solution fis also given by studying the value function, that
is the functionV : M — R assuming at eacky the value of the minimum for the corresponding
problem?P (xg), as solution of the Hamilton-Jacobi-Bellmann equatiow, [& 13]. In general
V is only a weak solution to the HIB equation but can be chatiaetbas the unique “viscosity
solution” under suitable assumptions.

Finally, one can consider a family of pairs trajectory-controlyx,, 7x,) such that each of
them solves the corresponding probl@hixg). This last concept of solution, called synthesis,
is the one used in geometric control theory and has the follpadvantages with respect to the
other concepts:

1) Generality

2) Solution description

3) Systematic approach

Let us now describe in details the three items.

1) Each feedback gives rise to at least one synthesis if thersautions to the Cauchy
problems. The converse is not true, that is a synthesis isewssarily generated by a feedback
even if in most examples one is able to reconstruct a pieeeswigoth control.

If one is able to define the value function this means that paahlem? (xg) has a solution
and hence there exists at least one admissible pair forBéxf). Obviously, in this case, the
converse is true that is every optimal synthesis defines we\ainction. However, to have a
viscosity solution to the HIB equation one has to imposeaednditions.

2) Optimal feedbacks usually lack of regularity and generatentany trajectories some of
which can fail to be optimal. See [20] for an explicit exampléus it is necessary to add some
structure to feedbacks to describe a solution. This is gxattat was done in [11, 22].

Given a value function one knows the value of the minimum feheproblentP (xg). In
applications this is not enough, indeed one usually needsite the system along the optimal
trajectory and hence to reconstruct it from the value fumctiThis is a hard problem, [5]. If one
tries to use the concept of viscosity solutions then in trse @ Lagrangians having zeroes the
solution is not unique. Various interesting problems (seeekample [28]) present Lagrangians
with zeroes. Recent results to deal with this problem carobed in [16].

3) Geometric control theory proposes a systematic way towiesonstruction of optimal
syntheses, while there are not general methods to con$teaiibacks or viscosity solutions for
the HJB equation. We describe in the next session this sgsieapproach.
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3. Optimal synthesis

The approach to construct an optimal synthesis can be sumedan the following way:

a) MP + geometric techniques
U

b)  Properties of extremal trajectories
{

¢) Construction of extremal synthesis
U

d) Optimal synthesis

We now explain each item of the picture for a complete undadibg of the scheme.

a) The Maximum Principle remains the most powerful tool in thedyg of optimal control
problems forty years after its first publication, see [21]. by effort has been dedicated to
generalizations of the MP in recent years, see [6], [23],raferences therein.

Since late sixties the study of the Lie algebra naturallpeisged to the control system has
proved to be an efficient tool, see [15]. The recent approdainmplectic geometry proposed
by Agrachev and Gamkrelidze, see [1, 4], provides a deeghihsif the geometric properties of
extremal trajectories, that is trajectories satisfying Maximum Principle.

b) Making use of the tools described &) various results were obtained. One of the most
famous is the well known Bang-Bang Principle. Some sim#guits were obtained in [8] for a
special class of systems. For some planar systems everyatajectory is not bang-bang but
still a finite concatenation of special arcs, see [19, 24, 25]

Using the theory of subanalytic sets Sussmann proved a eaegrgl results on the regularity
for analytic systems, see [26]. The regularity, howevethia case is quite weak and does not
permit to drive strong conclusions on optimal trajectaries

Big improvements were recently obtained in the study of Ridmannian metrics, see [2,
3]. In particular it has been showed the link between sulyéioal of the Sub-Riemannian
sphere and abnormal extremals.

¢) Using the properties of extremal trajectories it is possibhlsome cases to construct an
extremal synthesis. This construction is usually based fimite dimensional reduction of the
problem: from the analysis &) one proves that all extremal trajectories are finite comezgiens
of special arcs. Again, for analytic systems, the theoryubbsalytic sets was extensively used:
[11, 12, 22, 27].

However, even simple optimization problems like the oneppsed by Fuller in [14] may
fail to admit such a kind of finite dimensional reduction. Jhenomenon was extensively
studied in [17, 28].

d) Finally, once an extremal synthesis has been construtteninains to prove its optimal-
ity. Notice that no regularity assumption property can eashe optimality (not even local) of
a single trajectory. But the contrary happens for a synshé®ie classical results of Boltianskii
and Brunovsky, [7, 11, 12], were recently generalized todpieable to a wider class of systems
including Fuller's example (see [20]).
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4. Applications to second order equations

Consider the control system:
(1) X =F(X) +uG(x), xeR%, F,G eC3R%,R?), FO)=0, |u <1

and letR(z) be the reachable set within timerom the origin. In the framework of [9, 19, 18],
we are faced with the problem of reaching from the origin @mgkneric conditions of and
G) in minimum time every point ofR(z). Given a trajectory : [a, b] — RZ, we define the
time alongy asT(y) =b—a.

Atrajectoryy of (1) istime optimalf, for every trajectoryy’ having the same initial and terminal
points, one had (y') > T(y). A synthesidfor the control system (1) at time is a family
I' = {(yx, Ux)}xeR(r) Of trajectory-control pairs s.t..

(a) for eachx € R(r) one hasyx : [0, bx] — RZ, yx(0) = 0, yx(byx) = X;
(b) if y = yx(t), wheret is in the domain ofx, thenyy = yxljo.]-

A synthesis for the control system (1)tisie optimaif, for eachx € R(t), one hagx (T (x)) =
X, whereT is the minimum time functiorT (x) := inf{r : X € R(r)}. We indicate byX a
control system of the type (1) and Iypt(X) the set of optimal trajectories. Jf;, y» are two
trajectories theny; * y» denotes their concatenation. For convenience, we definglads/ector
fields: X = F — G, Y = F + G. We say thay is an X-trajectory and we writgr € Traj(X) if

it corresponds to the constant contrel. Similarly we definey-trajectories. If a trajectory is
a concatenation of aK-trajectory and & -trajectory, then we say thatis aY * X-trajectory.
The timet at which the two trajectories concatenate is calledY switching time and we say
that the trajectory has d-Y switching at timet. Similarly we define trajectories of typé = Y,
XY *x X, etc.

In [19] it was shown that, under generic conditions, the fwbof reaching in minimum time
every point of the reachable set for the system (1) admitgalae synthesis. Moreover it was
shown thatR (r) can be partitioned in a finite number of embedded submasifoldiimension
2, 1 and 0 such that the optimal synthesis can be obtaineddrimadbacki(x) satisfying:

e 0n the regions of dimension 2, we haw&) = +1,

e on the regions of dimension 1, called frame curves (in thiniohg FC),u(x) = +1
or u(x) = ¢(x) (wheregp(x) is a feedback control that depends BNnG and on their
Lie bracket F, G], see [19]). The frame curves that correspond to the feedbaare
calledturnpikes A trajectory that corresponds to the contugt) = ¢(y (1)) is called a
Z-trajectory.

The submanifolds of dimension 0 are called frame pointshHanfollowing FP). In [18] it was
provided a complete classification of all types of FP and FC.

Given a trajectoryy € I' we denote byn(y) the smallest integer such that there existe
Traj (X) UTraj(Y) UTraj(2), (i = 1, ..., n(y)), satisfyingy = yny) * -+ * y1.

The previous program can be used to classify the solutiottsedbllowing problem.

Problem: Consider an autonomous ODER

(3) f e C3R?), £(0,00=0
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that describes the motion of a point under the action of aftirat depends on the position
and on the velocity (for instance due to a magnetic field osaaus fluid). Then let apply
an external force, that we suppose bounded (algs 1):

(4) y= "1, y+u.

We want to reach in minimum time a point in the configuratioacgtyy, vg) from the
rest state0, 0).

First of all observe that if we sety = vy, xo =V, (4) becomes:

(5) X1 = X

(6) X = f(xg,%x)+u,

that can be written in our standard forin= F(x) + uG(x), X € R? by settingx = (X1, X2),
F(X) = (X2, f(X)), G(X) =(0,1) :=G.

A deep study of those systems was performed in [9, 10, 19,A®m now on we make use of
notations introduced in [19]. A key role is played by the ftioes A o, Ap:

) Aa(x) = detF(x),G(x)) = X2

(8) Ag(X) = det(G(x),[F(x),G(X)]) =1.
From these it follows:

9) AYO = (xeR%:xp=0)
(10) AglO) = 0.

The analysis of [19] has to be completed in the following way.
Lemma 4.1 of [19] has to be replaced by the following (see f@8ihe definition ofBad(z) and
tana):
LEMMA 1. Let x € Bad(r) and G(x) # 0then:
A xe (A MO NAGY0) =  xetamy;
B. xetam, X(X),Y)#0 = xe A0 nagho).
Proof. The proof ofA. is exactly as in [19]. Let us provB. BeingG(x) # 0 we can choose a

local system of coordinates such ti@at= (1, 0). Then, with the same computations of [19], we
have:

(11) Ag(x) = —d1F2(x) .

From x € tanp it follows x € A;l(O), henceF(X) = aG (¢ € R). Assume thatX(x) is

tangent toA;l(O), being the other case entirely similar. This means Thata(x) - X(x) =
(@—1DVAAX)-G = 0. FromX(x) # 0 we have that # 1, henceVA -G = 0. This implies
91F> = 0 and using (11) we obtaing(x) =0, i.e.x € Agl(O).

a

Now the proof of Theorem 4.2 of [19] is completed considetimgfollowing case:

4 G #0, X(X) =0o0rY(x) =0.
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Note that (4) impliesx € tana. In this case we assume the generic conditid? ), . .. , (Pg)
were introduced in [19]):
(Pg) Ag(X) #0.

SupposeX(x) = 0 andY(x) # 0. The opposite case is similar. Choose a new local system of
coordinates such thatis the origin,Y = (0, —1) andA;l(O) = {(X1, X2) : X0 = 0}.
TakeU = B(0,r), the ball of radius centered at 0, and choosesmall enough such that:

e 0Oisthe only bad point itJ;

e ApB(X) # 0 for everyx € U;

o for everyx € U we have:

(12) IX(x)] <« 1.

LetU; = U N{(Xg,X2) : X2 > 0}, Up = U N {(x1, X2) : X2 < 0}. We want to prove the
following:

THEOREM1. If y € Opt(X) and{y(t) : t € [bg, b1]} C U then we have a bound on the
number of arcs, that i3Nx € N s.t. (¥ l[bg,by]) = Nx-

In order to prove Theorem 1 we will use the following Lemmas.

LEMMA 2. Lety € Opt(X) and assume that has a switching at timgte Dom(y) and
that Aa(y (t1)) = 0. ThenAa(y (t2)) = 0, to € Dom(y), iff ty is a switching time fory .

Proof. The proof is contained in [10].
|

LEMMA 3. Lety : [a,b] — U be an optimal trajectory such that([a, b]) c Uz or
y([a, b)) Cc Uy, thenn(y) < 2.

Proof. Itis a consequence of Lemma 3.5 of [19] and of the fact thatyepeint of U1 (respec-
tively U») is an ordinary pointi.eAa(X) - Ag(X) # 0.
|

LEMMA 4. Considery € Opt(X), {y(t) : t € [bg, b1]} € U. Assume that there exist a
X-Y switching timé € (bg, by) for y andy () € U;. Theny|[t—,bl] is a 'Y -trajectory.

Proof. Assume by contradiction that switches at time&’ e (bg, by),t’ > f. If y(t') € U1 then
this contradicts the conclusion of Lemma 3ylft’) A;l(O) then this contradicts Lemma 2.
Assumey (t') € Up. From sgma(y(f)) = —sgnAa(y (t') we have thag X(y () A Y =
—%(X(y(t/)) A'Y). This means that:

(13) sgn(Xz(y () = —sgn(Xa(y ("),

where X5 is the second component &. Chooseg € (bg, f) and define the trajectory satis-
fying 7 (bg) = y (bg) and corresponding to the conti@lt) = —1 fort € [bg, tg] andd(t) = 1
fort € [tg, by]. From (13) there existy > tg s.t. ¥ (t1) = y(t) € Uo. Using (12) it is easy to
prove thaty < t. This contradicts the optimality of (see fig. 1).

|
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Figure 1:

of Theorem 1.For sake of simplicity we will writey instead ofy |[p, b,]-

Assume first that no switching happens AI’Xl(O). We have the following cases (see fig. 2
for some of these):

(A) y has no switchingn(y) = 1;
(B) for somes > 0, y|[hy,by+e] IS @NX-trajectory,y (bp) € Uy, n(y) > 1;
(B1) if y switches toY in Uy, by Lemma 4n(y) = 2;

(B2) if y crossesA;l(O) and switches tor in Uy, by Lemma 3,y does not switch
anymore. Henca(y) = 2;

(C) for somes > 0, ¥ I[bo, bo-+e] is an X-trajectory,y (bg) € Uo, n(y) > 1;
(C1) if y switches toY before crossin@;l(O) then, by Lemma 3 (y) = 2;
(C2) if y reached); without switching, then we are in tt{8) or (B) case, thus(y) < 2;

(D) forsomee > 0, yl[hy by+e] IS @Y-trajectory,y (bp) € Uy, n(y) > 1;
(D1) if ¥ switches toX in U1 and never crosses;1(0) then by Lemma 31(y) = 2;

(D2) if y switches toX in U; (at timety € [bg, by]) and then it crosseA;l(O), then
7 [to,b1] satisfies the assumptions @) or (C). Hencen(y) < 3;

(D3) if y switches toX in U, attg € [bg, b1] and then it does not cro%;l(O), we have
niy) =2

(D4) if y switches toX in Uy and then it crosseA;l(O) we are in casef) or (B) and
niy) <3;

(E) for somes > 0, y[py by+¢] IS aY-trajectory,y (bp) € Uz, n(y) > 1.

(E1) if y switches toX in Up and it does not cros&;l(O) thenn(y) = 2;



60 U. Boscain — B. Piccoli
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Figure 2:

(E2) if y switghes toX in U and then it cross%;l(O), we are in cas@A) or B. Hence
ny) <3.

If y switches am;l(O), by Lemma 2 all the others switchings pfhappen on the se&;l(O).
Moreover, ify switches toY it has no more switchings. Henogy) < 3.

The Theorem is proved witNy = 3.
O

By direct computations it is easy to see thatglemericconditionsPy, . . ., Pg, under which
the construction of [19] holds, are satisfied under the d@di

(14) f(x,00=x1 = 09:f(X1,00#0

that obviously impliesf (x1, 0) = 1 or f (X1, 0) = —1 only in a finite number of points.

In the framework of [9, 19, 18] we will prove that, for our ptem (5), (6), with the condition
(14), the “shape” of the optimal synthesis is that shown in3ign particular the partition of the
reachable set is described by the following

THEOREM2. The optimal synthesis of the control problem (5) (6) withabedition (14),
satisfies the following:

1. there are no turnpikes;

2. the trajectoryy = (starting from the origin and corresponding to constant itoh-£1) exits
the origin with tangent vectof0, +1) and, for an interval of time of positive measure,
lies in the se{(xq, X2) : X1, X2 > 0} respectively{(x1, X2) : X1, X2 < 0};

3. y* is optimal up to the first intersection (if it exists) with thg-axis. At the point in
whichy 1 intersects the yaxis it generates a switching curve that lies in the halfngla
{(X1, X2) : X2 > 0} and ends at the next intersection with theaxis (if it exists). At that
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x2

X1

Figure 3: The shape of the optimal synthesis for our problem.

point another switching curve generates. The same hapmensf and the half plane
{(x1, X2) 1 X2 < O}

4. lety, fori = 1,...,n (n possibly+oo) (respectively gz fori = 1,..., m (m possibly
+00)) be the set of boundary points of the switching curves donethin the half plane
{(X1, X2) : Xo > 0} (respectively{(x1, Xo) : Xo < 0}) ordered by increasing (resp.
decreasing) first components. Under generic assumptigrandg z do not accumulate.
Moreover:

e Fori =2,...,n, the trajectory corresponding to constant conttel ending at y
startsat z_1;

e Fori =2,..., m,the trajectory corresponding to constant contrdl ending at z
startsat y_1.

REMARK 1. The union ofy* with the switching curves is a one dimensioddimanifold
M. Above this manifold the optimal control #s1 and below is-1.

REMARK 2. The optimal trajectories turn clockwise around the origd switch along the
switching part ofM. They stop turning after the last or z; and tend to infinity withxy (t)
monotone after the last switching.

From4. of Theorem 2 it follows immediately the following:

THEOREM 3. To every optimal synthesis for a control problem of the tyf)g§) with the
condition (14), it is possible to associate a cougtem) € (N U co)2 such that one of the
following cases occurs:

A. n =m, n finite;
B. n=m+ 1, n finite;
C. n=m- 1, n finite;
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D. n= 00, m=co.

Moreover, ifI"'1, I'> are two optimal syntheses for two problems of kind (5), (&3),(and
(n1, my) (resp.(np, my)) are the corresponding couples, thEpis equivalent td", iff Ny = ny
and m = my.

REMARK 3. In Theorem 3 the equivalence between optimal synthedks e defined in

[9].

of Theorem 3.Let us consider the synthesis constructed by the algoriteserébed in [9]. The
stability assumptions (SA1), . ,(SA6) holds. The optimality follows from Theorem 3.1 of [9]

1. By definition a turnpike is a subset m‘El(O). From (8) it follows the conclusion.
2. We leave the proof to the reader.

3. Let )/Zi(t) = nz(yi(t)), whererns : R? — R, 2(X1, X2) = Xo, and consider the adjoint
vector fieldv : R? x Dom(y¥) x Dom(y*) — R? associated tp * that is the solution
of the Cauchy problem:

(15) 0(vo, to; 1) (VF £ VG)(¥E (1)) - v(vo, to: t)
v(vo, tosto) = vo,

We have the following:

LEMMA 5. Consider they = trajectories for the control problem (5), (6). We have that
v(G, t; 0) and G are parallel iﬁAA(yi(t)) =0(.e. )/Zi(t) =0).

Proof. Consider the curverT, the case ofy~ being similar. From (9) we know that
Aa(yT (1) = 0iff y, (1) = 0. First assumes a(y+(t)) = 0. We have thaG and
(F + G)(y Tt (1)) are collinear that i = «(F + G)(y (1)) with o € R. For fixedto, t
the map:

(16) fto,t - vg = v(vo, to: 1)

is clearly linear and injective, then using (15) aind(t) = (F 4+ G)(y T (t)), we obtain
v(G,t;0) =av ((F +G)(yT ), t; 0) =a(F +G)(0) = aG.
Viceversa assume(G, t; 0) = «G, then (as above) we obtainG, t; 0) = av((F +
G)(yt(1)),t;0). From the linearity and the injectivity of (16) we ha@ = «(F +
G)(y* (1)) henceAa(y T (t)) = 0.

Od

LEMMA 6. Consider the trajectory T for the control problem (5), (6). Ldt> 0 (pos-

sibly +00) be the first time such thazt2+(t') = 0. Theny T is extremal exactly up to time
t. And similarly fory —.

Proof. In [19] it was defined the functiofi(t) = arg(G(0), v (G(y (1)), t,0)). This
function has the following properties:

(i) sgn(@(t)) = sgnAg(y (1)), that was proved in Lemma 3.4 of [19]. From (8) we have
that sgn6(t)) = 1 soé(t) is strictly increasing;
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(i) y7 is extremal exactly up to the time in which the measure of #nge ofd is r i.e.
up to the time:

(17) tT =min{t € [0, c0] : |0(s1) — 6(Sp)| = =, for somesy, sp € [0,t 7]},
under the hypothesis(t*) # 0. This was proved in Proposition 3.1 of [9].
From Lemma 5 we have thata(y T (t)) = 0 iff there existsn € N satisfying:
(18) 0(G,v(G,t,0) =nx.
In particular (18) holds fot = t and somen. From the fact that is the first time in which

v, (f) = 0 and hence the first time in whickia(y+(f)) = 0, we have that = 1.

Fromé(f) = = and sgnd(f)) = 1 the Theorem is proved witht = f.

From Lemma 6y % are extremal up to the first intersection with theaxis.

Let t be the time such that™ (t) = z1, defined in4 of Theorem 2. The extremal trajecto-
ries that switch along th€-curve starting ay (if it exists), are the trajectories that start
from the origin with control-1 and then, at some timé < t, switch to controk-1. Since
the first switching occurs in the orthaf(ix, x2) : X1, X2 < 0}, by a similar argument to
the one of Lemma 6, the second switch has to occur in the hatfex1, X2) : Xo > 0},
because otherwise between the two switches we have (ne@a®(0(t))) > m. This
proves that the switching curves never crossxhexis.

4. The two assertions can be proved separately. Let us deratmetily the first, being the proof

of the second similar. Defingy = zg = (0, 0). By definition the+1 trajectory starting
at zg reachesy;. By Lemma 2 we know that if an extremal trajectory has a sviriiglat

a point of thexs-axis, then it switches iff it intersects thg-axis again. This means that
the extremal trajectory that switchesyathas a switching atj for somej. By induction
one hasj > i — 1. Let us prove that =i — 1. By contradiction assume that- i — 1,
then there exists an extremal trajectory switching;jay that switches on th€ curve
with boundary pointsy;_1, yj. This is forbidden by Lemma 2.

a

ExampPLES 1. In the following we will show the qualitative shape of thathesis of some

physical systems coupled with a control. More precisely vaat#o determine the value of the
couple(m, n) of Theorem 3.

Duffin Equation
The Duffin equation is given by the formufa= —y — e(y3 + 2uy), &, > 0, ¢ small. By
introducing a control term and transforming the secondroedeation in a first order system, we

have:

(19)
(20)

f(]_ = X2
Yo = —x1—e0C +2uxp) +u.

From this form it is clear thaf (x) = —x; — a(x:l3 + 2ux2).
Consider the trajectory . It starts with tangent vectq, 1), then, from (19), we see that it
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Figure 4: The synthesis for the Van Der Pol equation.

moves in the orthar® := {(x1, X2), X1, X2 > 0}. To know the shape of the synthesis we need
to know where(F + G)»(x) = 0. If we seta = 2%“ this happens where

(22) X =a(l—xq — sx3) .
From (19) and (20) we see that, after meeting this curve rdjedtory moves with}fr > 0and
J}2+ < 0. Then it meets the;-axis because otherwise ' (t) € Q we necessarily have (for

t — o0) y;7 — 00, 5~ — 0, that is not permitted by (20). The behavior of the trajecto is
similar.

In this case, the numbei®, m) are clearly(co, co) because ther-1 trajectory that starts at
71 meets the curve (21) exactly one time and behavesyike So theC-curve that starts af;
meets again th&; axis. The same happens for thd curve that starts at;. In this way an
infinite sequence of; andz is generated.

