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ON PERTURBATIONS OF MINIMUM PROBLEMS
WITH UNBOUNDED CONTROLS

Abstract.

A typical optimal control problem among those consideredhis work in-
cludes dynamics of the forrh(x, ¢) = go(X) + Go(X)|c|* (herex andc represent
the state and the control, respectively) and a Lagrangigheforml(x,c) =
lo(¥) + Tp()|c/f, with @ < B, andc belonging to a closed, unbounded sub-
set of R™. We perturb this problem by considering dynamics and Lagjears
fa(X, ©) = gn(X) + Gn(®)[c|*", andin(x, ¢) = lg,(X) + fon(x)|c|5 respectively,
with an < B, and fn andly approachingf andl. We show that the value functions
of the perturbed problems converge, uniformly on compast $e the value func-
tion of the original problem. For this purpose we exploit gocomparison results
for Bellman equations with fast gradient-dependence whate been recently es-
tablished in a companion paper. Of course the fast growthargtadient of the
involved Hamiltonians is connected with the presence obunided controls. As
an easy consequence of the convergence result, an optintedlcor the original
problem turns out to be nearly optimal for the perturbed f@ois. This is true in
particular, for very general perturbations of the LQ prabléncluding cases where
the perturbed problem isot coercive, that isgn = B(= 2).

1. Introduction

Let us consider a Boltz optimal control problem,

minimize ft—T I(t,x, 0y dt+ g(x(T))
(P) x=f(t,x,c) x@{)=x
(£, %) [0, T] x R¥,
wherec = c(t) is a control which takes values R™. Let us also consider a sequence of
perturbationsof this problem,

(Pn) minimize t—T In(t, X, c)dt_+ gn_(x(T))
X = fat,x,0) x() =x

where the triples fn, In, gn) converge td f, 1, g), in a sense to be made precise.

In the present note we address the following question:

Q1. Assume that for every initial datd, X) an optimal control &5 [[,T] = RMis
known. Are these controls nearly optimal for the problgPr)?

(Herenearly optimalmeans that the value of the cost functional Bfi\ when the control
C,%) is implemented differs from the optimal value by an errorsthapproaches zero when
tends tooo).
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134 F. Rampazzo — C. Satrtori

An analogous question can be posed when an optimal feedlmtkobc = c(t, x) of
problem(P) is known:

Q2. Is the feedback control(t, x) nearly optimal for the probleniPn)?

The practical usefulness of studying such a theoreticadlpro is evident: it may happen
that the construction of an optimal control for probléR) is relatively easy, while the same
task for the perturbed proble®,) might result hopeless. In this case, one could be tempted to
implement the P) optimal control for problentP,) as well. And positive answers to questions
like Q1 andQ» would guarantee that these strategies would be safe. (Femerag account on
perturbation theory see e.g. [3]).

Since we are interested in the case when the cortraie unbounded, questions concerning
the growth inc of f andl turn out to be quite relevant. The crucial hypotheses fsgés in
Section 2) here assumed on the dynanficand the Lagrangiahare as follows: there exist,

B, both greater than or equal to 1, such thaitc RKisa compact subset axdy € Q, then

(1) |f(t,X, C)_ f(t’ y’ C)l
2 ht, x, ol

L1+ [c®)Ix -y
lolclf —C

=
=

for all c € R™, whereL depends only orQ. The same kind of hypotheses are assumed on
the perturbed pairdn, I, with the same growth-exponeptfor the Lagrangians,, while the
growth-exponentan, of the f,, are allowed to depend an Moreover,weak coercivityelations,
namelyon < B, @ < B, are assumed. Let us observe that whea g (strict coercivity the
optimal trajectories turn out to be (absolutely) continsjouhile, if = 8, an optimal path may
containjumps(in a non trivial sense whicbannotbe resumed by a distributional approach, see
e.g. [7, 8)).

Answers to question®41 andQ» are given in Theorems 6, 7 below, respectively. The main
theoretical tool on which these results rely consists in-aated stability theorem (see Theorem
1) for a class of Hamilton-Jacobi-Bellman equations witst faradient-dependence. In order to
prove the stability theorem we exploit some uniqueness agdlarity results for this class of
equations that have been recently established in a compaaioer [8] (see also [1] and [6]).
Let us notice that questions likg; andQ> can be approached with more standard uniqueness
results as soon as the controlare bounded.