Van der Pol equation

The Van der Pol equation is given by the formiilae —y+e(1—y2)y+u, ¢ > 0and small. The
associated control system is; = X, Xp = —X1 +e(1— xf)xz—l— u. We have(F + G)2(x) =0
on the curvesy = _Wlﬂ) for x; # 41, x; = —1. After meeting these curves, the tra-
jectory moves with)lJr >0 and;'/ZJr < 0 and, for the same reason as before, meetsg taxis.
Similarly for y ~. As in the Duffin equation, we have thatandn are equal tot-oco. But here,
starting from the origin, we cannot reach the regio;{isxl, X2) 1Xp < —1, X > _Wlﬂ)}

{(XL X2) 1X1 > -1 % < _Wl—l)} (see fig. 4).

Another example
In the following we will study an equation whose synthesis iham < co. Consider the equa-
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X1

Figure 5: The synthesis for the control problem (22), (23he Bketched region is
reached by curves that start from the origin with contrdl and then switch ter1
control between the point& andB.

tion: y = —eY + y + 1. The associated control system is:

(22) X1 = X
(23) Xp = —€l4x+1+u

We have;?zJr = 0 on the curvexy = €1 — 2. After meeting this curve, thg™ trajectory meets
the x1-axis.

Now the synthesis has a different shape because the tndgsctmrresponding to contretl
satisfyy» = 0 on the curve:

(24) Xp = Xt
that is contained in the half plarjéxy, x2) : Xo > 0}. Hencey ~ never meets the curve given by

(24) and this means that = 0. Since we know that is at least 1, by Remark 4, we have= 1,
m = 0. The synthesis is drawn in fig. 5.

5. Optimal syntheses for Bolza Problems

Quite easily we can adapt the previous program to obtainrimdition about the optimal synthe-
ses associated (in the previous sense) to second ordeediffd equations, but for more general
minimizing problems.

We have the well known:

LEMMA 7. Consider the control system:

(25) %X=F®X) +uG(x), xeR? F,GeC3R?R?, F@0) =0, [u<1.
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Let L : RZ2 — R be aC® bounded function such that there exists 0 satisfying L(x) > & for
any xe R2.

Then, for every R?, the problem:min fof L(x(t)) dt s.t. XO) = 0O, x(r) = Xp, is equivalent
to theminimum time problem(with the same boundary conditions) for the control systemm
F(X)/L(X) + uG(x)/L(X).

By this lemma it is clear that if we have a second order difféed equation with a bounded-
external forcef = f(y, y)+u, f € C3R?), f(0, 0) = 0, |u| < 1, then the problem of reaching a
point in the configuration spacgg, vg) from the origin, minimizing/of L(y(), y(t))dt, (under
the hypotheses of Lemma 7) is equivalent to the minimum tinoblpm for the systemx; =
X2/L(X), X = f(X)/L(X) + 1/L(X)u. By setting: a : R? —10,1/8[, a(x) = 1/L(X),

B RZ - R, BX) = f(X)/L(x), we have:F(x) = (Xoa(X), B(X)), G(X) = (0, ¢(x)). From
these it follows:A A(X) = Xoa2, Ag(X) = a(a + Xodoar).

The equations defining turnpikes amep # 0, Ag = 0, that with our expressions become the
differential conditionx + x2d2a = 0 that in terms oL is:

(26) L(X) — X202L(X) =0

REMARK 4. SinceL > 0 it follows that the turnpikes never intersect theaxis. Since
(26) depends o (x) and not on the control system, all the properties of the ikespdepend
only on the Lagrangian.

Now we consider some particular cases of Lagrangians.

L=L(y) In this case the Lagrangian depends only on the positiand not on the velocity
(i.e. L = L(x1)). (26) is never satisfied so there are no turnpikes.

L=L(y) In this case the Lagrangian depends only on velocity anduimpikes are horizontal
lines.

L=V(y) + 2y? In this case we want to minimize an energy with a kinetic garf and a pos-
itive potential depending only on the position and satigfy¥ (y) > 0. The equation for
turnpikes is(xp)2 = 2V (xy).
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P. Brandi — A. Salvadori

ON MEASURE DIFFERENTIAL INCLUSIONS
IN OPTIMAL CONTROL THEORY

1. Introduction

Differential inclusions are a fundamental tool in optimahtrol theory. In fact an optimal control
problem

min_ J[x, u]
X,u)e2

can be reduced (via a deparameterization process) to aepnaifl Calculus of Variation whose
solutions can be deduced by suitable closure theoremsfferatitial inclusions.

More precisely, if the cost functional is of the type

Q) J[x,u] = /I fo(t, x(t), u(t)) da
andQ is a class of admissible pairs subjected to differentialstate constraints
2 Oxm)eA X)) = ft,x),ul)), u@) e U@, x) tel
the corresponding differential inclusion is
3 GxtneA X®)eltxw) tel
where multifunctionQ is related to the epigraph of the integrand i.e.

Qt,x) ={(z,v) 12> fot,x, u), u= f(t,x,v), veU( x)}.

We refer to Cesari’s book [8] where the theory is developeBiaholev spaces widely.

The extension of this theory BV setting, motivated by the applications to variational mod-
els for plasticity [2, 3, 6, 13], allowed the authors to prowsv existence results of discontinuous
optimal solutions [4, 5, 9, 10, 11, 12].

This generalized formulation involved differential inslans of the type
(3% t, X)) e A X'(t) € Q(t, X(1)) a.e. inl

whereu’ represents the “essential gradient” of tB¥ functionx, i.e. the density of the abso-
lutely continuous part of the distributional derivativetlviespect to Lebesgue measure; more-
over the Lagrangian functional (1) is replaced by the Seyire relaxed functional

1% J[x,u] = inf liminf I [xk, uk] .
(XK, Uk)— (X,u) k—o00

69
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A further extension of this theory was given in [4] where wsatissed the existence bf
solutions for the abstract evolution equation

(3%%) (t,u@) e A v(t) € Q(t, u(t)) a.e. inl

whereu andv are two surfaces not necessarely connected. This gersiatiallowed us to deal
with a more general class of optimization problemsBN setting, also including differential
elements of higher order or non linear operators (see [4h®details).

Note that the cost functiondl takes into account of the whole distributional gradienthef t
BV functionu, while the constraints control only the “essential” detiva

To avoid this inconsistency a new class of inclusions invg\the measure distributional deriva-
tive should be taken into consideration. This is the aim ef tasearch we developed in the
present note.

At our knowledge, the first differential inclusion involgrthe distributional derivative of a
BV function was taken into consideration by M. Monteiro Mars|{&8, 19] who discussed the
existence of right continuous ar\V solutions for the inclusion

du

(4) ut) e Ct) ~idul

(t) € Ney(ut)) |duj-a.e. inl
whereC(t) is a closed convex set alNg 1) (@) is the normal cone a(t) in the pointa € C(t).

These inclusions model the so called sweepping processlirted by J.J. Moreau to deal with
some mechanical problems.

In [21, 22] J.J. Moreau generalized this formulation to diescgeneral rigid body mechan-
ics with Coulomb friction and introduced the so called meeadlifferential inclusions
d .
(4 ek Ap—a.e. inl
da
wherex,, = A + |u|, with A is the Lebesgue measure gnds a Borel measure, and whelg(t)
is a cone.

Both the inclusions (4) and {4 are not suitable for our purpose since they can not be applie
to multifunction Q(t, u) = epiF(t, u, -) whose values are not cones, in general.

Recently S.E. Stewart [23] extended this theory to the céseatosed convex set (t),
not necessarely a cone. Inspired by Stewart’s research mgidew here the following measure
differential inclusion

dra 4 Qt,ut))  r-ae.inl
@ ; ax
P ) elQt,ut)]e  ps-ae. inl
dius|

whereu = ua + us is the Lebesgue decomposition of the Borel meaguadmd [Q(t, a)]so IS
the asymptotic cone of the non empty, closed, convexseta).

Note that measurg andBYV functionu are not necessarely correlated, analogously to inclusion

(3**). In particular, if i coincides with the distributional derivative aof i.e. %"A—a = U, the
first inclusion is exactly (8), while the second one involves the singular part of the nmeas
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derivative.

In other words formulation (%) is the generalization of {3 in the spirit of (3*).

The closure theorem we prove here for inclusiofij4epresents a natural extension of that
given in [9, 10, 4, 5] for evolution equations of typesYand (3*). In particular we adopt the
same assumption on multifuncti@®, which fits very well for the applications t@ and hence
to optimal control problems.

Moreover, we wish to remark that our results improve thosergby Stewart under stronger
assumptions on multifunctio® (see Section 6).

2. Preliminaries

We list here the main notations and some preliminary results

2.1. On asymptotic cone
DEFINITION 1. Theasymptotic conef a convex set @& R" is given by

[Cloo = { lIm axxy :ak \\ O, Xk € C, ke N}.
k— o0

A discussion of the properties of the asymptotic cone carobad in [16] and [23]. We
recall here only the results that will be useful in the follog:
P;. If C is non empty, closed and convex, ti€j is a closed convex cone.
P>. If C is a closed convex cone, then-£[C] -
P3. If C is non empty, closed and convex, tfi€h is the largest cone K such thatixk c C,
withx € C.

Let(Cj)jeJ be afamily of nonempty closed convex values. Then the foljawsults hold.

Py clco| JICjleo C | clco| J Cj

jed jed 0o

Ps. if () Cj # ¢, then ﬂcj = [ [Cjl-

jed jed 0 jed

2.2. On property (Q)

Let E be a given subset of a Banach space an@lete — R™ be a given multifunction. Fixed
a pointtg € E, and a numbeh > 0, we denote byB,, = B(tg,h) = {t € E : |t —tg| < h}.

DEFINITION 2. Multifunction Q is said to satisfy Kuratowsgroperty (K)at a point )
E, provided

(K) Qto) = [ ¢l | J Q.

h>0 teBp
The graph of multifunction Q is the sgtaphQ = {(t,v) : v € Q(t), t € E}.
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It is well known that (see e.g. [8])
Ps. graphQ is closed in Ex R™ «— Q satisfies conditiofK) at every point.

Cesari [8] introduced the following strengthening of Kasaski condition which is suitable
for the differential inclusions involved in optimal contfroblems inBV setting.

DEFINITION 3. Multifunction Q is said to satisfy Cesarifgoperty (Q)at a pointy € E,
provided

Q Qo) = [ clco | J Q.

h>0 teBp
Note that if (Q) holds, then the s€l(tg) is necessarily closed and convex.

We will denote byC(R™) the class of non empty, closed, convex subseR"of

Property (Q) is an intermediate condition between Kurakbwsndition (K) and upper semicon-
tinuity [8] which is suitable for the applications to optih@ntrol theory. In fact the multifunc-
tion defined by

Q(x, u) = epiF(x, u, -)

satisfies the following results (see [8]).

P;. (3 has closed and convex values iffx; u, -) is lower semicontinuous and convex.
Pg. 6 satisfies propert{Q) iff F is seminormal.

We wish to recall that seminormality is a classical Tonglissumption in problems of calculus
of variations (see e.qg. [8] for more details).

Given a multifunctionQ : E — C(R™M), we denote byQ. : E — C@R™) the multifunc-
tion defined by

Qoo(t) = [Q()] o teE.
PropPosITION]. If Q satisfies propertyQ) at a point g, then also multifunction @ does.

Proof. Since

¢ # Qo) = [ ] clco | J Q)

h>0 teBp
from P4 and P5 we deduce that

Qoo(ty) = ﬂ |:cl co U Q(t):| - ﬂ clco U Qoo ().

h>0 teBp h>0 teBp

The converse inclusion is trivial and the assertion follows
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3. On measure differential inclusions, weak and strong forralations

LetQ : 1 — R", with | C R closed interval, be a given multifunction with nonemptyseid
convex values and lgt be a Borel measure dn of bounded variation.

In [23] Stewart considered the two formulations of measiifferéntial inclusions.
Strong formulation.
© daty e Qty  r-ae.inl
aﬁ(t) € Quo(t) us—a.e.inl
whereu = ua + us be the Lebesgue decomposition of meagure
Weak formulation.

Jiodu
Ji #dr

(W) eclco | J Qw

telNSuppyp

for every¢ € Co, whereCq denotes the set of all continuous functiahs R — R(J)r with
compact support, such thit¢ da # 0.

Stewart proved that the two formulations are equivalentlenrsuitable assumptions @
(see Theorem 2), by means of a transfinite induction process.

We provide here a direct proof of the equivalence, under ereaksumption.

Moreover, for our convenience, we introduce also the falhgnocal version of weak for-
mulation.

Local-weak formulation. o B
Lettg € | be fixed. There exists = h(tg) > 0 such that for every & h < h,

th pdu
——— eclco Q)
th d) da tgh

for every¢ € Cg such that Supp C By.
Of coursejf u satisfiegW), then(LW) holds for everyg € I.

(LW)

Rather surprising also the convers hold, as we shall sholeifallowing (Theorem 3).
In other words, also this last formulation proves to be egjent to the previous ones.
THEOREM1. Every solution ofS)is also a solution ofW).

Proof. Let¢ € Cg be given. Note thaf, ¢ du = [ ¢ dua + f, ¢ duus moreover

dua duia
5 / d = —_— dA:/ —dA
(5) | ¢dua | dn ¢ \nSupps dA ¢
dus dus
6 / dus = dlu |=/ —du
©) |¢ s [ dIMsId) s InSuppyp dlus] ¢

wherei, andus o are the Borel measures defined respectively by

€)= [0 uso® = [pdlus  EcI.
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From (5), in force of the assumption and taking Theorem 1[3]iinto account, we get

d
_ Ji¢dua Jinsupps R dag
& pda 2g (I N Suppe)

(7) ecco | J Q.

telNSuppyp

In the casgfl ¢dlus| =0, thenfI ¢ dus = 0 and the assertion is an immediate consequence of
(.
Let us put

(7 Qp:=clco [ J Q).
telNSuppyp

Let us assume now thq\‘_ ¢ djus| # 0. Then from (6), in force of the assumption we get, as
before

d
Jy ¢dus  Jinsupps dh dusg
f| ¢ dlus| s, (1 N Suppp)

eclco U Qm(t)c{clco U Q(t)i| =[Qploo
telNSuppp telNSuppp 0o

and since the right-hand side is a cone, we deduce

— Ji ¢ dus _ Ji ¢dus ' Ji ¢ dlus|
> f|¢d)» f|¢d|ﬂs| f,d)dk

From (7) and (8) we have that

®) ¢ € [Qgloo -

d
? Zdl)f =¢a+ ¢sWithpa € Qp  ¢s € [Qpleo
I
and, by virtue ofP3, we conclude that
d
ﬂzdl)ﬁ eQy=clco | J QM

teSuppp

which proves the assertion.
THEOREM?2. Letu be a solution ofLW) intg € I.
(@) If Q has propertiegQ) at ty and the derivative%"f (tp) exists, then
dua
—(t to) -
O (to) € Q(to)
. . d .
(b) If Qoo has propertiegQ) at tg and the derlvatlv%ﬁ (tg) exists, then

—(tg) € Qoo (tp) .

dus
dlus]
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Proof. Let S, denote the set where measwrgis concentrated, i.e5, = {t € | : usft} # 0}.
Sinceps is of bounded variation, the, is denumerable; let us put

Sy={sn, neN.

Let us fix a pointg € | 0. The case wherg is an end-point foll is analogous.

The proof will proceed into steps.

Step 1. Let us prove first that for ever, = B(tg, h) c | with 0 < h < h(tp) and such that
9Bnh NS, = ¢, we have

w(Bh =S  pa(Bnp)
9) o ==, eclco U Q.
teBp
Letn € N be fixed. For every Kk i < n, we consider a constant9rj = rj(M) < ﬁ—;—

such thatB(s;, i) N B(sj.rj) =¢,i #j,1<i,j <n.
n
Moreover, we puly = U BO(s, ri).

i=1

n

Fixed a constant & n < min{h, rj, 1 <i < 0}, we denote byg , = U Bo(s Jri—n)
i=1

and consider the function

0 tel —ByUln,

dnp®) =11 teBhy—In
linear otherwise

Of coursegr ;, € Co thus, by virtue of the assumption, we have

Ji ¢n,ndu
(10) Rn.p, = %———— eclco Q).
! fl ¢ﬁ,n da teLgh
Note that, puCs , = Bp — [In,;, U (Bh—, — I ], we have

th*Iﬁ’n ¢ﬁ,17 d/L _ M(Bh_n - Iﬁ) +-/.(:ﬁ,n ¢ﬁ,17 d/L
JBn—ts, A A (Bh—y — In) "'fcm g di

If we letn — 0, we get

(11 Ran =

Bhoy—In /Bl —ln  lny /o

and hence
Cr,p \(9Bnh = {tg—h,tg+h}.
As a consequence, we have (see e.g. [14])

r:iino“(Bh_” —In) = n(Bh - In)
(12) r:iLnOK(Bh—n —Im =A(Bp — Ip)

li Chy) = lim A(Cq,) =0
ninolul( ) nino Cn,yp)
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and hence

12) lim #h,, dp = I|m #rpdi=0
n—0 Criy -0 Cn.p

From (11), (12) and (12, we obtain

_ p(Bpn—=Ip)  paBn—In) +us(Bh —In) .

(13) R = By =) *(Br— )

Note that since

n
A(ln)—er, Sézzi<§

we have

(14) _ im A(lp) = _ Iim wua(ly) =0
nN—+00 n—+4o00

Moreover

lus(Bn — Im)| < Iusl(Bh — 1) < Ius|(Su — In) = ) Iusl({sn)

n>n
and, recalling that. has bounded variation

14) _lim - jus(Bp — Ipl = _lim Z Iusl(fsn}) =0
n—+o00 nN— 400 n=n

Finally, from (13), (14) and (3 we conclude that

_ pra(Bp)
li li =
HJTOO n[)nO RA, n = 2h
that, by virtue of (10), proves (9).
Step 2. Let us prove now parta). We recall that

dMa i “a(Bn)
15 —(t
(15) 5 (fo) = lim m—n

By virtue of step 1, for every fixed > 0 such thaB; C |, we have

Ha(Bh) =
o eclco J Qtycclco| J Q) r-ae. O<h<h
teBp teBy

and hence, by letting — 0, and taking (15) into account, we get

(to) eclco | ] Q.

teBy

By virtue of the arbitrariness &f > 0 and in force of assumption (Q), we conclude that

d
S2to e Neleo|J Q) = Qo).

h>0 teBy
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Step 3. For the proof of partb) let us note that

dus us({to})
16 tn) =
(18) dinsl @ = Tasl((toD

sincepus({to}) = fii) dits = fi) oty dius| = £ (to) lus|(fto}).
Leth > 0 be fixed in such a way th&, = B(tg,h) c |I. For every O< n < hwe
consider the continuous function defined by

1 te Bg
oM =1 0 tel —By
linear otherwise

Note that (see e.qg. [14])
(17) us({to)) = ,,"_TOM(B%) = 77|iL1ﬂO/L(Bn).

Moreover we have

By) = du = du — d
u( 127) /;n¢n H /;‘PU M Ln_Bg¢n M

o oo |
= . dA._ d .
Ji dpdr P B,~By Pndit

(18)

By assumption we know that

Ji ¢ du
eclco Q(t) cclco Q)
Ji dpdn U tgh

let us put

Qn:=clco | J Q).

teBp

Since lim / ¢y du = 0, by virtue of P4 we get
n—0Jj

f| ¢y du /
19
(19) 77—>0 jl d’nd)\ ¢n € [Qnloo -
Furthermore, by virtue of (17) we have
n—0
(20) / ¢pdu| < |M|(B,,)—|M|(Bg)longrightarr0w0
anBg

thus, from (18) and taking (17), (19) and (20) into accourg,olutain
1({to}) € [Qnleo for everyh > Osuch thaiB,, = B(tg,h) C I .
Finally, recallingPs we deduce that

n({to) € () [Qnloo = [ﬂ Qh:| = Quo(to)

h>0 h>0
and taking (16) into account, sSin€gx (tg) is a cone, the assertion follows.
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|

DEFINITION 4. Let 1 be a given measure. We will say thapeoperty P holds (A, us)—
a.e. if property P is satisfied for every point t with the exwepperhaps of a set N with
A(N) + us(N) = 0.

From Theorem 2 the following result can be deduced.

THEOREM 3. Assume that
(i) Q has propertiegQ) 1—a.e.
(ii) Qoo has propertiegQ) us—a.e.
Then every measuye which is a solution ofLW) (1, us)—a.e. is also a solution ¢B).
As we will observe in Section 6, the present equivalenceltrgmmong the three formula-

tions (S), (W), (LW)] improves the equivalence betweenrggrand weak formulation proved by
Stewart, by means of a transfinite process in [23].

It is easy to see that Theorem 3 admits the following gereatidin.

THEOREM4. Let Q, : | — C(R™), h > 0 be a net of multifunctions and lgt be a Borel
measure. Assume that

(i) Qoto) = (1] Qn(to) 1-ae;;

h>0
(i) [Qoleo(to) = [)[Qnles(to) ns-a.e;;
h>0
(iii) for (r, us)—a.e. p there existdh = h(tg) > 0 such that for everp < h < h
B #du
jthW € Qn(to)
Bh

for everyg € Cq such thatSuppy C By,.

Theny is a solution of(S).

Proof. Lettg € | be fixed in such a way that all the assumptions hold.
Following the proof of step 1 in Theorem 3, from assumption) we deduce that

ua(Bp)
2h

and hence from assumptign) (as in step 2) we get

€ Qn(to)

d
ﬁ(ta) € hOO Qn(to) = Qofto) -

Finally, analogously to the proof of step 3, from asumpti@is) and(ii ) we obtain

n(ito)) € [)[Qnloo(to) = Qoo (to)
h>0
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and sinceQqo (tg) is a cone, we get

dus w({to})
diisl @ = i € M

4. The main closure theorem

Letl c Rbe aclosed interval and 1€ : | — C(R™M), k > 0, be a sequence of multifunctions.
We introduce first the following definition.

DEFINITION 5. We will say that(Qg)k=0 satisfies condition (QK) at a poitg € E pro-
vided

(QK) Qotto) = (] () el {Jcleo | J Qkty.

h>0neN k>n teBp
We are able now to state and prove our main closure result.

THEOREMS. Let Q¢ : | — C(R™), k > Obe a sequence of multifunctions and(ek)k=o
be a sequence of Borel measures such that

(i) (Quk=o satisfiedQK) condition(x, ug s)-a.e.;
(i) ug w*—converges t@ug;

ditka
5o (D € Qe )r—a.e.
(”I) { %(t)e[Qk]m(t) Uk s—a.€.

Then the following inclusion holds

dlﬁ%a (t) € Qo) r—a.e.
Ko,s t t
Wiy ® € [Qoloo()  os—ace.

Proof. We prove this result as an application of Theorem 4 to the net

Qny= (e Jclco [ Q).

neN k>n TeB(t,h)
By virtue of P5 assumptior(i) assures that both assumptignsand(i) in Theorem 4 hold.

Now, lettg € | be fixed in such a way that assumpti@n ) holds and let € Cg be given
with Suppp € ByN |.
From Theorem 1 we deduce

weclco lJ &t keN
Jsuppy @ d2 teSuppp

and from assumptiofii ) we get

fSuppp ¢ duo — i fSuppp ¢ duk
Jsupps®dr  k=+oo [gypp, @ dA
which gives assumptio(ii ) in Theorem 4.

(1)

(22) € Qn(to)



80 P. Brandi — A. Salvadori

5. Further closure theorems for measure differential inclisions

We present here some applications of the main result to kexhkr classes of measure differen-
tial inclusions.

According to standard notations, we denoteLBythe space of summable functions | —
R™ and byBV the space of the functionse L1 which are of bounded variation in the sense of
Cesari [7],i.eV(u) < +oo0.

Letuy : | — R™ k > 0, be a given sequenceit and letQ : | x A c R"1 . ¢c@®M)
be a given multifunction.
DEFINITION 6. We say that the sequencay)k>o satisfies the property ofocal equi-
oscillationat a point ) € | provided
(LEO) lim_lim sup sup |uk(t) — up(tg)| = 0.
—U k-0 teBy

Itis easy to see that the following result holds.

PrRoPOSITION2. If ug converges uniformly to a continuous functiog, then condition
(LEO) holds everywhere in |.

In [10] an other sufficient condition for property (LEO) car bound (see the proof of
Theorem 1).

PropPoOsITIONS. If (Uk)k=0 is a sequence of BV functions such that
(i) uk converges togir—a.e. inl;

(i) supV (ug) < +oo.
keN

Then a subsequencas, )k satisfies conditioLEO) A—a.e. in |.

Let us prove now a sufficient condition for property (QK).

THEOREM6. Assume that the following conditions are satisfied at a pijrt |

(i) Q satisfies propertyQ);
(i) (upk=o satisfies conditiofLEO).

Then the sequence of multifunctiong Q — CR™M), k > 0, defined by
Qk(t) = Q(t, uk(t)) k>0
satisfies propertyQK) at tg.
Proof. By virtue of assumptioriii ), fixede > 0 a number O< h, < ¢ exists such that for every
0 < h < hg anintegeky, exists with the property that for eveky> kp
t € Bp(tp) = |up(to) — uk(®)| < €.
Then for everyk > kp,
clco | Q. uk() c clco U Q(t,X) = Qg .

teBn [t—to|<e,|Xx—Uo(to)|<¢
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Fixedn > kp
cl U clco U Q(t, ug()) C Qg
k>n teBn
and hence
ﬂ cl U clco U Q(t, uk(®)) C Qs
neN k>n teBn

Finally, by virtue of assumptiofi), we have

(e cleo | J Q. uk®) c [ Qe = Qto. up(to))

e>0neN k>n teBp e>0

which proves the assertion.
|

In force of this result, the following closure Theorem 5 candeduced as an application of
the main theorem.

THEOREM7. Let Q : | x A ¢ R™1 — ¢(@®R™) be a multifunction, letiu)k=0 be a
sequence of Borel measures of bounded variations andile u— A, k > 0 be a sequence of
BV functions which satisfy the conditions

(i) Q has propertiegQ) at every point(t, x) with the exception of a set of points whose t-
coordinate lie on a set afx, i s)—null measure;

i) { dﬁi(t) cQt ut)  i-ae.
m(t) € Qoo(t, Uk(t)) uks—a.e.
(iii) uk w*—converges teug;
(iv) supen V(uk) < +o0;
(v) uk converges to g pointwiser—a.e. and satisfies conditi¢hEO) at 1o s—a.e.

Then the following inclusion holds

Ko,
aluo,i\ (1) € Qoo(t, Up())  pos—a.e.

{ dioa 1) ¢ Q(t,upt))  r-ae.
REMARK 1. We recall that the distributional derivative oBa/ functionu is a Borel mea-
sure of bounded variation [17] that we will denote fy.
Moreoveru admits an “essential derivatival’ (i.e. computed by usual incremental quo-

tients disregarding the values takeniwn a suitable Lebesgue null set) which coincides with

duua [o5)

Note that Theorem 7 is an extension and a generalizationeofrthin closure theorem in
[10] (Theorem 1) given for a differential inclusion of thepty

u'(t) € Q(t, u(t)) r—a.e.inl .

To this purpose, we recall that {tix)k>0, is a sequence of equ functions, then a subse-
guence of distributional derivatives*—converges.

The following closure theorem can be considered as a paticase of Theorem 7.
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THEOREMS. Let Q: | x E — C(R™), with E subset of a Banach space, be a multifunc-
tion, let (uk)k=0 be a sequence of Borel measures of bounded variations are)gt-o be a
sequence in E. Assume that the following conditions arsfeedi

(i) Q has propertiegQ) at every point(t, x) with the exception of a set of points whose t-
coordinate lie on a set afx, g s)—null measure;
y E,—d’%a ®eQtay  i-ae.
(” ) Hk.s
m(t) € Qoo(t,ax) i s—a.e.
(iii ) uk w*—converges t@;
(iv) (ax)k converges to@
Then the following inclusion holds

dﬁ%a (1) € Q(t, ap) r—a.e.
Ho,s t t
Tiog (M) € Quo(t.a0)  pos—ace.

As we will prove in Section 6, this last result is an extensidolosure Theorem 3 in [10].
As an application of Theorem 7 also the following result carploved.

THEOREMO. Let Q: | xR" x RP — C(R™), be a multifunction, let f | x R" x R4 —
R" be a function and letuy, vk) : | — R" x RY, k > 0, be a sequence of functions.
Assume that

(i) Q satisfies propertyQ) at every point(t, X, y) with the exception of a set of points whose
t-coordinate lie on a set afx, wy,,s)—null measure;

(ii) f is a Carathéodory function and
[ (t U, 0)] < Y () + Yat) Jul + wat) vl with g e L1i =1,2,3;

v[{f(t) € Q(t, uk(®) — fF(t, u(®), v () r-a.e.

(iii) { H\Zz—t:;(t) € Qoolt, Uy (1)) Uy s—a.€.

(iv) supen V (vk) < +oo and (v converges tag A—a.e.;

(v) (ug)k converges uniformly to a continuous functiafn u

Then the following inclusion holds
{ vé(t) € Q(t, ug(t)) — f(t, ug(t), vo(t)) Ar-a.e.

Hvg,s
m(t) € Quo(t, ug) Hyg,s—a.€.

Proof. If we consider the sequence of Borel measures defined by

b
vk([a, b)) =/ [v (1) + f(t, uc(), oe@)]dr  [a,b] C | k>0
a

it is easy to see that

dvk.a /
d): (1) = v (V) + (1, uet), ve(t)) A—a.e.

It is easy to verify that assumptions assure thady>g is a sequence oBV measure which
w*—converges and the result is an immediate application obEme 7.

de,s = dl/-uk,s

|
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REMARK 2. Differential incusions of this type are adopted as a méatetigid body dy-
namics (see [20] for details). As we will observe in Sectiailé previous result improves the
analogous theorem proved in [23] (Theorem 4).

6. On comparison with Stewart’s assumptions

This section is dedicated to a discussion on the comparistmelen our assumptions and that
adopted by Stewart in [23].

LetQ : E — C(R") be a given multifunction wherE is a subset of a Banach space.

The main hypotheses adopted by Stewart in [23] on muntifaned are the closure of the
graph (i.e. property (K)) and the following condition:
for every € Ethere existbg > Oand Ry > Osuch that
(23) sup inf |Ix| < Rg.
te BE xeQ(t) =Ro

We will prove here that these assumptions are stricly sgotitan property (Q). As a con-
sequence, the results of the present paper improve that igiy23].

PrRoPOSITION4. Let Q be a multifunction with closed graph and lgt¢ E be fixed.
Assume that
for a given g € E there existg > 0 and Ry > 0 such that

sup inf x| <
teBﬁXEQ(t) Ro

then multifunction Q satisfies propeii®) at to.

Proof. By virtue of Lemma 5.1 in [23], fixed a number> 0, there exist§ = §(tg, &) > 0 such
that

t € Bs = Q(t) C Q(tp) + ¢ B(0, 1) + (Qoo(t0))

where(Quo (tp)), denotes the—enlargement of the s€« (tg).
Since the right-hand side is closed and convex

clco | J Q) C Q(to) + & B(0, 1) + (Quo (o)),

teBs

then

Q*(to) := () clco | Q) € Qto) + & B(O, ) + (Qoo(t0)) -
§>0 teBs

Now, fixed an integen € Nand O< ¢ < % we get

Q*(to) C Q(to) +¢ B(0,1) + (Quo(t0)), C Q(to) + B0, 1) + (Qoo(to))%
and lettinge — 0, we obtain
(24) Q*(to) € Qto) + (Qoo(to)) 1 -

Recalling that (se®3)
Q(tp) + Qoo (tp) C Q(to)
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we have
Q(to) + (Qoo(to))% C (Q(to))% + (Qoo(to))% C (Q(tp) + Qoo(to))% C (Q(to))%
and from (24) lettingn — +oo we get

Q*(tg) C Q(tp)

which proves the assertion.
|

This result proves that even if Kuratowski condition (K) isaker than Cesari’s property (Q)
(see Section 2), together with hypothesis (23) it becomésoager assumption. The following
example will show that assumption (23) and (K) are strictigisger than property (Q).

Finally, we recall that inBV setting property (Q) can not be replaced by condition (K)itas
occurs in Sobolev's setting (see [10], Remark 1).

EXAMPLE 1. Let us consider the functidn : R(J)r x R — R defined by

lsiPl i t#0

F(t’”)z{ v] t=0

and the multifunction .
Q(t, ) = epiF(t, ).
Of course assumptioii ) in Proposition 2 does not holds f@ at the pointg = 0.
Moreover, in force of the Corollary to Theorem 3 in A.W.J. &lart [24], it can be easily proved
thatF is seminormal. Thu® satisfies condition (Q) at every point Rar (seePg).
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A. Bressan

SINGULARITIES OF STABILIZING FEEDBACKS

1. Introduction

This paper is concerned with the stabilization problem fooatrol system of the form
1) X = f(x,u), ue K,

assuming that the set of control valuésc R™ is compact and that the mdp: R" x R™ — R

is smooth. Itis well known [6] that, even if every initial s¢x < R" can be steered to the origin
by an open-loop contral = u*(t), there may not exist a continuous feedback contre! U (x)
which locally stabilizes the system (1). One is thus foraedbbk for a stabilizing feedback
within a class of discontinuous functions. However, thaeto a theoretical difficulty, because,
when the functiord is discontinuous, the differential equation

2) x = f (x,U(X))

may not have any Carathéodory solution. To cope with thdlem, two approaches are possi-
ble.

1) On one hand, one may choose to work with completely arbifiesagiback controlt). In this
case, to make sense of the evolution equation (2), one ntustlirce a suitable definition
of “generalized solution” for discontinuous O.D.E. ForB@olutions, a general existence
theorem should be available.

II) On the other hand, one may try to solve the stabilization lprotwithin a particular class
of feedback control&) whose discontinuities are sufficiently tame. In this caswiill
suffice to consider solutions of (2) in the usual Caratheépdense.

The first approach is more in the spirit of [7], while the settavas taken in [1]. In the
present note we will briefly survey various definitions of geatized solutions found in the liter-
ature [2, 11, 12, 13, 14], discussing their possible appdoao problems of feedback stabiliza-
tion. In the last sections, we will consider particular skes of discontinuous vector fields which
always admit Carathéodory solutions [3, 5, 16], and oatiome research directions related to
the second approach.

In the following, @ and 9 denote the closure and the boundary of a®gtvhile B, is
the open ball centered at the origin with radiusTo fix the ideas, two model problems will be
considered.

Asymptotic Stabilization (AS). Construct a feedbaak= U (x), defined orR" \ {0}, such that
every trajectory of (2) either tends to the origintas> oo or else reaches the origin in
finite time.

Suboptimal Controllability (SOC). Consider the minimum time function

(3) T X =min{t : there exists a trajectory of (1) with(0) = X, x(t) =0} .

87
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Call R(r) = {x:T(x) <t} the set of points that can be steered to the origin within
time t. For a givene > 0, we want to construct a feedbaok= U (x), defined on a
neighborhoodv of R(t), with the following property. For every € V, every trajectory

of (2) starting aik reaches a point insidB, within time T (X) + ¢.

Notice that we are not concerned here with time optimal faekiy, but only with subopti-
mal ones. Indeed, already for systemQR?n an accurate description of all generic singularities
of a time optimal feedback involves the classification ofrgéanumber of singular points [4, 15].
In higher dimensions, an ever growing number of differengslarities can arise, and time op-
timal feedbacks may exhibit pathological behaviors. A clatgclassification thus appears to
be an enormous task, if at all possible. By working with sulmogl feedbacks, we expect that
such bad behaviors can be avoided. One can thus hope toumrsstboptimal feedback controls
having a much smaller set of singularities.

2. Nonexistence of continous stabilizing feedbacks

The papers [6, 19, 20] provided the first examples of conystiesns which can be asymptotically
stabilized at the origin, but where no continuous feedbaxkrol u = U (x) has the property
that all trajectories of (2) asymptotically tend to the arigst — oo. One such case is the
following.

ExamPLE 1. Consider the control system 5
(4) (X1, %2, X3) = (Ug, Up, XgUp — XaU7) .

As control setk one can take here the closed unit balRif. Using Lie-algebraic techniques,
it is easy to show that this system is globally controllaldehe origin. However, no smooth
feedbacku = U (x) can achieve this stabilization.

Indeed, the existence of such a feedback would imply theende of a compact neigh-
borhoodV of the origin which is positively invariant for the flow of tremooth vector field
gx) = f (x,U(x)). Calling Ty (x) the contingent cone [2, 8] to the Sétat the pointx, we
thus haveg(x) € Ty (x) at each boundary point € dV. Sinceg cannot vanish outside the
origin, by a topological degree argument, there must be @t pdiwhere the fieldy is parallel
to thexz-axis: g(x*) = (0, 0, y) for somey > 0. But this is clearly impossible by the definition
(4) of the vector field.

Using a mollification procedure, from a continuous stabilizfeedback one could easily con-
struct a smooth one. Therefore, the above argument alse oulethe existence of continuous
stabilizing feedbacks.

We describe below a simple case where the problem of subabtiomtrollability to zero
cannot be solved by any continuous feedback.

EXAMPLE 2. Consider the system
(5) (X1, %) = (U, —x2),  ue[-1,1].

The set of points that can be steered to the origin within tiree 1 is found to be

1 1/1
(6 RO = {(Xl, X2) 1 X1 € [-1,1], §|Xf| =X2 = 1 <§ + Xl + X% - |X%|>} .
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figure 1

Moreover, all time-optimal controls are bang-bang with astrone switching, as shown in fig. 1.
Assume that for every > 0 there exists a continuous feedbad¢ksuch that all trajectories
of
% = (i, %) = (Ue00, —xF)

starting at some point € R(1) reach the balB, within time T (X) +¢. To derive a contradiction,
fix the pointP = (0, 1/24). By continuity, for eache sufficiently small, there will be at least
one trajectory?® (-) starting from a point on the upper boundary

1/1
) 0+R) = {(xl, xp) xel-11 xp=7 (5 +xgl 2 — |xf|>}

and passing througR before reaching a point iB;. By compactness, as— 0 we can take a
subsequence of trajectorigs(-) converging to functionx*(-) on [0, 1]. By constructionx*(-) is
then a time optimal trajectory starting from a point on theemboundary® R(1) and reaching
the origin in minimum time, passing through the potat some intermediate time €]0, 1][.
But this is a contradiction because no such trajectory xist

3. Generalized solutions of a discontinuous O.D.E.

Let g be a bounded, possibly discontinuous vector fiel®Bn In connection with the O.D.E.
®) X=9(x),

various concepts of “generalized” solutions can be founthénliterature. We discuss here the
two main approaches.

(A) Starting fromg, by some regularization procedure, one constructs an wggraicontinu-
ous multifunctionG with compact convex values. Every absolutely continuoustion
which satisfies a.e. the differential inclusion

9) X € G(X)

can then be regarded as generalized solutions of (8).
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In the case oKrasovskii solutionsone takes the multifunction
(10) G(x) = [ Tolg(y) : ly — x| <&} .
e>0

HereTo Adenotes the closed convex hull of the setTheFilippov solutionsare defined simi-
larly, except that one now excludes sets of measure zerotfierdomain ofy. More precisely,
calling V the family of setsA ¢ R" of measure zero, one defines

(11) G =[] (] coloy :ly—xl<e y¢A}.
£>0 AeN

Concerning solutions of the multivalued Cauchy problem

(12) x(0) = X, X(t) € G (X(1)) tel0,T],

one has the following existence result [2].

THEOREM1. Let g be a bounded vector field &Y. Then the multifunction G defined by
either (10) or (11) is upper semicontinuous with compactvesrvalues. For every initial data
X, the familyF* of Carathéodory solutions of (12) is a nonempty, compamtnected, acyclic
subset o ([O, T]; R”). The mapx — FX is upper semicontinuous. If g is continuous, then
G(x) = {g(x)} for all x, hence the solutions of (8) and (9) coincide.

It may appear that the nice properties of Krasovskii or pitip solutions stated in Theorem
1 make them a very attractive candidate toward a theory afodinuous feedback control.
However, quite the contrary is true. Indeed, by Theorem Istietion sets for the multivalued
Cauchy problem (12) have the same topological properti¢seasolution sets for the standard
Cauchy problem

13) x(0) =X, X(t) = g (x(1) tel0.T]

with continuous right hand side. As a result, the same tapodd obstructions found in Ex-
amples 1 and 2 will again be encountered in connection withs&vskii or Filippov solu-
tions. Namely [10, 17], for the system (4) one can show thaefery discontinuous feedback
u = U(x) there will be some Filippov solution of the correspondingcdintinuous O.D.E. (2)
which does not approach the origintas> oo. Similarly, for the system (5), when > 0 is
small enough there exists no feedback U (x) such that every Filippov solution of (2) starting
from some poink € R(1) reaches the baB, within time T (X) + .

The above considerations show the necessity of a new defirgfi“generalized solution”
for a discontinuous O.D.E. which will allow the solution $etbe possibly disconnected. The
next paragraph describes a step in this direction.

(B) Following a second approach, one defines an algorithm wiocistoucts a family of-
approximate solutiong,. Letting the approximation parameter— 0, every uniform
limit x(-) = lim,_, g X () is defined to be a generalized solution of (8).

Of course, there is a wide variety of techniques [8, 13, 14]cfinstructing approximate
solutions to the Cauchy problem (13). We describe here twiicpéarly significant procedures.

Polygonal Approximations. By a generapolygonale-approximatesolution of (13) we mean
any functionx : [0, T] — R" constructed by the following procedure. Consider a parti-
tion of the interval [0 T], say O=tg < t; < --- < tm = T, whose mesh size satisfies

maxty —ti_1) <e¢.
i
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Fori = 0,...,m— 1, choose arbitrary outer and inner perturbatiqnsal( e R", with
the only requirement thag | < e, |ei/| < ¢. By induction oni, determine the values
such that

(14) IXo — X| <&, Xit1 =X + (tipt1—t) (6 +9(x +€))

Finally, definex(-) as the continuous, piecewise affine function such xitg) = x; for
alli =0,...,m.

Forward Euler Approximations. By aforward Eulere-approximatesolution of (13) we mean
any polygonal approximation constructed without taking eamer perturbation, i.e. with
e =0foralli.
|

In the following, the trajectories of the differential ingiion (12), withG given by (10) or
(12) will be called respectivelKrasovskiior Filippov solutionsof (13). By aforward Euler
solutionwe mean a limit of forward Euler-approximate solutions, as— 0. Some relations
between these different concepts of solutions are illtestrbelow.

THEOREM2. The set of Krasovskii solutions of (13) coincides with thteo$eall limits of
polygonale-approximate solutions, as— 0.

For a proof, see [2, 9].

ExamMPLE 3. On the real line, consider the vector field (fig. 2)

wo |1 fx=o,
90=1 1 ifx<o.

The corresponding multifunctioB, according to both (10) and (11) is
{1} if x>0,
G(x)=1{ [-1,1] ifx=0,
{(—-1} if X <0.

The set of Krasovskii (or Filippov) solutions to (13) withtial dataXx = 0 thus consists of all

functions of the form
0 ift<rt,

X(t):{ t—7 ift>r,

together with all functions of the form

0 ift<rt,
X(t)z{ T—t ift>rt,

for anyt > 0. On the other hand, there are only two forward Euler sahstio
Xt =t, Xo(t) = —t.

In particular, this set of limit solutions is not connected.

EXAMPLE 4. OnR? consider the vector field (fig. 3)

0,-1) ifxp>0,
gxy,x2) =1{ (0,1) ifxp <O,
(1,0) ifxp=0.
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figure 2 figure 3

The corresponding Krasovskii multivalued regularizat{o) is

{(0, -1)} if xo >0,
co{(0, —-1), (0, 1), (1,00} ifxo=0.

Given the initial conditiorx = (0, 0), the corresponding Krasovskii solutions are all the func-
tions of the formt — (x1(t), 0), with X1(t) € [0, 1] almost everywhere. These coincide with
the limits of forward Euler approximations. On the other dhasince the lingx, = 0} is a null
set, the Filippov multivalued regularization (11) is

{0, =1} if xo >0,
Gr(x1,X2) = | {(0,1)} if X <0,
co{(0,-1),(0,1)} ifxo=0.

Therefore, the only Filippov solution starting from thegini is the functionx(t) = (0, 0) for all
t>0.

4. Patchy vector fields

For a general discontinuous vector figjdthe Cauchy problem for the O.D.E.
(15) X = g(x)

may not have any Carathéodory solution. Or else, the solsgt may exhibit very wild behavior.

It is our purpose to introduce a particular class of disecardus mapg whose corresponding
trajectories are quite well behaved. This is particulantgfesting, because it appears that various
stabilization problems can be solved by discontinuousifaekl controls within this class.

DEFINITION 1. By apatchwe mean a paif$2, g) where ¢ R" is an open domain with
smooth boundary and g is a smooth vector field defined on alm@igbod of2 which points
strictly inward at each boundary point & 9<2.

Calling n(x) the outer normal at the boundary poigtwe thus require

(16) (g(¥),n(x)) <0 forallx € 9%2.
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DEFINITION 2. We say that g Q — R" is a patchy vector fielbn the open domaig if
there exists a family of patché&2y, gx) : @ € A} such that
- Ais atotally ordered set of indices,
- the open set8, form a locally finite covering of2,
- the vector field g can be written in the form

17) g(X) = gu(X) if X € Qg \ U Qp.
B>«
By defining
(18) a*(X) =max{e e A: X € Q) ,

we can write (17) in the equivalent form
19) 9(X) = Gyr(x)(X) forall x € .

We shall occasionally adopt the longer notat(m g, (R, ga)aeA) to indicate a patchy
vector field, specifying both the domain and the single pegcl©f course, the patchéR,, dy)
are not uniquely determined by the vector figldindeed, whenevar < 8, by (17) the values
of gy on the sef24 \ Q24 are irrelevant. This is further illustrated by the followilemma.

LEMMA 1. Assume that the open sd&?g form a locally finite covering of2 and that, for
eacha € A, the vector field g satisfies the condition (16) at every poinExdQqy \ Ug=q 28-
Then g is again a patchy vector field.

Proof. To prove the lemma, it suffices to construct vector figidswhich satisfy the inward
pointing property (16) at every point € 9Qy and such thafly = go 0N Qo \ Ug=oQg. TO
accomplish this, for eacta we first consider a smooth vector fiaelg such thaty (x) = —n(x)
on 3. The mapd, is then defined as the interpolation

Go () = 9 (X) G (X) + (1 — @(X)) va (X),
whereg is a smooth scalar function such that
|1 ifxeQa\Up=aQp,
p(x) = { 0 if x € 9Qq and(g(x), n(x)) > 0.
O

The main properties of trajectories of a patchy vector fiéigd ¢) are collected below.

THEOREM3. Let(R, 9, (. Gu), 1) be a patchy vector field.

(i) Ift — x(t) is a Carathéodory solution of (15) on an open interval J nthe— X(t) is
piecewise smooth and has a finite set of jumps on any compziatewal J ¢ J. The
function t — a™*(x(t)) defined by (18) is piecewise constant, left continuous amd no
decreasing. Moreover there holds

(20) X((t—)) = g(x(t)) forallt € J.

(ii) For eachx € Q, the Cauchy problem for (15) with initial condition(® = X has at
least one local forward Carathéodory solution and at mast dackward Carathéodory
solution.
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figure 4

(iii) The set of Carathéodory solutions of (15) is closed. Moexigely, assume that, x:
[ay, by] — Qis a sequence of solutions and,as> oo, there holds

a, — a, b, — b, Xy(t) = X(t) forallt €]a, b[ .

Thenx(-) is itself a Carathéodory solution of (15).

(iv) The set of a Carathéodory solutions of the Cauchy proble3h ¢tincides with the set of
forward Euler solutions.

Proof. We sketch the main arguments in the proof. For details see [1]

To prove(i), observe that on any compact interval ] a solutionx(-) can intersect only
finitely many domain£2,, say those with indices; < ap < --- < am. It is now convenient
to argue by backward induction. Sin€g,,, is positively invariant for the flow ofyy,,, the
set of times{t € [a, b] : X(t) € Qq,,} Must be a (possibly empty) interval of the forim]b].
Similarly, the set{t efa, b]: x) e Qamfl} is an interval of the formt},_1,tm]. After m
inductive steps we conclude that

(1) = Gy (X(1)  t€ltj il

for some timegj witha =t; <ty < --- < tyy1 = b. All statements ini) now follow from
this fact. In particular, (20) holds because eachsketis open and positively invariant for the
flow of the corresponding vector fiely,.
Concerning(ii ), to prove the local existence of a forward Carathéodorytsmi, consider
the index
a=max{e € A:X € Qq} .

Because of the transversality condition (16), the solutibthe Cauchy problem

X = 0gg(X), x(0) = X
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remains inside; for allt > 0. Hence it provides also a solution of (15) on some positive
interval [Q, §].

To show the backward uniqueness propertyxigt), xo(-) be any two Carathéodory solu-
tions to (15) withx1(0) = xo(0) = X. Fori = 1, 2, call

o () = maxfe € A: X (1) € Qq} .

By (i), the maps > o (t) are piecewise constant and left continuous. Hence theseséx 0
such that
af() =a5(t) =a =max{a € A: X € Q) forallt €] —45,0].

The uniqueness of backward solutions is now clear, becaude-os, 0] both x; andx, are
solutions of the same Cauchy problem with smooth coeffisient

X = Oz (X), x(0) = Xx.

Concerningiii ), to prove thak(-) is itself a Carathéodory solution, we observe that on any
compact subinterval C]a, b[ the functionsu,, are uniformly continuous and intersect a finite
number of domain§,, say with indicesr; < oo < --- < am. For eachy, the function

af(t) = max{a € A: Xy (t) € Qq}
is non-decreasing and left continuous, hence it can beemritt the form
ay(t) =ajift e]t}), }’Jrl] .

By taking a subsequence we can assume that, as oo, tJV — fj for all j. By a standard
convergence result for smooth O.D.E’s, the functioprovides a solution t& = gq; (X) on
each open subinterva| i]fj , fj +1[- Since the domain®g are open, there holds

X(t) ¢ Qpforall g >aj, telj.

On the other hand, sinagy; is inward pointing, a limit of trajectorief, = gq; (xy) taking
values withinQaj must remain in the interior oﬂaj. Hencea™ ()?(t)) =aj forallt e Ij,
achieving the proof ofiii ).

Regardingiv), letx, : [0, T] — Q be a sequence of forward Eukeapproximate solutions
of (13), converging tX(-) ase — 0. To show thak is a Carathéodory solution, we first observe
that, fore > 0 sufficiently small, the maps— o™ (x¢(t)) are non-decreasing. More precisely,
there exist finitely many indicag; < --- < am and times 0= tg < tf <..-<t§ =Tsuch
that

oa* (Xe (1) = @ t E]tf,y tf] .

By taking a subsequence, we can assmfn(-» fj for all j, ase — 0. On each open interval

]fj_l, fj[ the trajectoryX is thus a uniform limit of polygonal approximate solutionstbe
smooth O.D.E.

(22) X = 0o (X) .
By standard O.D.E. theory,is itself a solution of (21). As in the proof of paiti ), we conclude
observing thatr* (X(t)) = «j for all t €]fj_1. fj].

To prove the converse, lat: [0, T] — € be a Carathéodory solution of (13). By, there
existindicesr; < --- < amandtimesO=tg <t; < --- < tm = T such thai(t) = Qo (X(1)
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fort €]tj_1,tj[. For eachn > 1, consider the polygonal ma(-) which is piecewise affine
on the subintervals| i, tj k+1], j = 1,...,m k=1,...,nand takes valueg(tj k) = Xj k-
The timegtj k and the values;j i are here defined as

) k ) _
ik =1+~ =D, Xk =X k+2 .

Asn — oo, it is now clear thatxa, — x uniformly on [0, T]. On the other hand, for a fixed
¢ > 0 one can show that the polygonalg(-) are forward Eulee-approximate solutions, for all
n > N; sufficiently large. This concludes the proof of pérnt).

|

NEY

Y

NG

figure 5

ExAMPLE 5. Consider the patchy vector field on the plane (fig. 5) defimed17), by
taking
Q= R2, Qo = {xp > X2}, Q3 = {xp < —X2},
01(X1, X2) = (1, 0), ga(x1,X2) =(0, 1), 93X, x2) = (0, —1).
Then the Cauchy problem starting from the origin at time= 0 has exactly three forward
Carathéodory solutions, namely

xPDty=t,0, xPv=0t, xPt=@©-t) t=o0.
The only backward Carathéodory solution is
xPt)y=t.0 t=<o.

On the other hand there exist infinitely many Filippov sans. In particular, for every < 0 <
7/, the function
t—-170 ift<rt,
xt) =1 (0,0) ift e[z,7],
t—=1,0 ift>1
provides a Filippov solution, and hence a Krasovskii soluis well.
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5. Directionally continuous vector fields

Following [3], we say that a vector fielglon R" is directionally continuousf, at every pointx
whereg(x) # 0 there holds

(22) Jim _g0m) = g(x)
for every sequence, — X such that

Xn —X g(x)
[Xn —X| (9]

Heres = §(x) > 0 is a function uniformly positive on compact sets. In otherds (fig. 6),
one requireg(Xn) — g(x) only for the sequences converging¢aontained inside a cone with
vertex atx and opening around an axis having the direction @fx).

(23) <dforalln>1.

figure 6

For these vector fields, the local existence of Carathgotiajectories is known [16]. It
seems natural to ask whether the stabilization problem3 GAESOC) can be solved in terms
of feedback controls generating a directionally contirmgactor field. The following lemma
reduces the problem to the construction of a patchy vector fie

LEMMA 2. Let(Q, g, (Qq, ga)aeA) be a patchy vector field. Then the m@plefined by

(24) GO0 = Ga () ifx € Qo \ | Qp

B>«
is directionally continuous. Every Carathéodory solatiaf
(25) % = §(x)
is also a solution ok = g(x). The set of solutions of (25) may not be closed.
Since directionally continuous vector fields form a muchdler class of maps than patchy

vector fields, solving a stabilization problem in terms afgbg fields thus provides a much better
result. To see that the solution set of (25) may not be clasmtsider
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ExamMPLE 6. Consider the patchy vector field B¢ defined as follows.

QI =R2, Q={x<0), g1(x1,x2) =(1,0), ga(xs,%) = (0, —1).

_[ @0 x>0,
(26) 9(x, X2) = { ©,—1) ifxy<0.
The corresponding directionally continuous field is (fig. 7)

i [ @0 ifxp>0,
27 9(x1, X2) = { (0,-1) ifxy<0.

The functiong — X, (t) = (t, &) are trajectories of both (26) and (27). Howevergas 0, the
limit functiont — x(t) = (t, 0) is a trajectory of (26) but not of (27).

g g

TITTIT TTTTT

figure 7

6. Stabilizing feedback controls

In this section we discuss the applicability of the previthesory of discontinuous O.D.E’s to-
ward the construction of a stabilizing feedback. We firsaliee basic definition [7, 18].

DEFINITION 3. The system (1) is said to be globatigymptotically controllablé¢o the
origin if the following holds.

1 - Attractivity. For eachx e R" there exists some admissible controkwX (t) such that the
corresponding solution of

(28) (t) = f (x(t), u*(t)), x(0) = X

either tends to the origin as-t> oo or reaches the origin in finite time.

2 - Lyapunov stability. For eache > 0 there existss > 0 such that the following holds. For
everyX € R with [X| < § there is an admissible controFuas in 1. steering the system
from X to the origin, such that the corresponding trajectory d)(8atisfiegx(t)| < e for
allt > 0.

The next definition singles out a particular class of piesewdonstant feedback controls,
generating a “patchy” dynamics.

DEFINITION 4. Let (Q 0, (R, ga)aEA) be a patchy vector field. Assume that there exist
control values k € K such that, for eackk € A

(29) Qe () = f(x. ky) forallx e Q4 \ ) 5.

B>«
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Then the piecewise constant map

(30) U = ke ifx e Qo \ | 2

B>a

is called apatchy feedbackontrol on€.

The main results concerning stabilization by discontirufaedback controls can be stated
as follows. For the proofs, see [7] and [1] respectively.

THEOREMA4. If the system (1) is asymptotically controllable, then ¢hexists a feedback
control U : R" \ {0} — K such that every uniform limit of sampling solutions eittends
asymptotically to the origin, or reaches the origin in finitae.

THEOREMS. If the system (1) is asymptotically controllable, then éhekists a patchy
feedback control U such that every Carathéodory solutib(2peither tends asymptotically to
the origin, or reaches the origin in finite time.

Proof. In view of part(iv) of Theorem 3, the result stated in Theorem 4 can be obtained as
consequence of Theorem 5. The main part of the proof of The&reonsists in showing that,
given two closed ball8’ ¢ B centered at the origin, there exists a patchy feedback tbatss
every pointx € B inside B’ within finite time. The basic steps of this construction deetshed
below. Further details can be found in [1].

1. By assumption, for each poifite B, there exists an open loop conttol> u*(t) that steers
the system fronx into a pointx’ in the interior ofB’ at some timer > 0. By a density
and continuity argument, we can replacewith a piecewise constant open loop control
G (fig. 8), say

Ut) = ko € Kif t €]ty ty11] .
for some finite partition G= tg < t1 < --- < tm = 7. Moreover, it is not restrictive to
assume that the corresponding trajectory y (t) = x(t; X, 0) has no self-intersections.

figure 8

2. We can now define a piecewise constant feedback couatrel U (x), taking the constant
valuesky;, ... , Ky, ON a narrow tubd aroundy, so that all trajectories starting inside
I" eventually reach the interior &’ (fig. 9).
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figure 9

3. By slightly bending the outer surface of each section of theeT", we can arrange so that
the vector fieldg, (x) = f (X, ky) point strictly inward along the portiobQy \ Qg 1.
Recalling Lemma 1, we thus obtain a patchy vector field (fig. d€fined on a small
neighborhood of the tubié, which steers all points of a neighborhoodkahto the interior
of B.

figure 10

4. The above construction can be repeated for every pointthe compact seB. We now se-
lect finitely many pointxq, ... , XN and patchy vector fields{,Qi 2 Gis (000 Gi0)gen; )
with the properties that the domaites cover B, and that all trajectories of each fiaigl

eventually reach the interior &’. We now define the patchy feedback obtained by the
superposition of thg;, in lexicographic order:

9(X) =di,a X if X € Qj o \ U Qj.p-
(j.B)= (i)

This achieves a patchy feedback control (fig. 11) defined oeighborhood ofB \ B’
which steers each point & into the interior ofB’.

5. For every integer, call BY be the closed ball centered at the origin with radiu$ 2By the
previous steps, for evenythere exists a patchy feedback contthl steering each point
in B, insideB, 1, say

(31) Uy =knaif xeQua\ | Q5.

B>a

The property of Lyapunov stability guarantees that the fami all open set§Q, 4 :

veZ,a=1,...,N,}forms alocally finite covering aR" \ {0}. We now define the
patchy feedback control
(32) Up(X) = Kyo if X € Quov \ U Qg

(1, B)=(v,)
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figure 11

where the set of indice®, @) is again ordered lexicographically. By construction, the
patchy feedback (32) steers each poir¢ BY into the interior of the smaller ba'+1
within finite time. Hence, every trajectory either tendsltte origin as — oo or reaches
the origin in finite time.

|

7. Some open problems

By Theorem 5, the asymptotic stabilization problem can Beesbwithin the class of patchy
feedback controls. We conjecture that the same is true éoptbblem of suboptimal controlla-
bility to zero.

Conjecture 1. Consider the smooth control system (1). For a fixed 0, call R(z) the set of
points that can be steered to the origin within timeThen, for every > 0, there exists
a patchy feedbackt = U (x), defined on a neighborhodd of R(z), with the following
property. For everg € V, every trajectory of (2) starting &t reaches a point insidB,
within time T (X) + ¢.

Although the family of patchy vector fields forms a very peutar subclass of all discon-
tinuous maps, the dynamics generated by such fields maypstitery complicated and
structurally unstable. In this connection, one should ples¢éhat the boundaries of the
setsQ2, may be taken in generic position. More precisely, one caihtli modify these
boundaries so that the following property holdsx IE dQq; N - - - N 3Qq,, then the unit
normalsng,, ... , N, are linearly independent. However, since no assumptiotaised
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on the behavior of a vector fielg, at boundary points of a different domagty with
B # a, even the local behavior of the set of trajectories may beeglifficult to classify.
More detailed results may be achieved for the special capkapér systems with control
entering linearly:

m
(33) X =Y fiooui, U= (Ug,...,Uum) € K,
i=1

whereK ¢ R™ is a compact convex set. In this case, it is natural to comjedhe exis-
tence of stabilizing feedbacks whose dynamics has a veiitelinset of singular points.
More precisely, consider the following four types of sirgities illustrated in fig. 12. By
acutwe mean a smooth curve along which the fieldy has a jump, pointing outward
from both sides. At points at the of a cut, the figlds always tangent tg. We call the
endpoint arincoming edg®r anoutgoing edgelepending on the orientation gf A point
where three distinct cuts join is calledrigple point Notice that the Cauchy problem with
initial data along a cut, or an incoming edge of a cut, has twavdrd local solutions.
Starting from a triple point there are three forward solusio

cut point
triple point

incoming cut edge outgoing cut edge
figure 12

Conjecture 2. Let the planar control system (33) be asymptotically cdlatibde, with smooth
coefficients. Then both the asymptotic stabilization peabl(AS) and the suboptimal
zero controllability problem (SOC) admit a solution in terof a feedbacki = U (x) =
U1(X), ..., Un(X)) € K, such that the corresponding vector field

m
g0 = Y fi00U; (x)

i=1
has singularities only of the four types described in fig. 12.
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THE NON-STANDARD LQR PROBLEM
FOR BOUNDARY CONTROL SYSTEMS T

Abstract.

An overview of recent results concerning the non-standaritie horizon Lin-
ear Quadratic Regulator problem for a class of boundaryrebsystems is pro-
vided.

1. Introduction

In the present paper we give an account of recent resulteoaing the regulator problem with
non-coercive, quadratic cost functionals over a finite timierval, for a class of abstract linear
systems in a Hilbert space, of the form

) X'(t) = Ax(t) + But), O0<t<t<T
X(t) =Xg € X.

Here, A (free dynamics operator) is at least the generator of agly@ontinuous semigroup on
X, and B (input operator) is a linear operator subject to a suitabipilarity assumption. The
control functionu is L2 in time, with values in a Hilbert spad#. Through the abstract assump-
tions on the operatoré and B, a class of partial differential equations, with boundpoyht
control, is identified. We shall mostly focus our attentiamsystems which satisfy condition
(H2) = (8), see 8§1.2 below. It is known ([13]) that this condition amisuio a trace regularity
property which is fulfilled by the solutions to a variety ofg®rbolic (hyperbolic-like) partial
differential equations.

With system (1), we associate the following cost functional
T
@ IO 0 = [ F O, u®) -+ (Prx(T). X))

T

whereF is a continuous quadratic form ot x U,
3) F(x, u) = (QX, X) + (Su X) + (X, SU + (Ru, u),

andx(t) = X(t; 7, Xg, U) is the solution to system (1) due tig-) € L2(z, T; U). Itis asked to
provide conditions under which, for eagh € X, a constant; 1 (Xg) exists such that

4 inf Jr 7(X0: U) = Cr 7 (X0) -
uel2(r,T;U) ’

TThis research was supported by the Italian Ministero deikersita e della Ricerca Scientifica e Tec-
nologica within the program of GNAFA-CNR.
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The special, important case, where
(5) $=0, Q Pr>0, R>y>0,

is now referred to as the classical (standard LQR problem. We can say that this problem
is now pretty well understood even for boundary control eyst: the corresponding Riccati
operator yields the synthesis of the optimal control (s&)[1

Functionals which do not display property (5) arise in d#f& fields of systems/control
theory. To name a few, the study of dissipative systems [28]ere typical cases are

Foou =[u2—x2,  Fou = (xu);

the analysis of second variations of nonlinear control f@ois; Hy, theory. It is worth recalling
that the theory of infinite horizon linear quadratic contleleloped in [17], including the case
of singularfunctionals, withR = 0, has more recently provided new insight in the study of the
standard LQR problem for special classes of boundary cosystems, see [21, 12].

In conclusion, the characterization of property (4), in arengeneral framework than the
one defined by (5), is the object of then-standard_inear Quadratic Regulator (LQR) problem.

Most results of the theory of the non-standard LQR problemfifate dimensional sys-
tems have been extended to the boundary control setting hilllesge that in particular, neces-
sary conditions or sufficient conditions in order that (4yagisfied can be provided, in term of
non-negativity of suitable functionals. Unlike the infetime horizon case, a gap still remains
between necessary (non-negativity) conditions and seffidinon-negativity) conditions, even
when system (1) is exactly controllable. We shall examifgiisue more in detail in 83.

The infinite dimensional problem reveals however new disitie features. It is well known
that in the finite dimensional case, the conditien> 0 has long been recognized as necessary
in order that (4) is fulfilled; this applies even to time-dedent systems, see [7]. This property
extends to infinite dimensional systems, whHep = 0 (see [14, 6]). In contrast, in [6] an
example is provided where, in spite of the fact tRais negative definite, the cost functional is
coercive inL2(0, T; U), so that (4) is obviously satisfied. Crucially in that exaenpr # 0,
while the dynamics is given by a first order hyperbolic equath one dimension, with control
acted on the boundary.

Finally, we note that over an infinite horizon, the non-nigfgtcondition which is neces-
sary (and sufficient, under controllability of system (1) boundedness from below of the cost,
is in fact equivalent to a suitable frequency domain ineigdlL5) in 82, whose validity can be
easily checked. In contrast, whénis finite, there is a lack of a frequency domain interpretatio
of the conditions provided.

The plan of the paper is the following. In 81.1 we provide a&bdutline of the literature
concerning the non-standard, finite horizon LQR problemirifinite dimensional systems. In
81.2 we introduce the abstract assumptions which charaetdre class of dynamics of inter-
est. In 82 we derive necessary conditions in order that (datisfied, whereas 83 contains the
statement of sufficient conditions. Most results of §2 andu&3extracted from [6].

1.1. Literature

In this section we would like to provide a broad outline of wdutions to the non-standard,
finite horizon LQR problem for infinite dimensional systems. Foedew of the richest liter-
ature on the same problem over iafinite horizon, we refer to [20]. We just recall that most
recent extensions to the boundary control setting are gdivtl], [14, Ch. 9], [18, 22, 23, 24].
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Application to stability of holomorphic semigroup systewith boundary input is obtained, e.g.,
in [4].

The LQR problem with non-coercive functionals over a finited interval has been the
object of research starting around the 1970s. The mosteadiie contribution to the study of
this problem has been given, in our opinion, in [19]. For a poghensive account of the theory
developed in a finite dimensional context, and an extenssteof references, we refer to the
monography [7].

The first paper which deals with the non-standard LQR proldear a finite time interval
in infinite dimensions is, to our knowledge, [27]. The autbonsiders dynamics of the form
(1), which model distributed systems, with distributed tcon Partial results are provided in
order to characterize (4), without constraints on the foBin ¢xcept forS = 0. Moreover, the
issue of the existence (and uniqueness) of an optimal ddstconsidered, under the additional
assumption thaR is coercive.

A paper which deals with minimization of possible non-conaed non-coercive function-
als, in a context which is more general than ours, is [1]. Nsag/ conditions or sufficient
conditions for the existence of minimizers are stated themhich involve a suitable ‘recession
functional’ associated with the original functional.

In [9], the analysis is again restricted to cost functiorfalswhichR = 1, S= 0 (Q, Py
are allowed indefinite). SincR is coercive, the issue of the existence of solutions to tleedRi
equation associated with the control problem is investigiaA new feature of the non-standard
problem is pointed out, that the existence of an optimalrobig not equivalent to the existence
of a solution to the Riccati equation on [D].

The study of the LQR problem with general cost functiondid,is the case of distributed
systems with distributed control, has been carried out jn Extensions of most finite dimen-
sional results of [19] are provided. The application of thelBan optimality principle to the
infimization problem leads to introduce a crucial integnaéiator inequality, the so called ‘Dis-
sipation Inequality’,

b
(P(@x(@), x(@)) < (P(b)x(b), x(b)) +/ F(x(s),u(s)ds, 7<a<b<T,
a

whose solvability is equivalent to (4). Moreover, in [5] thegularity properties of the value
function

(6) V(t; Xg) = inf Jr 7 (Xo: U)
uel?(r,T;U)

of the infimization problem are investigated, and new rasaite provided in this direction. In
particular, it is showed that — unlike the standard case fuhetiont — V (z; Xg) is in general
only upper semicontinuous on,[0], and that lack of continuity in the interior of [0] may
occurr, for instance, in the case of delay systems.

We remark that in all the aforementioned papers [27, 9, Shragmecessary conditions for
finiteness of (6), a basic non-negativity condition is pded, namely (13) below, which in turn
impliesR > 0. On the other hand, sufficient conditions are so far givemform which requires
coercivity of the operatoR.

Finally, more recently, extensions to the boundary corgettling have been provided for a
class of holomorphic semigroup systems ([14, Ch. 9], [2&}) for a class of ‘hyperbolic-like’
dynamics ([6]), respectively. We note that in [14] and [2@]raater emphasis is still placed on
thenon-singularcase, sincéR is assumed coercive.
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1.2. Notations, basic assumptions and abstract classes gframics

As explained in the introduction, we consider systems ofdhm (1) in abstract spaces of infinite
dimension. A familiarity with the representation of conlied infinite dimensional systems is
assumed, compatible with, e.g., [2].

Most notation used in the paper is standard. We just pointhattinner products in any
Hilbert space are denoted Ky -); norms and operator norms are denoted by the synibdls
and| - ||, respectively. The linear space of linear, bounded opesdtom X to Y is denoted by
L(X,Y) (LX), if X=Y).

Throughout the paper we shall make the following standisgiaptions on the state equa-
tion (1) and the cost functional (2):

(i) A:D(A) c X — X is the generator of a strongly continuous (s.c.) semigreffpon
X, t>0;

(i) B e LU, (D(A*)'); equivalently,
(7 A7V B e L(U, X) for some constant < [0, 1].
(iii) Q, Py € L(X),Se LU, X), Re L(U); Q, Pr, R are selfadjoint.

REMARK 1. Assumptionsi)-(ii ) identify dynamics which model distributed systems with
distributed/boundary/point control. More specificallyetcase of distributed control leads to a
bounded input operatds, namelyy = 0in (ii ), whereags > 0 refers to the more challenging
case of boundary/point control.

In order to characterize two main classes of partial difided equations problems of inter-
est, roughly the ‘parabolic’ class and the ‘hyperbolic’'ssawe follow [13] and introduce two
distinct abstract conditions:

(H1) the s.c. semigroup”® is analytic on X, t> 0, and the constany appearing in (7) is
strictly < 1;

(H2) there exists a positive constant kuch that
T *
(8) / IB*eNx|2dt < kr|x|2 VX e D(A%).
0
It is well known that under eithaiH 1) or (H2), the (input-solution) operator

t
9) L :u— (Lzu)(t) :=/ eAt=9By(s)rmds,

T

is continuous fromL2(z, T; U) to L2(z, T; X). Consequently, system (1) admits a uniauiéd
solution on(z, T) given by

(10) x(t) = A"y + (Louyt),

which is (at least).2 in time. For a detailed analysis of examples of partial déffgial equations
with boundary/point control which fall into either classewefer to [13].

Let us recall thatH?2) is in fact equivalent to ([8])

(11) L, continuous: L2(z, T;U) — C(z, T;: X),
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and that the following estimate holds true, for a positivestantC, t and for anyu(-) in
L2(z, T; U):

(12) ((Lew®] < Cot Ul 2 Toy) VL€ [ T]

Therefore, for any initial datumrg € X, the unique mild solutiox(-; 7, Xg, u) to equation
(1), given by (10), is continuous om,[T], in particular at = T. Thus, the termix(T), Pt x(T))
makes sense for every contrgl) € L2(1', T;U).

REMARK 2. We note thafH 2), hence (11), follows as well frofH 1), wheny € [0, 1/2].
Instead, wher{H1) holds withy e [1/2, 1], counterexamples can be given to continuity of
solutions at = T, see [15, p. 202]. In that case, unless smoothing propatfiBs are required,
the class of admissible controls need to be restricted. Ceimepsive surveys of the theory of the
standard LQR problem for systems subjectitbl) are provided in [13] and [3]. Partial results
for the corresponding non-standard regulator can be foufitdi, Ch. 9].

In the present paper we shall mainly consider systems obtime f1) which satisfy assump-
tion (H2). This model covers many partial differential equationshvidbundary/point control,
including, e.g., second order hyperbolic equations, Efernoulli and Kirchoff equations, the
Schrodinger equation (see [13]).

2. Necessary conditions

In this section we are concerned with necessary conditior@der that (4) is satisfied, with
special regard to the role of conditidt > O.

We begin with the statement of two basic necessary conditiarthe case of distributed sys-
tems withdistributedcontrol. For the sake of completeness, an outline of thefgsagiven; we
refer to [5] for details. Condition (13) below is often rafed to as theon-negativity condition

THEOREM1. Assume that B= £(U, X) (equivalently,(H2) holds, withy = 0). If there
existal <t < T and an y € X such that (4) is satisfied, then

(13) LTOuW=0 Vuel?sT;U),
which in turn implies
(14) R>0.

Sketch of the proofFor simplicity of exposition we assume that (4) is satisfigith r = 0. In
order to show that this implies (13), one first derives a regmeation of the cosly 1 (Xg; U) as
a quadratic functional oh2(0, T; U), whenxg is fixed, namely

Jo, T (Xp; U) = (MXg, Xp)x + 2 Re(Nxg, U>L2(O,T;U) + (Ru, u>L2(O,T;U) ,

with M, A/ andR suitable bounded operators. ReadiRu, u) = Jo,7(G; u), and condition
(13) follows from general results pertaining to infimizatiof quadratic functionals (see [5]).
Next, we use the actual expression of the operRtand the regularity of the input-solution
operatorL g defined by (9). Boundedness of the input operd&dras here a crucial role. Pro-
ceeding by contradiction, (14) follows as a consequencé&3)f (
|
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REMARK 3. A counterpart of Theorem 1 can be stated in infinite horizamely when
T = 400 in (2) (setPr = 0). In this case, if the semigrow™ is not exponentially stable,
the cost is not necessarily finite for an arbitrary contr@) € L2(0, co; U). Consequently, the
class of admissible controls need to be restricted. Howeweter stabilizability of the system
(1), a non-negativity condition and (14) follow as well frqd). Even more, as remarked in the
introduction, the non-negativity condition has a frequedomain counterpart ([17]), which in
the stable case reads as

M(iw) :=B*(—iwl — A% 1Q(wl — A7IB+ S'(wl — A~1B

(15)
+B*(—iwl — A%TIStR>0 VoeR.

Theorem 1 can be extended to boundary control systems opirin

THEOREM?Z2 ([6]). Assumd&H 2). Then the following statements hold true:

(i) ifthere exists anx e X such that (4) is satisfied, then (13) holds;
(i) if Pt = 0, then (13) implies (14); hence (14) is a necessary conditimrder that (4) is
satisfied.
(iii) if Pt # 0, then (14) is not necessary in order that (13) is satisfied.

Sketch of the proofitem (i) can be shown by using essentially the same arguments as in the
proof of Theorem 1, which still apply to the present case, uassumptior(H?2). Similarly,
whenPt = 0, (ii) follows as well.

The following example ([6, Ex. 4.4]) illustrates the thitém. Let us consider, for a fixed
T € (0, 1) ande > 0, the cost functional

T 1 T
Jo,T<xO(->;u>=/0 {/T |x(t,s>|2ds—e|u<t>|2} o|t+/0 IX(T, &)1 dt,

wherex(t, &) solves the boundary value problem

{ Xt (t, &) = —Xe(t, &)

(16) x(0, &) = Xo(§) 0<é&<1

X(t,0) = u(t) O<t<T.

Note that herlR = —¢l, Pt = I.
The solution to (16), corresponding g = O, is given by

0 t<é§

4 o= le_g 1ok

so that

T T
—e/ |u<t>|2dt+/ lu(T — )2 de
0 0

.
(1—¢) / lu(t)|dt .
0

Jo,T(Xo =0; u)

Therefore, if 0< € < 1, Jo 7(0; u) is not only positive but even coercive ir?, which implies
(4). NeverthelessR < 0.
|
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A better result can be provided in the case of holomorphidgemp systems, by using the
smoothing properties of the operatof. Somehow the ‘analytic case’ parallels the case when
the input operator is bounded. See [14, Ch. 9, Theorem 3:théoproof.

THEOREM 3. Assume thatH1) holds, withy < 1/2. Then (14) is a necessary condition
in order that (4) is satisfied, even wheg B 0.

3. Sufficient conditions

In this section we provide sufficient conditions in orderttf# is satisfied. Let us go back to the
non-negativity conditions of Theorem 1. It can be easilywgahthat neither (14), nor (13), are,
by themselves, sufficient to guarantee that the cost fumatis bounded from below.

ExaMPLE 1. LetX = U = R, and sett = 0, A = —1, B = 0 in (1); moreover, let
F(x, u) = xu. Note that hereR = 0. For anyxg, the solution to (1) is given by(t) = xge™,
so that

.
Jo, T (Xg: u) = xo/ e tuct)dt
0

for any admissible contral. ThereforeJy 1(0; u) = 0, and (13) holds true, whereas it is readily
verified that wherxg # 0, infy Jg T (Xg; U) = —oo (if xg > 0O take, for instance, the sequence
Ugk() = —kon [0 T]).

If T = +o00, the same example shows that Theorem 1 cannot be reverdsalitvtirther
assumptions. However it turns out that, over an infinite Zej the necessary non-negativity
condition (13) is also sufficient in order that (4) is satidfié system (1) is completely control-
lable. This property is well known in the finite dimensionake, since the early work [10].

Recently, the aforementioned result has been extendedutwdboy control systems, under
the following assumptions:

(i) A:D(A) c X — X isthe generator of a s.c. grourﬁbon X, teR;
(H2) there exists a T~ 0 and a constantk > 0 such that

T *
(18) / IB*eA Ix12dt < kr|x[2 VX e D(A");
0

(H3) system (1) is completely controllable, namely for each ggix; € X thereisa T and
an admissibile controb(-) such that XT; O, Xg, v) = X3.

For simplicity of exposition, we state the theorem belowenmtie additional condition thaf™
is exponentially stable.

THEOREM4 ([22]). Assuméi’)—(H2)—(H3). If
Joo(O;u) >0 Vue L0, 00;U),
then for each § € X there exists a constanta(Xg) such that

L2((;nf o) Joo(X0: U) > Coo(Xg) VU € L2(0, 00;U) .
,00;
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We now return to the finite time interval [@'] and introduce the assumption that the system
is exactly controllable on a certain interval [Q (see, e.g., [3]):

(H3) thereis anr> 0 such that, for each pairg x; € X, there exists an admissibile control
v(-) € L2(0, r; U) yielding X ; 0, X, v) = X;. Equivalently,

r
(19) r, ¢ >0: / IB*e” tx|2 dt > ¢ [x|2 Vx € D(A").
0

On the basis of Theorem 4, one would be tempted to formulatéottowing claim.
CLAIM 5. Assume(i’)—(H2)—(H?3). If
JoTO;u) >0 VYuel?0T;U),
then (4) is satisfied for& z < T.

It turns out that this claim is false, as it can been shown bgme®f examples: see [7, 6].
A correct counterpart of Theorem 4 over a finite time intehad been given in [6].

THEOREMG ([6]). Assuméi’)—(H2)—(H3). If
(20) ITOw=0  Vuel?0,T+r;U),
then (4) is satisfied fod < 7 < T.

We point out that in fact a proof of Theorem 6 can be provideatvdoes not makexplicit
use of assumptiofi)’, see Theorem 7 below. Let us recall however that, when thet ioyer-
ator B is bounded, controllability of the pa{A, B) on [0, r], namely assumptionH 3) above,
implies that the semigroug™ is right invertible, [16]. Therefore, the actual need of some kind
of ‘group property’ in Theorem 6 is an issue which is left farther investigation.

THEOREM7. Assume&H2)—(H3). If (20) holds, then (4) is satisfied for< 7 < T.
Proof. Let x; € X be given. By(H3) there exists a contral(-) € L2(0,r; U) steering the
solution of (1) fromxg = 0 toxq in timer, namelyx(r; 0, 0, v) = x1. Obviously,v depends

on x1: more precisely, it can be shown that, as a consequencewhptiens(H2) and(H3), a
constantK exists such that

|U|L2(O,r;U) < Kixal,
see [6]. For arbitrary € L2(r, T +r; U), set now

v(t) O<t<r

uv(t)={ u) r<t<T-+r.

Readilyu, (-) € L2(0, T +r; U), andJp T4r (0; Uy) > 0 due to (20). On the other hand,

r
Jo,T+r (0; Uy) =/0 F(x(s; 0,0, v), v(s)) ds + Jr T4r (X33 1),
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where the first summand is a constant which depends onkj o\ straightforward computa-
tion shows that the second summand equgl$ (x1; Ur), with uy (t) = u(t 4 r) an arbitrary
admissible control on [OT]. In conclusion,

r
Jo.T(X1: Ur) > —/ F(x(s; 0,0, v), v(s)) ds =: c(x1) ,
’ 0

and (4) holds for = 0. The case > 0 can be treated by using similar arguments.
|

REMARK 4. In conclusion, we have provided the sufficiency counteérpéitem (i) of
Theorem 2, under the additional condition that system (&x&tly controllable in time > O.
Apparently, in order that (4) is satisfied, the non-neggtigondition need to be required on
a larger interval than [OT], precisely on an interval of lenght + r. This produces a gap
between necessary conditions and sufficient conditionghalias already pointed out in finite
dimensions ([7]).

Finally, we stress that the exact controllability assumptannot be weakened to null con-
trollability, as pointed out in [6, Ex. 4.5].
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F. Ceragioli

EXTERNAL STABILIZATION OF DISCONTINUOS SYSTEMS
AND NONSMOOTH CONTROL LYAPUNOV-LIKE
FUNCTIONS

Abstract.

The main result of this note is an external stabilizabilitgarem for discontin-
uous systems affine in the control (with solutions intendetthé Filippov’'s sense).
In order to get it we first prove a sufficient condition for extal stability which
makes use of nonsmooth Lyapunov-like functions.

1. Introduction

In this note we deal with discontinuous time-dependentesystaffine in the control:

m
@ %= f(t.3) + Gt U= f(t.x)+) uigtx

i=1
wherex e R", u e R™, f e L2 R™L;RM), foralli € {1,...,m}, g € CR""L; R") andG
is the matrix whose columns agg, .. ., Om-

Admissible inputs are € L{S (R; R™).
Solutions of system (1) (as well as solutions of all the systeonsidered in the following)
are intended in the Filippov’s sense. In other words, foheatmissible input(t), (1) is replaced

by the differential inclusion

xeK(f+Gutx) =) () Tol(f+Gut Bx §\N)},
§>0u(N)=0
where B(x, §) is the ball of centex and radiuss, To denotes the convex closure gnds the
usual Lebesgue measureRA.

For the general theory of Filippov’s solutions we refer th [8/e denote byg, x,,u the set
of solutionsy(-) of system (1) with the initial conditiop (tg) = Xg and the functiom : R — R™
as input.

We are interested in the external behaviour of system (paiticular in its uniform bounded
input bounded state (UBIBS) stability.

Roughly speaking a system is said to be UBIBS stable if ifedtaries are bounded when-
ever the input is bounded. More precisely we have the foligvdefinition.

DEFINITION 1. System (1) is said to HgBIBS stablef for each R> 0 there exists S- 0
such that for eaclitg, xg) € R™1, t5 > 0, and each input & Lis.(R; R™) one has

Xl <R, ullec < R=Ve() € Soxu le®I<S Vt=to.

115
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We associate to system (1) the unforced system
) x = f(t,x)
obtained from (1) by setting = 0. We denotex, x, 0 = S, xo-

DEFINITION 2. System (2) is said to heniformly Lagrange stablé for each R> 0 there
exists S> 0 such that for eactity, Xg) € R™1, t5 > 0, one has

Xl < R=Ve() € §,x lle®I <S Vt=1g.

If system (1) is UBIBS stable, then system (2) is uniformlgtange stable, but the converse
is not true in general. In Section 3 we prove that, if not onlgtem (2) is uniformly Lagrange
stable, but some additional conditions érandG are satisfied, then there exists an externally
stabilizing feedback law for system (1), in the sense of tilewing definition.

DEFINITION 3. System (1) is said to HdBIBS stabilizableif there exists a function k
Lo (RM1; RM) such that the closed loop system

?3) x = f(t,x) + G(t, X)k(t, X) + G(t, X)v
(with v as input) is UBIBS stable.

The same problem has been previously treated in [1, 2, 4, 8]giWé our result (Theorem
2) and discuss the differences with the results obtaineddnmrtentioned papers in Section 3.

In order to achieve Theorem 2 we need a preliminary theoreémedfiem 1 in Section 2).
It is a different version of Theorem 1 in [13] and Theorem &34]. It provides a sufficient
condition for UBIBS stability of system (1) by means of a nom®th control Lyapunov-like
function. Finally the proof of the main result is given in 8en 4.

2. UBIBS Stability

In this section we give a sufficient condition for UBIBS stépiof system (1) by means of a
nonsmooth control Lyapunov-like function. (See [11, 13]dontrol Lyapunov functions).

The following Theorem 1 (and also its proof) is analogoushedrem 1 in [13] and Theo-
rem 6.2 in [4]. It differs from both for the fact that it invadg a control Lyapunov-like function
which is not of clas€1, but just locally Lipschitz continuous and regular in theseof Clarke
(see [5], page 39).

DEFINITION 4. We say that a function VR — R isregularat (t, x) € R™1 jf

(i) forall v € R" there exists the usual right directional derivativér(\(t, X), (1, v)),
V(s+h,y+rl:u)fV(s, y) _

(i) forallv e R", VL ((t,x), (1, v)) =lim SURs,y)— (t,x) h|0

The fact that the control Lyapunov-like function for systéhhis regular allows us to char-
acterize it by means of its set-valued derivative with respe the system instead of by means
of Dini derivatives.

Let us recall the definition of set-valued derivative of adtion with respect to a system
introduced in [10] and then used (with some modificationgBin Let us denote byV (t, x)
Clarke generalized gradient bf at (t, x) (see [5], page 27).
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DEFINITION 5. Lett > 0, x € R", u € RM be fixed, V: R™1 — R. We callset-valued
derivative ofV with respect to system (ihe set
~ (1
V( )(t, x,u)={aeR:3ve K(f(t,x)+ G, x)u) suchthatvp e aV(t,x) p- (1,v) =a}.

Analagously, if t> 0, x € R", u € L5 (R, R™) are fixed, we set

—~ (1
ij()_)(t, X) =f{aeR:3Jv e K(f(t,x)+ G(t,x)u(t)) suchthavp e aV(t,x) p- (1, v) = a}

and, ift > 0 and x € R" are fixed, we define

—~ (2
V2 (t,x) = {aeR: 3v e Kf(t,x) suchthap € aV(t,x) p- (L v) = a}.

—~ (1
Let us remark thav( )(t, X, U) is a closed and bounded interval, possibly empty and

—~(1 N
maxV( )(t, X, U) < DTV ((t, x), (1, v)),

max
veK (f (t,X)+G(t,x)u)
whereDTV ((t, X), (1, v)) is the Dini derivative ol at (t, x) in the direction of(1, v).
LEMMA 1. Letg(-) be a solution of the differential inclusion (1) correspamglto the input
u(-) and let V : R"1 — R be a locally Lipschitz continuous and regular function. fihe
~ (1
é’—tV(t, @(t)) exists almost everywhere a@V(t, pt)) e Vﬂ(?) (t, (1)) almost everywhere.
We omit the proof of the previous lemma since it is completglogous to the proofs of
Theorem 2.2 in [10] (which involves a slightly different kilof set-valued derivative with respect

to the system) and of Lemma 1 in [3] (which is given for autooamdifferential inclusions and
V not depending on time).

We can now state the main theorem of this section.
THEOREM1. LetV: R"™1 5 R be such that there exists+ 0 such that

(VO) there exist two continuous, strictly increasing, posifimactions ab : R — R such that
limr - 400 a(r) = +o0 and for all t > 0 and for all x

IXIl > L = adlx|) = V(t, x) < b(ix])

(V1) V is locally Lipschitz continuous and regularRi™ x {x € R" : ||x|| > L}.
If

(fG) forall R > Othere existe > L such that for all xe R" and for all u ¢ R™ the following
holds:

= (1)
IX]| > p, llul < R= maxV( (t,x,u) <0fora.e.t>0
then system (1) is UBIBS stable.
Proof. We prove the statement by contradiction, by assuming tleaétéxistsR such that for all

S > 0 there exisXg andU : [0, +00) — R™ such that|Xp|| < R, [|Ullcc < R and there exist
?(-) € Sy %0 @ndt > 0 such thaflp®| > S.
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Let us choos@ corresponding tdR as in (fG). Without loss of generality we can suppose
thatp > R. Because of (V0), there exis&, > 0 such that if|x|| > Sy, thenV(t,x) > M =
b(p) > maxV(t, x), ||X|| =0, t > 0} for all t.

Let us considelS > p, Sy. There exist,tp > 0 such that € [t1, to], lg(tD)] = P,
le®l =2 in[t1, to], flp(t2)[| = S. Then

4 V(t2, 9(t2) > M = V(tg, v(ty) .

—~ (1 —~ (1
On the other hand, by Lemmag—tV(t, o)) € V(U(),)(t, @(t)) a.e. ltis clear thavé(?) t, 1)

- V(l)a,a(t),ﬁ(t)). Since|t(t)| < Ra.e. andjg(t)| > pforallt € [ty, to], by virtue of (fG)
we havez?—tV(t, @(1)) < 0fora.et € [tg,t2]. By [7] (page 207) we get thaf o g is decreasing
in [ty, to], then
V(t2, o(t2)) < V(t1, 9(t1)
that contradicts (4).
|

REMARK 1. In order to get a sufficient condition for system (2) to b&armly Lagrange
stable, one can state Theorem 1 in the ease0. In this case the control Lyapunov-like function
simply becomes a Lyapunov-like function.

REMARK 2. For sake of simplicity we have given the definition of UBIB&bility and
stated Theorem 1 for systems affine in the control. Let us remhat exactly analogous defini-
tion, theorem and proof hold for more general systems ofdha f

X = f(t,x,u)

wheref : R™N+1 _, RN s |ocally bounded and measurable with respect to the vasatand
x and continuous with respect to

REMARK 3. If system (1) is autonomous it is possible to state a theaiealogous to
Theorem 1 for a control Lyapunov-like functidh not depending on time.

3. The Main Result

The main result of this note is the following Theorem 2. Itezg&lly recalls Theorem 6.2 in [4]
and Theorem 5 in [9], with the difference that the control pyaov-like function involved is not
smooth.

We don't give a unique condition for system (1) to be extdynatabilizable, but some
alternative conditions which, combined together, givedkiernal stabilizability of the system.
Before stating the theorem we list these conditions. Naitttie variable is not yet quantified.
Since its role depend on different situations, it is congahto specify it later.

=(2)
(f1) maxV (t,x) <0;
(f2) forall z e Kf(t, x) there exist® € aV(t, x) such thafp - (1, z) < 0;
(f3) forallze Kf(t,x)and forallp € aV(t,x), p- (1,2 <0;

(G1) for eachi € {1,...,m} there existscit,x € R such that for allp € aV(t,x), p -
1,9 t,x) = C't,x;
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(G2) foreach € {1, ..., m}only one of the following mutually exclusive conditions tsi
— forallpeaV(t,x) p-(1 g, x) >0,
— forallpeaV(t,x) p-(1 g, x) <0,
— forallpeaV(t,x) p-(1 g, x) =0;

(G3) thereexists e {1, ..., m} such that for eache {1, ..., m}\{T} only one of the following
mutually exclusive conditions holds:

— forallpeaV(t,x) p- (1 g, x) >0,
— forallpeaV(t,x) p-(1 g, x) <0,
— forall peaV(t,x) p- (1, g, x) =0;

Let us remark that (f3}» (f2) = (f1) and (G1)= (G2)= (G3).

THEOREMZ2. Let V : R™1 — R be such that there exists £ 0 such that(V0) and (V1)
hold.

If for all x € R™ with ||x|| > L one of the following couples of conditions holds for a.e.
t>0:

(i) (fl) and(G1), (i) (f2) and(G2), (iii) (f3) and(G3),
then system (1) is UBIBS stabilizable.

Let us make some remarks.

If for all x € R" with ||x|| > L assumption (f1) (or (f2) or (f3)) holds for a.&.> 0, then, by
Theorem 1 in Section 2, system (2) is uniformly LagrangelstaBctually in [4] the authors
introduce the concept of robust uniform Lagrange stabditg prove that it is equivalent to the
existence of a locally Lipschitz continuous Lyapunov-likmction. Then assumption (f1) (or
(f2) or (f3)) implies more than uniform Lagrange stabilitysystem (2). In [9], the author has
also proved that, under mild additional assumptionsf probust Lagrange stability implies the
existence of £°° Lyapunov-like function, but the proof of this result is notaally constructive.
Then we could still have to deal with nonsmooth Lyapunoe-fiinctions even if we know that
there exist smooth ones.

Moreover Theorem 2 can be restated for autonomous systetnsgheifunctionV not de-
pending on time. In this case the feedback law is autonompdstas possible to deal with a
situation in which the results in [9] don't help.

Finally let us remark that iff is locally Lipschitz continuous, then, by [14] (page 105),
the Lagrange stability of system (2) implies the existenta tme-dependent Lyapunov-like
function of classC®. In this case, in order to get UBIBS stabilizability of systgl), the

regularity assumption o& can be weakened B € Llogc(R”Jrl; R™M) (asin [2]).

4. Proof of Theorem 2

We first state and prove a lemma.

LEMMA 2. Let V : R™1 — R be such that there exists £ 0 such that(V0) and (V1)
hold. If (t, X), with ||X|| > L, is such that, for all pc 3V (&, X) p- (1, g; (t, X)) > 0, then there
existsdy > 0 such that, for all xe B(X, 8x), forall p € 0V (f, x), p- (1, gi (t, X)) > 0.
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Analagously if(t, X), with ||X|| > L, is such that for all p 9V (t, X), p- (1, gj (t, X)) < 0,
then there exist&; > 0such that, for all xe B(X, 8x), forall p € 0V (1, x), p-(1, g; (t, X)) < O.

Proof. Lety > 0 be such thalX| > L + y, and letLy > 0 be the Lipschitz constant &f in
the sef{t} x B(X, y). Forall(, x) € {t} x B(X, y) and forallp € 9V (1, X) | pll < Lx (see [5],
page 27).

Sinceg; is continuous there exigtandM such that|(1, g; (t, X))|| < M in {T} x B(X, n).

Letd = min{p- (1, g; (t, X)), p € aV (&, X)}. By assumptiord > 0.

Let us considee < m.

By the continuity ofg;, there existss; such that, if|x — X|| < &, then| (1, g, X)) —
L gi@x)l <e.

By the upper semi-continuity afV (see [5], page 29), there existg > 0 such that, if
IIx —X|| < 8y, thenaV(,x) € aV(,X) + ¢B(0,1), i.e. for allp € aV({, x) there exists
P € V&, X) such that|p — Pl < e.

Let 8¢ = min{y, n, &, 8y}, X be such thafjx — X|| < §xyandp € aV(t, x), p € aV({,X)
be such thatp — p|| < e.

It is easy to see thap - (1, gi (I, x)) —p- (L, g {, X)) < %, hencep - (1, gj (t, X)) >
P-LgEx-4=9>o0.

The second part of the lemma can be proved in a perfectly goatoway.

|

Proof of Theorem 2For eachx € R", let Ny be the zero-measure subsetRf in which no
one of the couples of conditiors), (i) and (iii ) holds. Letk : R™*1 — RM Kkt x) =
(kq(t, %), ..., km(t, X)), be defined by

—|Ix]l ifvpeaV(t,x) p-(1 g, x) >0
0 ifvpeadV(t,x) p-git,x) =0,

or (f3) and (G3) hold and =T, ort € Ny
1] ifvpeaVt,x) p- (1 g, x) <0.

ki (t, x) =

Itis clear thak e LS (RN, RM).

By Theorem 1 it is sufficient to prove that for & > 0O there exist® > L, R such that for
all x e R" andv € R™ the following holds:

—~ (3
IXIl > p, vl < R= maxV' )(t,x) <Oforallt e RT\Ny

WhereV(S)(t,x) ={a e R: 3w e K(f(t,x) + G(t, x)k(t, x) + G(t, x)v) such thavp e
Vi, x) p- (1, w) =al.
Let x be fixed and € RT\Nyx. Leta e V(3)(t,x), w e K(f(t,x) + G(t, x)k(t, x) +
G(t, X)v) be such that foralp € aV(t,x) p-w = a.
By Theorem 1 in [8] we have that
K(ft,x)+ G, x) (K, X) + v)(x) € Kf(t,x)+ Zim:l g (t, Xx)K (K (t, X) + vj), then there
existsz € Kf(t,x),z € Kkjt,x)+v),i €{L,..., m}, such thaw = z+ 3", gi (t, X)z.
Let us show thah < 0. We distinguish the three cas@s, (ii ), (iii ).

. = (2
i) b=p-Lzg=a— Zim:l c'[’xzi does not depend op, thenb € V( )(t, x) and, by (f1),
b<0.
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(@it)

(i)

Let us now show that for eadhe {1,..., m} C't,xZi < 0. Ifi is such tha‘c't’x =0,
obviouslyc ,z < 0. Ifi is such thati , > 0 then, by Lemma 1, there existg such
thatk; (t, y) = —|y|l in {T} x B(x, 8x), thenk; is continuous ak with respect toy. This
implies thatK (kj (t, X) +vj) = —||X|| + vj, i..Z; = —||X|| + v andc't,xzi < 0, provided
that||v|| > p > maXL, R}.

The case in which is such that:ityx < 0 can be treated analogously. We finally get that
a=b+Y " ¢,z <0

By (f2) there existsp € aV(t,x) such thatp- (1,2) < 0.a=p - (1,2 + Zi";lb-
(1, gi (t, x))z;. The fact that for each e {1, ..., m} we havep - (1, g (t, x))z; < 0 can
be proved as iri) we have proved that for eache {1,...,m} ¢{ ,z < 0. We finally
get thata < 0. '

Let us remark that if (G2) is not verified, i.e. we are not in tase(ii), there exists
P € aV(t, x) corresponding td@ such thatp - (1, gr(t, x)) = 0. Indeed, because of the
convexity ofaV (t, x), for allv € R", if there existpy, p, € 3V (t, x) such thatp; -v > 0
andpy - v < 0, then there also exis{g € dV (t, X) such thatpz - v = 0.

Letp € 9V (t, x) be such thap- (1, gr(t,x)) = 0. Forallpe aV(t,x)a= p-(1, w). In
particular we havea = - (1, w) = P- (1, 2+ 3 i P- (L, i (t, X))z +P- (L, gr(t, X))z
By (f3), p- (1,2) < 0. Ifi #T7the proofthap- (1, gj(t, X))z < 0isthe same as ii).

If i =T, because of the choice @ P - (1, gr(t, X)) = 0. Also in this case we can then
conclude thaa < 0.

|
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L. Pandolfi*

ON THE SOLUTIONS
OF THE DISSIPATION INEQUALITY

Abstract.
We present some recent results on the existence of solutidhe Dissipation
Inequality.

1. Introduction

In this review paper we outline recent results on the progexf theDissipation Inequality,
shortly (DI). The(DI) is the following inequality in the unknown operatBr

(D) 2Ne (Ax, P(x 4+ Du)) + F(x + Du,u) > 0.

HereA is the generator of &g-semigroupe™! on a Hilbert spac& andD e £(U, X) whereU
is a second Hilbert spac€(x, u) is a continuous quadratic form ofix U,

F(x,u) = (X, QX) + 2%e(Sx u) + (u, Ru) .

Positivity of F(x, u) is not assumed.

We require thaP = P* ¢ L£(X).

We note that the unknowR appears linearly in théDI), which is also calledLinear Op-
erator Inequality for this reason.

The (DI) has a central role in control theory. We shortly outline thason by noting the
following special cases:

e ThecaseD = 0, S = 0, R = 0. In this case(DI) takes the form of a Lyapunov type
inequality,
20e (Ax, Px) > —(x, Qx) .

e If Q=0andR =0 (butS# 0) and ifB = —AD € L(U, X) we get the problem
1) 2Re (Ax, Px) >0 B*P = —S.

This problem is known atur'e Problemand it is important for example in stability
theory, network theory and operator theory.

e ThecaseéS=0,R =1 andQ = —1 is encountered in scattering theory while the case
S =0, Q > 0 and coerciver corresponds to thstandard regulator problem of control
theory.

* Paper written with financial support of the Italian MINISRBD DELLA RICERCA SCIENTIFICA
E TECNOLOGICA within the program of GNAFA-CNR.
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We associate t(Dl) the following quadratic regulator problem “with stabilityve consider
the control system

2) X = AX— Du).

We call a pair(x(-), u(-)) anevolution of system (2) with initial datumyxvhenx(-) is a
(mild) solution to (2) with inputu(-) andx(0) = Xg.
We associate to control system (2) the quadratic cost

+00
(3 J(Xo; ) = / F(x(t), u(t)) dt.
0

The relevant problem is the following one: we want to charaee the conditiorV/ (xg) > —oo
for eachxg whereV (xg) is the infimum of (3) over the class of those square integrable
evolutions which have initial datum xg. (The term “with stability” refers to the fact that we
only consider the square integrable evolutions of the gyste

Of course, Eq. (2) has no meaning in general. One case in ithitdkes sense is the case
thatB = —AD is a bounded operatodistributedcontrol action). In this case the problem has
been essentially studied in [7] but for one crucial aspeat we describe below.

More in general, large classes of boundary control systemsbe put in the form (2), as
shown in [6], where two main classes have been singled caifji$t one which corresponds to
“hyperbolic” systems and the second one which correspantjzarabolic” systems.

We illustrate the two classes introduced in [6]:

e The class that models in particular most control problemshfe heat equation: the semi-
groupe™t is holomorphic (we assume exponentially stable for sinigliand imD =
im[—A~1B] € dom(—A)?, 7 < 1.

e The class that models in particular most control problemstiing and membrane equa-
tions: ™ is aCg-semigroup A—1B € £(X) and

T *
(@) / 1B*eA b 2dt < kr [x]12.
0

It is sufficient to assume that the previous inequality hétsisone value ofT since then
it holds for everyT.

As we said, for simplicity of exposition, we assume expoizstability. The simplification
which is obtained when the semigroup is exponentially stébthat the class of the controls is
LZ(O, +o00; U), independent okg. However, this condition can be removed.

The crucial result in the case dfstributed control actioris as follows (see [14] for the
finite dimensional theory and [7] for distributed systemghwdistributed control action):

THEOREM1. If AD € L(U, X), then M(xg) is finite for every x if and only if there exists a
solution to(Dl) and in this case VXg) is a continuous quadratic form on X:(g) = (Xg, PXg)-
The operator P of the quadratic form is theaximalsolution to(Dl).

The result just quoted can be extended to both the classesuoidary control systems
introduced in [6], see [9, 11]. Rather than repeating thg l@mg proof, it is possible to use a
device, introduced in [10, 8], which associates to the bamndontrol system an “augmented”
system, with distributed control action. From this digttéd system it is possible to derive many
properties of th€DI) of the original boundary control system. This device issitated in sect. 2.

With the same method it is possible to extend the next result:
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THEOREM2. If V (Xg) > —o0o, i.e. if (DI) is solvable, then

(5) M(iw) = F(—iwiol —ADu+Du,u) >0 VweR.

The functionI1(i w) was introduced in [12] and it is called tf@pov function.

As the numbei w are considered “frequencies”, condition (5) is a speciadtiency do-
main condition”.

At the level of the frequency domain condition we encounterugial difference between
the class of “parabolic” and “hyperbolic” systems:

THEOREM3. In the parabolic case if ¥xg) > —oo, then R> 0. Instead, in the “hyper-
bolic” case, we can have ¥g) > —oo even if R= —al, o > 0.

Proof. Itis clear that
M(iw) = F((wl —ATIBU )
(B = —AD) and lim,| o (iwl — A)"1Bu= 0 because i = im[-A~1B] < dom(—A)”
(here we use exponential stability, but the proof can be tedaip the unstable case.) Hence,
0 < limy|— 400 (iw) = (u, Ru) for eachu € U. This proves thaR > 0.
Clearly an analogous proof cannot be repeated in the “hyietflzase; and the analogous
result does not hold, as the following example shows:

the system is described by
Xt = —Xg 0<6 <1, t>0 x(t, 0) = u(t)

(this system is exponentially stable since the free evaus zero fort > 1).
The functionalF (x, u) is

Foxw = X0 5 ) — alul?

so that
oe 2 2
2000 = [ X g, — aluO Pyt

If X(0, 8) = 0then
Rz, 6) = e a2

so that
(U, M) = [1—a]u.

This is nonnegative for each < 1 in spite of the fact thaR = —«| can be negative. Hence, in
the hyperbolic boundary control casee condition R > 0 does not follows from the positivity
of the Popov function

a

It is clear that the frequency domain condition may hold e¥éme (DI) is not solvable, as
the following example shows:

ExamMPLE 1. The example is an example of a scalar system,
X=-X+0u y=X.

Itis clear thatl1(iw) > 0, is nonnegative; buP B = C, i.e. PO = 1, is not solvable.
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A problem that has been studied in a great deal of papers oidem of finding additional
conditions which imply solvability of théDI) in the case that the frequency domain condition (5)
holds. A special instance of this problem is the importanté.problem of stability theory.

This problem is a difficult problem which is not completelyh&a even for finite dimen-
sional systems. Perhaps, the most complete result is itif @Bystem is finite dimensional and
II({iw) > 0, then a sufficient condition for solvability ¢Dl) is the existence of a number
such that defl (i wg) # O.

It is easy to construct examples which show that this caomlis far from sufficient.

In the context of hyperbolic systems, the following ressilpioved in [11].

THEOREMA4. Letcondition (4) hold and let the systeméectly controllableUnder these
conditions, if the Popov function is nonnegative then tlegists a solution t¢DI) and, moreover,
themaximalsolution P of(Dl) is the strong limit of the decreasing sequetiég}, where R is
the maximal solution of thedl)

1
(6) 2%e (A, P(X + Du)) 4+ F(x 4+ Du, u) + E{||u||2 +Ix1?} = 0.

The last statement is important because it turns outRhalves a Riccati equation, while
there is no equation solved yin general.

The proof of Theorem 4 essentially reproduces the finite dsimmal proof in [14]. Hence,
the “hyperbolic” case is “easy” since the finite dimensiopedof can be adapted. In contrast
with this, the “parabolic” case requires new ideas and itliffitult”. Consistent with this, only
very partial results are available in this “parabolic” caaed under quite restrictive conditions.
These results are outlined in sect. 3.

Before doing this we present, in the next section, the keg ttat can be used in order to
pass from a boundary control system tg‘angmented” but distributedcontrol system.

2. The augmented system

A general model for the analysis of boundary control systems proposed by Fattorini ([4]).
Let X be a Hilbert space and a linear closed densely defined operator, X — X. A second
operatorr is linear fromX to a Hilbert spacéJ.

We assume:

Assumption We have: done € domt andr is continuous on the Hilbert space demwith the
graph norm.

The “boundary control system” is described by:

@)

x(0) = Xp

X =o0X
X=U

2 .
whereu(-) € LlOC(O, +o00; U).

We must define the “strong solutiong{-; Xg, u) to system (7). Following [3] the function
X(-) = X(-; Xp, U) is a strong solution if there exists a sequefiGg-)} of Cl-functions such that
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Xn(t) € domo for eacht > 0 and:

Xn() = oXn() = 0 inLf (0. +00: X)
8) Xn(0) — X in X

TXn () = U() in L2 (0, +00; U)
and

e Xn(-) converges uniformly tox(-) on compact intervals in[0, +o0).

In the special case that the sequergé) is stationaryxn(-) = X(-), we shall say thax(-) is a
classicalsolution to problem (7).

Assumption 1. Let us consider the “elliptic” problemx = u. We assume that it is “well
posed”, i.e. that there exists an operadbe L£(U, X) such that

X = Duiff {ox =0andtx = u}.
Moreover we assume that the operafodefined by
domA = domv N kert AX = oX
generates a strongly continuous semigroupXon

As we said already, for simplicity of exposition, we assutra the semigroup”! is expo-
nentially stable.

Now we recall the following arguments from [1]. Classicalgimns to Eq. (7) solve
9) X = A(X — Du) x(0) = Xxg.

Letu(-) be an absolutely continuous control apd) = x(t) — Du(t). Then,&(-) is a classical
solution to

(10) E=A:—Du £ =£(0) =x(0) — Du(0)

and conversely.

As the operatoA generates €g-semigroup, it is possible to write a “variation of constnt
formula for the solutiore. “Integration by parts” produces a variation of constamtsriula,
which contains unbounded operators, for the functon. This is the usual starting point for
the study of large classes of boundary control systemseddstwe “augment” system (9) and
we consider the system:

(11) { £ = At — Dv

U=v

Here we consider formally(-) as a new “input”, see [10, 8].

Moreover, we note that it is possible to stabilize the presisystem with the simple feed-
backv = —u, sincee®! is exponentially stable.

The cost that we associate to (11) is the cost

+00
(12) J(Xg; u) = /(‘J F (@) + Du(t), u(t)) dt.
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This cost does not depend explicitly on the new inpgy: it is a quadratic form of the state,
which is nowE = [&, u].
Itis proved in [9] that the value functioW(&q, ug) of the augmented system has the follow-
ing property:
V(§0 + Dupg, Up) = V(Xp) .
We apply the stabilizing feedback = —u and we write down th€DI) and the Popov
function for the stabilized augmented system. (D8 is

(13) 2Re(AZ, WE) + (E,QE)>0 VE edomd, WD =0.
where
| A =D - £
5] --[5]
0= Q S*+QD p_| D
| DQ+S R+ D*S*+SD+D*QD |~ - | '
The Popov function is:
. M(iw)
14 P =
(14) (=17

It is clear that the transformations outlined above fromdtiginal to the augmented system do
not affect the positivity of the Popov function and thabfiTI (i w) is bounded from below, then
wST2P(iw) is bounded from below.

In the next section we apply the previous arguments to thetbas the operatoh generates
a holomorphic semigroup and InC (dom(—A)Y), y < 1.

3. “Parabolic” case: from the Frequency domain condition tothe (DI)

We already said that in the parabolic case only partial tesué available. In particular, available
results require that the control be scalar so & an element oiX. This we shall assume in
this section. We assume moreover that the operAttias only point spectrum with simple
eigenvaluegy and the eigenvectong, form a complete set iiX. Just for simplicity we assume
that the eigenvalues are real (hence negative). Moreovegssume that we already wrote the
system in the form of a distributed (augmented and stakijizentrol system. Hence we look
for conditions under which there exists a solutidhto (13).

We note thatD € X x U and thatP(iw) is a scalar function: it is the restriction to the
imaginary axis of the analytic function

P(2) = -Dzl + A7 10zl — 4)~1D.

The functionP(2) is analytic in a strip which contains the imaginary axis &iitterior.

We assume thalP(iw) > 0 and we want to give additional conditions under which (13)
is solvable. In fact, we give conditions for the existenceacfolution to the following more
restricted problem: to find an operat and a vector] € (domA)’ such that

(15) 2%e (A, WE) + (E, QE) = |((E, q)) |2 VE e domA.

The symbol((-, -)) denotes the pairing gtlomA)’ and donA.
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The previous equation suggests a form for the solibn
+00 +o0
(16) (B, WE) =/0 (efAtE,QeAtE)dt—/o (E, eMa) 2 dt.

However, it is clear that in general the operatérso defined will not be continuous, unlegs
enjoys further regularity. We use known properties of tlaetional powers of the generators of
holomorphic semigroups and we see thats bounded ifg € [dom(—.A%)]" with & < 1/2.

It is possible to prove that if a solutioiV to (15) exists then there exists a factorization
P(iw) = m*(iw)m(iw)

and m(iw) does not have zeros in the right half plane. This observatiggests a method
for the solution of Eq. (15), which relies on the computatadra factorization ofP(iw). The
factorization of functions which takes nonnegative valises classical problem in analysis. The
key result is the following one:

LEMMA 1. If P(iw) > Oand if [In P(iw)|/(1 + wz) is integrable, then there exists a
function m(z) with the following properties:

e M(2) is holomorphic and bounded e z > 0;

o P(iw) = m(—iw)m(iw);

e letz=x+iy, x > 0. The following equality holds:

| Lo X d 0
17 nim@)| = — nPiw)———— Vz=x+iy, X .
an i@l = o [ nPiw) Gt d iy, x>
See [13, p. 121], [5, p. 67].
A function which is holomorphic and bounded in the right hdéine and which satisfies (17)
is called arouter function.

The previous arguments show that an outer factd? @) exists whenP(iw) > 0 and when
P(iw) decays forlw| — +oo of the order 1|w|ﬁ, B < 1. Let us assume this condition (which
will be strengthened below). Under this conditiBiiz) can be factorized and, moreover,

1 [+ X
— / INP(iw) 55— dw
2r ] X2 + (0 — y)?

1 [+ M X

— In dw
27 Jooo 1402 X2+ (0 —Y)?

In|m(2)|

A

= In|

14 22

This estimates implies in particular that the integgfifg Im(x+iy) |2 dy are uniformly bounded
in x > 0. Paley Wiener theorem (see [5]) implies that

+o00 .
m(iw) = / e 'tmt) dt, m(-) e L0, +00) .
0

The functionm(t) being square integrable, we can write the integral

oo .
/ e~ Sgmt) dt
0
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and we can try to solve the following equation fpr
+oo . +o0 N
(18) / eA'Sqm(t) dt = —s = / et'toeMtpat.
0 0

This equation is suggested by certain necessary condifiwrife solvability of (1) which are
not discussed here.
We note that

(19) s € dom(—A4)1~ for eache > 0.

It turns out that equation (18) can alwaysfbemally solved, a solution being

(. )
m(—2)

Ok = (v, q) =

sincem(z) does not have zeros in the right half plane.

Moreover, we can prove that the operatérdefined by (16jormally satisfies the condition
WD = 0. Hence, this operatd will be the required solution of (15) if it is a bounded operat
i.e. if g € [dom(—A%)]’.

An analysis of formula (17) shows the following result:

THEOREMS5. The vector q belongs tadom(—.A*)Y/2=€)’ for somee > 0 if there exist
numbersy < 1and M > 0 such that

oY TI({w) > M
for |w| large.

Examples in which the condition of the theorem holds exes, [9].
Let ¢x = —zx € R. The key observation in the proof of the theorem is the foiitmy
equality, derived from (17):

1
1+s
N i/+OQ[|C>91;3‘V‘2ei :

2 J_oo K Is|¥ 11+ <2
1
142

1 [t .
log ¢ 13~ m(g) > / llog ¢k 1*~% P(i k)] ——; ds
—00

ds.

1 [t Y b
+5 [ Toaudsl Pigs)]

The first integral is bounded belowjf < 3 — 2¢ and the second one is bounded below in
any case.

We recapitulate: the conditiap e (dom(—.A*)Y/2=€) holds if P(i w) decays ato of order
less than 3. We recall (14) and we get the result.

Acknowledgment. The author thanks the referee for the carefull reading sfplper.
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ON PERTURBATIONS OF MINIMUM PROBLEMS
WITH UNBOUNDED CONTROLS

Abstract.

A typical optimal control problem among those consideredhis work in-
cludes dynamics of the forrh(x, ¢) = go(X) + Go(X)|c|* (herex andc represent
the state and the control, respectively) and a Lagrangigheforml(x,c) =
lo(¥) + Tp()|c/f, with @ < B, andc belonging to a closed, unbounded sub-
set of R™. We perturb this problem by considering dynamics and Lagjears
fa(X, ©) = gn(X) + Gn(®)[c|*", andin(x, ¢) = lg,(X) + fon(x)|c|5 respectively,
with an < B, and fn andly approachingf andl. We show that the value functions
of the perturbed problems converge, uniformly on compast $e the value func-
tion of the original problem. For this purpose we exploit gocomparison results
for Bellman equations with fast gradient-dependence whate been recently es-
tablished in a companion paper. Of course the fast growthargtadient of the
involved Hamiltonians is connected with the presence obunided controls. As
an easy consequence of the convergence result, an optintedlcor the original
problem turns out to be nearly optimal for the perturbed f@ois. This is true in
particular, for very general perturbations of the LQ prabléncluding cases where
the perturbed problem isot coercive, that isgn = B(= 2).

1. Introduction

Let us consider a Boltz optimal control problem,

minimize ft—T I(t,x, 0y dt+ g(x(T))
(P) x=f(t,x,c) x@{)=x
(£, %) [0, T] x R¥,
wherec = c(t) is a control which takes values R™. Let us also consider a sequence of
perturbationsof this problem,

(Pn) minimize t—T In(t, X, c)dt_+ gn_(x(T))
X = fat,x,0) x() =x

where the triples fn, In, gn) converge td f, 1, g), in a sense to be made precise.

In the present note we address the following question:

Q1. Assume that for every initial datd, X) an optimal control &5 [[,T] = RMis
known. Are these controls nearly optimal for the problgPr)?

(Herenearly optimalmeans that the value of the cost functional Bfi\ when the control
C,%) is implemented differs from the optimal value by an errorsthapproaches zero when
tends tooo).

133
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An analogous question can be posed when an optimal feedlmtkobc = c(t, x) of
problem(P) is known:

Q2. Is the feedback control(t, x) nearly optimal for the probleniPn)?

The practical usefulness of studying such a theoreticadlpro is evident: it may happen
that the construction of an optimal control for probléR) is relatively easy, while the same
task for the perturbed proble®,) might result hopeless. In this case, one could be tempted to
implement the P) optimal control for problentP,) as well. And positive answers to questions
like Q1 andQ» would guarantee that these strategies would be safe. (Femerag account on
perturbation theory see e.g. [3]).

Since we are interested in the case when the cortraie unbounded, questions concerning
the growth inc of f andl turn out to be quite relevant. The crucial hypotheses fsgés in
Section 2) here assumed on the dynanficand the Lagrangiahare as follows: there exist,

B, both greater than or equal to 1, such thaitc RKisa compact subset axdy € Q, then

(1) |f(t,X, C)_ f(t’ y’ C)l
2 ht, x, ol

L1+ [c®)Ix -y
lolclf —C

=
=

for all c € R™, whereL depends only orQ. The same kind of hypotheses are assumed on
the perturbed pairdn, I, with the same growth-exponeptfor the Lagrangians,, while the
growth-exponentan, of the f,, are allowed to depend an Moreover,weak coercivityelations,
namelyon < B, @ < B, are assumed. Let us observe that whea g (strict coercivity the
optimal trajectories turn out to be (absolutely) continsjouhile, if = 8, an optimal path may
containjumps(in a non trivial sense whicbannotbe resumed by a distributional approach, see
e.g. [7, 8)).

Answers to question®41 andQ» are given in Theorems 6, 7 below, respectively. The main
theoretical tool on which these results rely consists in-aated stability theorem (see Theorem
1) for a class of Hamilton-Jacobi-Bellman equations witst faradient-dependence. In order to
prove the stability theorem we exploit some uniqueness agdlarity results for this class of
equations that have been recently established in a compaaioer [8] (see also [1] and [6]).
Let us notice that questions likg; andQ> can be approached with more standard uniqueness
results as soon as the controlare bounded.

Similar questions were addressed in a paper by M. Bardi ari2aA.io [1], where the
authors assumed the following stronger hypothesig on

(3 [f(x,c) — f(y,0)| <L|x—Y]|

(actually a monotonicity hypothesis, weaker than (3) isias= in [1]; however this is irrelevant
at this stage, while the main point in assuming (3) consisthe fact that it is Lipschitz irx
uniformly with respect to)c Observe that hypothesis (3) still allows for fields grogvas|c|“ in

the variablec. Yet, while a field of the fornf (x, ¢) = go(X) + g1 (X)|c|* agrees with hypothesis
(1), it does not satisfy hypothesis (3) unleggx) is constant. Furthermore, in [1] the exponent
« is required to be strictly less thah(strict coercivity).

The relevance of weakening hypothesis (3) (and the positien 8) is perhaps better un-
derstood by means of an application to a perturbation qurestr the linear quadratic problem.
In this case one hast = 1,8 = 2, f(x,c) = Ax+ Bc, I(x,c) = x*Dx + x*Ec+ c*Fc,
g(x) = x*Sx Here the coercivity hypothesis reduces to the fact Ehi positive definite. As
it is well known, (see e.g. [4]) under suitable hypothesesAoB, D, E and F, this problem
admits a smooth optimal feedback, which can be actually etetpbby solving the correspond-
ing Riccati equation. It is obvious that a crucial point inegtionsQ, and Q> consists in the
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specification ofvhichclass of perturbation probleni®,) has to be considered. Of course, since
in practical situations the nature of the perturbation iy gartially known, the larger this class
is the better. In [1] a positive answer @, is provided when the perturbed fields are of the form

fn(X) = AX+ Bx+ e(n)p(X, C)

with ¢ verifying (3)ande(n) infinitesimal. So, for instance, a perturbed dynamics like
1
fn = Ax+ Bx+ ﬁxc

is not allowed. On the contrary, hypothesis (1) assumed in thesptgsaper is not in contrast
with this (and much more general) kind of perturbation. Alier improvement is represented
by the fact that thefn’s growth exponents, are allowed to be different from thé&'s growth
exponentx (=1, in this case), and moreover, they can be less thagoalto 8 (which in this
example is equal to 2). So, for example, perturbed dynarikies |

fn = Ax+ Bc+ e(n)(g(x)c + h(x)|c|?)

may be well considered. In this case, the possibility of Enpénting & P)-optimal controlc in
the perturbed problemPg) may be of particular interest. Indeed, the problers) (are quite
irregular, in that the lack of a sufficient degree of coetgivhay give rise to optimal trajectories
with jumps(see Remark 2).

The general approach of the present paper, which is pgriepired by [1], relies on prov-
ing the convergence of the value functions of the problef3 (o the value function of P) via a
PDE argument. However, the enlarged generality of the densidl problems makes the exploita-
tion of very recent results on Hamilton-Jacobi-Bellmanagtpns with fast gradient-dependence
crucial (see [8]). In particular, by allowing mixed type mlary conditions, these results cover
the weak coercivity casex(= g). Moreover they do not require an assumption of local Lip-
schitz continuity of the solution of the associated dynapriegramming equation. Actually,
as a consequence of the fact that we allow value functionshwdiie not equicontinuous, the
Ascaoli-Arzela argument exploited in the stability thewref [1] does not work here. In order to
overcome this difficulty we join ordinary convergence argmts originally due to G. Barles and
B. Perthame [2] with the reparameterization techniquesdhiced in [8].

2. A convergence result

For evenf ¢ [0, T], letC(f) denote the set of Borel-measurable maps which belohd tff, T],
R™). C(f) is called the set of controls startingfatLet us point out that the choice of the whole
R™M as the set where the controls take values is made just foratkes af simplicity. Indeed,
in view of the Appendix in [8] it is straightforward to genée® the results presented here to
situations where the controls can take values in a (possitipunded) closed subsetR'. For
every (f, x) € [0, T] x RK and evenyc € C(f), by the assumptiond-As listed below, there
exists a unique solution of the Cauchy problem

x = f(t,x,c)fort € [t, T]
B { x() = X,
(where the dot means differentiation with respedjta/Ve will denote this solution by x[c](-)
(or by x[c](-) if the initial data are meant by the context). For evéryx) € [0, T] x RX let us
consider the optimal control problem

(P) minimize J(f, X, )
ceC(®)
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where T
2E0 = [ 1t e, ct) dt+ godel(T).
f
and let us define thealue function V: [0, T[xRX — R, by setting

VE %) = inf JE X 0).
ceC(b)

We consider also a sequencepefturbedproblems

(Pn) minimize Jn(t, X, )
ceC()

where T
In(t, %, 0) ﬁ/t_ In(t, Xn[c] (1), c(t)) dt + gn(Xn[c](T)),

wherexnp[c] (or x(”_ % [c] if one wishes to specify the initial data), denotes the Soiu— existing
unique by hypotheses1-As below — of

x = fn(t,x,c)fort €[, T]

Let us define the value functiovy, of (Pn) by setting
Vn(E, %) = inf_ Jn(f, %X, 0).
ceC()
We assume that there exist numbersn, 8 satisfying 1< o < 8, 1 < apn < 8, such that the
following hypotheses hold true:

A1 the maps f and f are continuous off0, T] x R x R™ and, for every compact subset
QcC RK, there exists a positive constant L and a modwysverifying

A+ 1) (Lixy — X2l + o1 (It2 — t2])
A+ 1el*M(Lixy — X2l + pf (It — t2])

[ f(t1,X1,0) — f(t2, X2, 0)|

<
[fn(ty, X1,0) — fa(to, X2, 0] <

for all (t1,X1,C), (2, X2,€) € [0, T] x Q x R™ and n € N, (by moduluswe mean a
positive, nondecreasing function, null and continuouseab,

A, there exist two nonnegative constantg &d M, such that

M1(1+ [c*) (L + [X]) + M2(1+[c|*)
M1 (1 + [c*) (L + IX]) + Ma(1 + [c|*™)

[f(t, X, 0)

<
[fa(t,x, 0] <

for every(t, x, ¢) € [0, T] x RK x RM;

A3 the maps | andy are continuous orf0, T] x R x RM and, for every compact subset
Q c RK, there is a modulug satisfying

L+ 1cP) o1 ((tg, X1) — (t2, X))
L+ 1cP) o1 ((tg, X1) — (t2, X))

I (t1, X1, €) — I (t2, X2, ©)|

=<
[In(t1, X1,0) —In(t2, X2, 0)| <

for every(ty, X1, ©), (tp, X2,¢) € [0, T] x Q x RMand ne N;
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A4 there exist positive constantsy and A4 such that the followingoercivity conditions

I(t, %, ) Aolcl? — Aq
Int,x,00 > Aolcl® —Ag,

v

are verified for everyt, x, ¢) € [0, T] x RK x R™ and every nre N;

As the maps ggn are bounded below by a constaB@tand, for every compact @ RX, there
is a modulusog such that

On(X) — (Xl = pg(iX1 —X2D),
9(x1) — 9| = pg(lxy — X))

for every x, xo € Q.

Whena = 8, we also assume a condition of regularityfofindl at infinity in the variable
c. Precisely, we posit the existence of continuous functitiffsandl °°, therecessions functions
of f andl, respectively, verifying

imrf e, x,rw) = £, x, w)
r—0

lim rPre, x, r~tw) = 199, x, w),
r—0

on compact sets of [O'] x RK x RM (e.g., if f(t,x,c) = fo(t,x) + f1(t, X)[c| + fa(t, X)|c|?
then f°°(t, x, w) = fao(t, x)|w|2). Whenan = B we likewise assume the existence of the
recession function$°, |3°, respectively.

Theorem 1 below is the main result of the paper and conceensathvergence of the value
functionsVy, to V. We point out that, unlike previous results on this subjseg([1]), the triples
(fn,In, gn) are allowed to tend t6f, I, g) not uniformly with respect ta andc.

THEOREM1. Let us assume that for every $81 T] x Q, where Q is a compact subset of
Rk, there exists a functioa: N — [0, co) infinitesimal for n— oo such that

@) Ifn(t,x,©) — f(t,x, 0l < em@+Icf),
(5) lIn(t, %, ©) — I (t, X, O e+ [c)?)

A

IA

for (t,x,c) € [0, T] x Q x R™ and
[gn(X) — g(X)| < e(n)

for every x e Q. Then the value functions,\¢onverge uniformly, as n tends ¢o, to V on
compact subsets §@, T] x RX.

This theorem will be proved in Section 4 via some argumenishmtely on the fact that the
considered value functions are solutions of suitable Hamilacobi-Bellman equations. Actu-
ally, due to the non standard growth properties of the damHamiltonians involved in these
equations do not satisfy a uniform growth assumption in theiat variable which is shared by
most of the uniqueness results existing in literature. leaent paper [8] we have established
some uniqueness and regularity results for this kind of g In the next section we recall
briefly the points of this investigation that turn out to bsesgtial in the proof of Theorem 1.
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3. Reparameterizations and Bellman equations

The contents of this section thoroughly relies on the resflf8]. Let us embed the unperturbed
and the perturbed problems in a class of extended problenthwhve the advantage of involv-
ing only bounded controls. There is a reparameterizatigaraent behind this embedding which
allows one to transform & constraint (implicitly imposed by the coercivity assunopi) into

a L > constraint.

Let us introduce the extended fields

T w). P
f(t, x, wo, w) = f(tx i) v it wo #0
FOO(t, X, v, w) if wp=0anda =g
and
w . P
19°(t, X, v, w) if wo=0ande = 8.

Similarly, for everyn we define the extended fields andl, of fy andln, respectively. Hy-

pothese#\1-As imply the following properties for the map, I, T, andl.

PROPOSITIONL. (i) The functionsfy, Tn, T, andT are continuous or0, T] x RK x
[0, +00[ xR™ and for every compact @ RX we have

T (ta, X1, wo, w) — T (g, Xg, wo, w)| < WE + [w|wh " (LIxg — Xa
+ ot (lt1 —120)),

(Ael) 3 3 on « B—an
[ fr(t1, X1, wo, w) — Tp(te, X2, wo, w)| < (wy" + [W|*Mwg " (LIXg — X2
+ ot (lt1 — t2])
and
(Ae) (t1, X1, wo, w) —I(t2, X2, wo, w)| < (wé3 + 1wl (1(t1. x1) — (t2, X)) ,
e3

Tn(t1, X1, wo, w) — Tn(ta, Xo, wo, w)| < (wh + [wIF) 1 ([t X1) — (t2, X))

Y(t1, X1, wo, w), (t2, X2, wo, w) € [0, T] x RX x [0, +0o[ xR™, wherea, an, 8, L, o,
and p; are the same as in assumptiofhs and As.

MOI’GOVGI’,

ho Tt x, wo, w)l < W& + [wwh (ML + X)) + M),
Tt X, wo. w) < @S + [w]*™wh " (M1 (L+ X)) + Mp)

and

(Ao T(t. X, wo. w) = Aglwl? — Agwolf .

Tn(t, X, wo, w) = Aglwl? — Aqlwol?

V(t, X, wg, w) € [0, T] x RX x [0, +00[ xR™, where M, My, Ag and A1 are the same
asinAj andAg.
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(i) (Positive homogeneity itwg, w)). The mapf, I, T,,, andlp are positively homogeneous
of degrees in (wg, w), that s,

T(t, x, rwg,. rw) =rfF, x, wo, w),  T(t, X, rwg, rw) = rfi, x, wo, w)

T, X, rwg, rw) = rfF L, x, wo, w), Tn(t, X, rwg, rw) = rfnt, x, wg, w)
vr > 0, V(t, X, wg, w) € [0, T] x RKx]0, +-00[ xR™.

For everyt € [0, T] let us introduce the following sets space-time controls
1
'@ = { (wo, w) € B(0, 1], [0, +00) x R™) such thaf+/ wg(s) ds=T
0

and
(@ = {(wo. w) € I'(D) such thatwy > 0 a.e}

whereB([0, 1], [0, +o00) xR™) is the set ol *°, Borel maps, which take values in [@oco[ xR™.
If « < B [respa = g], for every (f,%) € [0, T] x R and every(wg, w) € I't () [resp.
(wg, w) € T'(D)], let us denote byt, Y)(&.5)[wo, w](-) the solution of the éxtende}i Cauchy
problem

(Ee) y'(s) = T(t(s), y(5), wo(s), w(s))

{ () = wh (o

(t(0), y(0) = (£, %),

where the parameterbelongs to the interval [A] and the prime denotes differentiation with
respect ts. When the initial conditions are meant by the context welstdde (t, y)[wg, w](-)
instead of(t, y) ¢ x)[wo, w](). Let us consider the followinge&tendegicost functional

1_
3e(E. %, wo, w) = /O T(t, y)[wo. w]. wo. ) () ds+ g(y[wo. w](L)

and the correspondingXtendellvalue function

Ve:[0,T] x R > R

Ve, ) = inf  Je(f, X, wo, w).
(wo.w)el (D)

Similarly, for everyn € N, for every(f, X) € [0, T] x RK and every(wg, w) € I'(f) letus
introduce the system

(Eey) Y'(s) = Fr(t(s), y(5), wo(s), w(s)) sel0,1]

{ t'(s) = wh(s)
(t(0), y(0)) = (t, %),

and let us denote its solution Igy; y)?t_ )_()[wo, w](-). Let us introduce the cost functionals

1_
Jen (£, X, wo. w) = /O Tn (€ 9 5 w0, ) (9 ds+ gn(ynlwo, wl(2)



140 F. Rampazzo — C. Satrtori

and the corresponding value functions

Ve, 1[0, T xRK > R

Ve, (t, X) = inf Je. (f, X, wo, w) .
en (1, X) (o er en ( 0, W)

Next theorem establishes the coincidence of the value imgbf the original problems
with those of the extended problems.

THEOREM2. Assumeéi1-As.
(i) For every(t,x) € [O,T[><]Rlk and for every ne N one has ¥(t,x) = V(t,x); and
Ve, (t, X) = Vn(t, X);
(i) the maps Yand \g, are continuous of0, T] x RX.

Thanks to this theorem — which, in particular, implies tilatnd V; can be continuously
extended on [0T] x RX — the problem of the convergence of thg is transformed in the
analogous problem for théy, .

We now recall that each of these value functions is the uréguigion of a suitable boundary
value problem. This is a consequence of the comparisonehebelow. To state these results,
let us introduce thextended Hamiltonians

(6)
B

He(t, X, po, p) = sup {—powgy — (P, F(t. X, wo, w)) —I(t, X, wo, w)}
(wo,w) ([0, 400 xRMNSH

whereS} = {(wo, w) € [0, +oo[xRM : |(wo, w)| = 1},

He (t. X, Po. p) = sup {—powh — (p, Tn(t, X, wo, w)) —In(t, X, wo, w)},
(wo,w)e([0,+oo[ xRMNSH

and the corresponding Hamilton-Jacobi-Bellman equations

(HJe) He(t, X, ut, ux) =0,

(HJe,) He, (t, X, ut, ux) = 0.

For the sake of self consistency let us recall the definitibfpossibly discontinuous) vis-
cosity solution, which was introduced by H. Ishii in [5].

Given a functionF : Q@ — R, @ < R, let us consider thepper and lower semicontinuous
envelopesdefined by

F*x) = lim supF(y):ye @, x—yl<r},
r—0t
Fe¥) = lim inf(F(y):yeQ, x—y|<r}, xe@,
r—0t
respectively. Of courses* is upper semicontinuous arf} is lower semicontinuous.

DEFINITION 1. Let E be a subset & and let G be a real map, thdamiltonian defined
on E x R x RS. An upper[resp. lower]-semicontinuous function u is a @&ty subsolution
[resp. supersolution] of

) G(y,u,uy) =0
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aty e E iffor everygp € C1(RS) such that y is a local maximum [resp. minimum] point of ¢
on E one has

Gy, 0(y), ¢y(y) =0
[resp.

G*(y. ¢(¥), ¢y(y) = 0] .

A function u is a viscosity solution of (7) ateyE if u* is a viscosity subsolution at y and is
a viscosity supersolution at y.

THEOREM3 (COMPARISON). AssumeA-As. Let g : [0, T] x RK — R be an upper
semicontinuous, bounded below, viscosity subsolutiofHal) in ]0, T[ka, continuous on
({0} x Rk) U({T} x Rk). Letw : [0, T] x R — R be a lower semicontinuous, bounded below,
viscosity supersolution @H Je) in [0, T[xRX. For every xe R¥, assume that

U(T, X) < ux(T, x)
or
Uy is a viscosity supersolution ¢H Jeg) at (T, X) .

Then
up(t, X) < up(t,X) V(t,x) € [0, T] x R¥.

The same statement holds true for the equatidthsg,).

As a consequence of this theorem and of a suitable dynamigaroning principle for the
extended problems one can prove the following:

THEOREMA4. The value function ¥is the unique map which
i) is continuous on({0} x Rk) U{T} x Rk);

i) is a viscosity solution ofH Je) in ]0, T[ka;

iii) satisfies the following mixed type boundary condition:

Ve(T,X) < g(X) Vx e RKand

(BCer) Ve(T, x) = g(x)
or
Ve is a viscosity supersolution 0 Je) at (T, X) .
Once we replacéH Je) by (H Jg,), the same statement holds true for the mags V

Finally let us recall a regularity result which will be uskifiuthe proof of Theorem 1.

THEOREM5. AssumeAi-As and fix R> 0. Then there exists’'R> R and positive con-
stants G, C» such that

[Ve(t, X1) — Ve(t, x2)| < C10 (C2lx2 — X11) + pg(C2lx2 — X1)

for every(t, xq) (t, x2) € [0, T] x B[O; R], wherep; and pg are the modulus appearing i3
and the modulus of uniform continuity of g, respectivelyresponding to the compafd, T] x
B[0; R’]. Moreover for every < [0, T[ one has

[Ve(t, x) — Ve(, )| < nz(t — 1))
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for every(t, x) € [0, T[x B[0; R], wherenz is a suitable modulus, and for everyts— ng(s) is
an increasing map. The same statement holds true for the Mgapwith the samey;.

REMARK 1. We do not need, for our purposes, an explicit expressiof,oivhich, how-
ever, can be found in [8]. Also in that paper sharper regiylagisults are established. Finally let
us point out that though an estimate like the second one infEhe5 is not available fdr= T
the mapVe is continuous orfT} x R¥, (see Theorem 2).

4. Proof of the convergence theorem

Proof of Theorem 1.n view of Theorem 2 it is sufficient to show that the mafg converge to
Ve. Observe that the assumptions (4), (5) imply

®) [Tt x, wo. w) — F(t, X, wo. w)| < e} + wlf)
and
©) Tn(t. X, wo, w) —T(t, X, wo. w)| < e(M(wh + [wlf).

for every(t, x, wg, w) € [0, T] x Q x [0, co[ xR™ and everyn € N.

Moreover, by the coercivity conditiofle, and by the obvious local uniform boundedness of
Ve,, andVe when the initial conditions are taken in a bBIj0, R] it is not restrictive to consider
only those space time controls such that

1
(10) /O (wo(® + w(e))* ds < Kr

whereKR is a suitable constant depending BnBy Holder’s inequality we have also that
1
/0 (wo(S) + (O P uwo®F e ds < (T + D(Kr+1).

Hence by Gronwall's Lemma, we can assume that there exisifi 80, R'] RK containing
all the trajectories issuing froB[0, R].

Let us fixT < T: by Theorem 5 the map¥ge, are equicontinuous and equibounded on
[0, T] x BIO, R], so we can apply Ascoli-Arzela’s Theorem to get a subsecgi@fiVg,, still
denoted byVe,, converging to a continuous function. Actually by takiRglarger and larger,
via a standard diagonal procedure we can assume thefthenverge to a continuous function
V : [0, T] x RK — R, uniformly on compact sets of [T] x RK. Now, for every(t, x) e
[0, T] x Rk, let us consider theveak limits

V(t,x) = limsup Ve, (s, y)
n—oo
(s.y)=>(t.x)
(s.y)e[0. T]xRK

and
V(t,x) = liminf Ve, (S, Y).
n—oo
(s.y)—>(t.x)
(s,y)e[0. T]xRK
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Our goal is to apply a method (see [2]) based on the applicatithe comparison theorem
(see Theorem 3) to these weak limits. Let us observe thatWathdV coincide withV on the
boundary{0} x RX: in particular they are continuous ¢} x RX. Since the Hamiltonianslg,
converge tdHe uniformly on compact subsets of,[0] x RK xR x R¥, standard arguments imply
thatV is a (upper semicontinuous) viscosity subsolutioriléfle) in [0, T) x RX, whileV is a
(lower semicontinuous) viscosity supersolutionBfJe) in [0, T) x RX. Hence the convergence
result is proven as soon as one showsthat V in [0, T] x RK. For this purpose it is sufficient
to show thatv andV verify the hypotheses of Theorem 3. Actually the only hygsih which
is left to be verified is the one concerning the boundary sufisex RX. We claim that

(12) lim Ve, (S, y) = Ve(T, X)
n—oo
(8.y)—~>(T.x)
(s,y)e[0, T]xRK

which impliesV (T, -) = V(T, -) = Ve(T, -). In particular the map¥ (T, -) andV (T, -) turn out
to be continuous, so all assumptions of Theorem 3 are verifiee remaining part of this proof

is thus devoted to prove (11). Let us considerx, € B[O, R] and controls(0, wn) € I'(T)
such that, settingtn, xn) = (t, y)?T xp[0: wn] (), we have

1_
Ve, (T, X1) Z/O In(tn, Xn, 0, wn)(S) ds+ gn(Xn(1)) — €.

Hence, settingfn, 1) = (t, ¥)(T,x,) [0, wn](-) and noticing thatn(s) = tn(s) = T Vs € [0, 1],
we have

Ve(T, X2) — Ve, (T, X1)

IA

1
/0 I(T, %n, 0, wn)(S) dS+ gn(%n (1))

1
_/0 Tn(T, Xn, 0, wn)(s) ds — gn(xn (1)) + €

A

1
< /0 lwn(9)1P[e() + o1 (1%n(S) — Xn(S)D] ds
+pg(I%n (D) — Xn (D)) + €(n) + €,

wheree(n), o and pg (seeAz andAs) are determined with reference to the compact subset
Q = B[O, R]. If L is the determination of in (Ag,) for B[O, R'] then

% (S) — Xn(S)] < (IXg — X2l + €(N)(T + 1(KR + 1)etr (T+HDKr+D

This, together with the fact that a similar inequality canpbeved (in a similar way) when the
roles of Ve and Vg, are interchanged, implies
[Ve(T, X2) — Ve, (T, x1)| < Krpy [(IX1 — X2

+ eM(T + D(Kr + 1))eLR/(T+1>(KR+1>]
(12)
+ rg [(le —Xo| +e(N)(T + (KR + 1))eLR’(T+1)(KR+1)]

+ (KR +De(n).
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Now, for r < T, let us estimate the differendé,, (r, X) — Ve(T, X), assuming that this
difference is non negative. Let us s&t, xn)(-) = (1, y)?t X)(zi)o, 0)(-) with wg(s) = (T —

1
7) B Vs € [0, 1]. Then the Dynamic Programming Principle
1_
Ve (20 = Va(T, 0 < [ Tt Xn, 0, 0/(5) d+ Ve (T, (1) = Ve(T, ).

If M = maxMzi + My, 1}, by (Ae,) we havelxn(1) — x| < M(1 + R)|T — 7]. Hence, if
K;Q > (t,x)e[omr?i(s[o, R/]I n(t, x, 1, 0), by the positive homogeneity b and by the first part of
the proof we ggktlain
(13) Ven (7, X) — Ve(T, X) < Kg[T — 7| +on(|T — 7))
where
on(s) =KrpI[(M(L+ R)s+ e(n)(T + D (Kg + )etr THDKrTD)]
+ pgl(M(L + R)s + e()(T + (KR + 1))et R THDEKRED] 1 (Kp 4 1)e(n).

Now let us estimate the differens&(T, X)—Ve, (7, X), assuming it non negative. Let us consider
a sequence of controlsvg,, wn) € T'(r) such that, settingtn, xn) = (t, y)?T X)[won, wn](+),
one has

1
Ve, (7, X) Z/O In(tn, Xn, wo,, wn)(S) ds+ gn(Xn (1) — €.

Then the control$0, wn) belong tol' (T), and, settingtn, Xn) = (t, ¥)[0, wn](-), we obtain

1— ~
Ve(T, %) — Ve (7. %) < / (G, %n, 0, wn)(9) dS -+ g(%n (1))
0
(14) 1
_/O In(tn, Xn, wo,, wn)(S) dS— gn(Xn(1)) + €
for everyn € N. Now one has
1 — — o~
[Xn(S) — Xn(S)| E/c; [ fn(tn, Xn, wo,,, wn)(S) — f(th, Xn, 0, wn)(s)| ds
1 J— J—
< /;) [ frtn, Xn, wo,, wn)(S) — f(th, Xn, wo,, wn)(s)|ds
1 — — o~
(15) +/0 | f (tn, Xn, wo,, wn)(S) — f(tn, Xn, wo,, wn)(s)| ds
1 — — o~
+/0 | f (tn, Xn, wo,, wn)(S) — f(tn, Xn, wo,, wn)(s)|ds
1 — — o~
-I—/O | f (tn, %n, wo,, wn)(S) — f(tn, Xn, 0, wn)(s)| ds.

for all s € [0, 1]. In view of the parameter-free character of the systera ésg. [7] for the case
o = B = 1), itis easy to show that one can transform the integral 8¢@f) into the pointwise
bound

|(wo, w)(s)| < Kr¥s € [0, 1],
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whereK g is a constant depending @ Therefore, in view of basic continuity properties of the
composition operator, there exists a modyusuch that the last integral in the above inequality
is smaller than or equal to(|T — t|). Therefore, applying Gronwall’s inequality to (15) we

obtain

IXn(s) = Xn(s)| <(T + D(KR + D) + p£ (IT — )

(16) +p(T — zpyjebr THD(KRED)

Hence (14) yields
1 — =~
Ve(T, X) — Ve, (7, X) 5/0 I (th, Xn, 0, wn)(s) — I (tn, Xn, O, wn)(s)| ds

1 — —
+/0 T (G, %0, 0. wn)(9)] S — T(tn, Xn. O, wn) ()| ds

17 1 )
+/0 T(tn, Xn. O, wn)(S) — T(tn, Xn, woy» wn)(S) ds

1 — —
+/0 [[(tn, Xn, wo,» wn)(S) — In(tn, Xn, wo,, wn)(s)| ds
+ pg(IXn (1) = Xn (D)) .

Again, an argument based on the continuity properties of tingposition operator allows one to
conclude that there exists a modujiisuch that

1
/0 [[(tn, Xn, 0, wn)(S) — I (tn, Xn, wo,, wn)(S)| ds < o(|T — z|)
Therefore, plugging (15) into (16), we obtain

Ve(T, X) — Ve, (1, X) <Pr(p1 + pg)[PR(e(M) + p1 (IT = 7I) + p(IT — 7]))e R PR]

(18) ~
+ PRI (IT =) +eM] + 5T — 7)),
wherePR = (T + D)(Kr + 1).
Estimates (12), (13) and (18) imply the claim, so the thecseproved.

5. Implementing optimal controls in the presence of perturtations

As an application of Theorem 1, Theorems 6 and 7 below pro¥atethe special case of the
linear quadratic problem, an answer to the general ques@igrandQ», respectively. Let us re-
mark that the perturbation we consider is not the most géasrang those allowed by Theorem
1. However, it well illustrates the degree of improvementhwespect to previous results con-
cerning questions lik®, andQ> (see Introduction). Let us also remark that the linear-catix
problem is just a model case. Indeed, it is evident that Téreds below holds also if we replace
the linear-quadratic problem with a problem that (satisfpdthese®A1-As, (4), and (5) and)
admits an optimal.# control, while Theorem 7 is still valid for any problem for igh (f is Lip-
schitz inc uniformly for (t, x) in a compact subset of [0] x RX and) a Lipschitz continuous
feedback controt(x) does exist.
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Let us be more precise by stating that by linear-quadratiblpm we mean here an optimal
control problem as the ones considered in the previousosestivith

f=f(xc=Ax+Bc Ixc)=x'Dx+cEc gx) =x'Sx,

whereD, E, Sare symmetric matrices (of suitable dimensiori3)and S are nonnegative defi-
nite, F is positive definite, while no assumptions are madeAomB, C. Let us observe that the
fields f, 1, g satisfies hypothese%:-As. In particular, one has = 1, 8 = 2, andAg is the
smallest eigenvalue d&.

Let us consider the following perturbations of the mdpk g:

fn = Ax+ Bc+en(t,x,0
In = x!Dx+c'Ec+6n(t, x, 0
o = X!SX+yYnX).

We assume that for each compact suli3et RX there exist a constantand modulip andp
such that:

i) For every n, the mapn : [0, T] x RK x RM — RK is continuous and verifies
lgn(t1, X1, ©) — @n(t2, X2, ©)] < (14 [¢|*M)(AlXy — Xo| + p(Ity — t2)

for all (t1, X1, ©), (t2, X2, €) € [0, T] x Q x R™ and for a suitablexn € [1, 2] (varying
with n and independent of Q).

i) There exist constan{sy, uo such that for every e N one has
len(t, X, ©)] < a1+ 1e1"M) (1 + [X]) + p2(1+ [cl*™)
for every(t, x, ¢) € [0, T] x RK x R™,
iii) ForeveryneN, 6n:[0, T] x RK x R™ — RK is continuous and verifies
16n(t1. X1. ©) — fn (. X2, O] < (L+ [cI2)B(I(t1, X1) — (t, X))

for every(ty, X1, ©), (t2, X2, ©) € [0, T] x Q x R™.
iv) There exist a (possibly negative) constagystrictly larger than the opposite of the small-
est eigenvalue of E, and a positive constapsuch that
On(t, X, ©) > Aglc|2 — g

for every n and everit, x, ¢) € [0, T] x RK x R™.
V) Yn :RK = Ris continuous andn > 0.
Moreover we assume that for every compac'cQRk there exists a function : N — N,

infinitesimal as n— oo such that
lpn(x. 0l = eM@+[cP).
a0l < em@+Icl?)

for every(x,c) € Q x R™ and

[Yn ()] < e(n)

for every xe Q.
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REMARK 2. Let us observe that the above assumptions imply that thethgses of the
convergence theorem (Theorem 1) are verified. Let us alstt pot that we allowxn to be
equalto B(= 2) (see Remark 1).

THEOREM6 (OPENLOOP). Fix (f, X) € [0, T] x RK. Assume that is an optimal control

for the unperturbed problem that is(fl X,€) = V(f, X). Thent is nearly optimal for the
perturbed problem, i.e.,

(19) nlew|Jn(t,X,C) — Vg, (, X)| = 0.

Proof. As in the proof of Theorem 1, when the initial condition arkeia in a ballB[0, R], by
the coercivity conditiorA4 we can consider only controls such that

-
/ 1+ Ic(9)D? ds < KR,
0
whereKR is a suitable constant depending BnThen, by Holder’s inequality we have also,
T
/;) A+ e ds< (KR+D(T +1)

which, by Gronwall’'s inequality, implies that there is a Ib&[0, R'] which contains all the

trajectories issuing fronB[0, R]. Settingx(-) = X )[C](-) andxn(-) = x(”t_ % [Cl(-), we have

T
[Xn(t) — X(0)] 5/t_ [ fn(s, Xn(8), T(S)) — f (s, X(8),T(s))|ds
T
(20) < /t [AXn(S) — AX(S) + ¢n(Xn, T)(S)| dS

T
< (T+1)(KR+1)e(n)+HAH/t_ (IXn(s) — x(s)|) ds

wheree(n) is relative toB[0, R] and ||A|| is the operator norm of the matri&. Hence, Gron-
wall's Lemma implies

(21) IXn(S) — X(8)| < (T + 1)(Kg + Demel AT |

for everyt € [t, T]. Since
T
[dn(t, X, T) — J(t, X, T)| 5[ 1% (S)!DXn(S) — X(s)! Dx(s)| ds
t

.
+ﬁ |6n(Xn(S), T(s))| ds
22) t
+ Xn(MS%(T) = X(TISXT)| + [¥n(Xn(T))]
T
< IIDII/t_ [Xn(S) — X(S)|(IXn (s]) + [X(S)]) ds
+ISI1%n(S) — X&)% (TH] + IX(TH]) + (ML + KR),

in view of estimate (22) and of Theorem 1, the theorem is prove
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THEOREM?7. Let ox) be a locally Lipschitz continuous optimal feedback contfoolthe
unperturbed problem. Then this control is nearly optimaltfe perturbed problem, that is

Jim 1 3n(E, X, ©) — Ven (£, X1 = 0.

Proof. If we denote byx(-) andxn(-) the solutions to E) to (Ep), respectively, corresponding
to the feedback contral(x), we obtain

pn(®) — X (D] = /t T fats X0(). CO(E)) — (5. X(5) cx())] ds
< /t T Aa(®) + Boxn(s) — AX(S) — Bex()| ds
+ /t T on00(9), cn(s)] ds
< /t_T(nAn L IBI(I¥a(S) — x(9)] s+ (T + (KR + De(n)

wherey is the Lipschitz constant of the mayx) corresponding to the compact $&f0, R'].
Hence one has

Xn(S) — X(9)] < (T + D (KR + De(nye MBIy

and from here on one can proceed as in the proof of Theorem 6.
|

REMARK 3. As we have mentioned in the Introduction, when= g it may happen that
a perturbed problemR,) does not possess a minimum in the class of absolutely comim
trajectories. Indeed, due to the fact that the growth réﬁi(): 1) is not greater than 1, the
minimizing sequences could converge tdiscontinuous trajectoryin this case, the possibility
of implementing a control that is optimal for the unpertuwtsystem — which is now assumed
sufficiently coercive, that is, satisfying < 8 — turns out to be of some interest whenever one is
worried to avoid a discontinuous performance of the systederticonsideration.

To be more concrete, let us consider the very simple (liggadratic) minimum-problem
wherel = x2 + A0c2 and f = 0. In this case8 = 2 and« can be taken equal to 1. Let us

perturb this problem by takinth =1 and fn = f +¢on = ¢n = *TCZ Observe that these
perturbations give rise tquadratic-quadraticproblems, that is problems whesg = g = 2.
Let us consider the initial data= 0 andx > 0. The constant mag(t) = X is the unique
trajectory of the unperturbed system, so the coréi(bl = Ovt € [0, T] turns out to be optimal.
In view of Theorem 6 this control is nearly optimal for the fpebed problems as well. However,
as soorx is sufficiently large and\ is sufficiently small with respect tﬁ, an application of the
Maximum Principle to the space-time extension of the pbedrsystem shows that the “optimal
trajectory” of the perturbed problem is the concatenatibaro“initial jump” (from X to a point
xn €]0, X[) and a suitable absolutely continuous map.

References

[1] BARDI M., DA Li0o F., On the Bellman equation for some unbounded control probhlems
NoDEA — Nonlinear Differential Equations and Applicatioh§1997), 491-510.



On perturbation 149

[2] BARLES G., PERTHAME B., Discontinuous solutions of deterministic optimal stoggpin
time problemsRAIRO Modél. Math. Anal. NumégR1 (1987), 557-579.

[3] BENSOUSSANA., Perturbations methods in optimal contrdlohn Wiley and Sons, New
York 1988.

[4] FLEMING W. H., RISHEL R. W., Deterministic and stochastic optimal contr@pringer,
New York 1975.

[5] I'sHil H., A boundary value problem of the Dirichlet type for Hamiltdseobi equations
Ann. Sc. Norm. Sup. Pis@dV) 16 (1989), 105-135.

[6] I'sHIl H., A comparison result for Hamilton-Jacobi equations withgudwth condition on
solutions from aboveAppl. Anal.67 (1997), 357-372.

[7] MoTTA M., RamPAZZO F., Nonlinear systems with unbounded controls and state con-
straints: a problem of proper extensioNoDEA — Nonlinear Differential Equations and
Applications3 (1996), 191-216.

[8] RamPAzZzO F., SaRTORI C., Hamilton-Jacobi-Bellman equations with fast gradient-
dependencepreprint (1999).

AMS Subject Classification: 49K40, 35B37, 49L25, 49N25.

F. RAMPAZZO

Dipartimento di Matematica Pura ed Applicata
Via Belzoni 7 - 35131 Padova, Italy

e-mail: rampazzo@math.unipd.it

C. SARTORI

Dipartimento di Metodi e Modelli Matematici
per le Scienze Applicate

Via Belzoni 7 - 35131 Padova, Italy

e-mail: sartori@dmsa.unipd.it



150 F. Rampazzo — C. Satrtori