Similar questions were addressed in a paper by M. Bardi ari2aA.io [1], where the
authors assumed the following stronger hypothesig on

(3 [f(x,c) — f(y,0)| <L|x—Y]|

(actually a monotonicity hypothesis, weaker than (3) isias= in [1]; however this is irrelevant
at this stage, while the main point in assuming (3) consisthe fact that it is Lipschitz irx
uniformly with respect to)c Observe that hypothesis (3) still allows for fields grogvas|c|“ in

the variablec. Yet, while a field of the fornf (x, ¢) = go(X) + g1 (X)|c|* agrees with hypothesis
(1), it does not satisfy hypothesis (3) unleggx) is constant. Furthermore, in [1] the exponent
« is required to be strictly less thah(strict coercivity).

The relevance of weakening hypothesis (3) (and the positien 8) is perhaps better un-
derstood by means of an application to a perturbation qurestr the linear quadratic problem.
In this case one hast = 1,8 = 2, f(x,c) = Ax+ Bc, I(x,c) = x*Dx + x*Ec+ c*Fc,
g(x) = x*Sx Here the coercivity hypothesis reduces to the fact Ehi positive definite. As
it is well known, (see e.g. [4]) under suitable hypothesesAoB, D, E and F, this problem
admits a smooth optimal feedback, which can be actually etetpbby solving the correspond-
ing Riccati equation. It is obvious that a crucial point inegtionsQ, and Q> consists in the
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specification ofvhichclass of perturbation probleni®,) has to be considered. Of course, since
in practical situations the nature of the perturbation iy gartially known, the larger this class
is the better. In [1] a positive answer @, is provided when the perturbed fields are of the form

fn(X) = AX+ Bx+ e(n)p(X, C)

with ¢ verifying (3)ande(n) infinitesimal. So, for instance, a perturbed dynamics like
1
fn = Ax+ Bx+ ﬁxc

is not allowed. On the contrary, hypothesis (1) assumed in thesptgsaper is not in contrast
with this (and much more general) kind of perturbation. Alier improvement is represented
by the fact that thefn’s growth exponents, are allowed to be different from thé&'s growth
exponentx (=1, in this case), and moreover, they can be less thagoalto 8 (which in this
example is equal to 2). So, for example, perturbed dynarikies |

fn = Ax+ Bc+ e(n)(g(x)c + h(x)|c|?)

may be well considered. In this case, the possibility of Enpénting & P)-optimal controlc in
the perturbed problemPg) may be of particular interest. Indeed, the problers) (are quite
irregular, in that the lack of a sufficient degree of coetgivhay give rise to optimal trajectories
with jumps(see Remark 2).

The general approach of the present paper, which is pgriepired by [1], relies on prov-
ing the convergence of the value functions of the problef3 (o the value function of P) via a
PDE argument. However, the enlarged generality of the densidl problems makes the exploita-
tion of very recent results on Hamilton-Jacobi-Bellmanagtpns with fast gradient-dependence
crucial (see [8]). In particular, by allowing mixed type mlary conditions, these results cover
the weak coercivity casex(= g). Moreover they do not require an assumption of local Lip-
schitz continuity of the solution of the associated dynapriegramming equation. Actually,
as a consequence of the fact that we allow value functionshwdiie not equicontinuous, the
Ascaoli-Arzela argument exploited in the stability thewref [1] does not work here. In order to
overcome this difficulty we join ordinary convergence argmts originally due to G. Barles and
B. Perthame [2] with the reparameterization techniquesdhiced in [8].

2. A convergence result

For evenf ¢ [0, T], letC(f) denote the set of Borel-measurable maps which belohd tff, T],
R™). C(f) is called the set of controls startingfatLet us point out that the choice of the whole
R™M as the set where the controls take values is made just foratkes af simplicity. Indeed,
in view of the Appendix in [8] it is straightforward to genée® the results presented here to
situations where the controls can take values in a (possitipunded) closed subsetR'. For
every (f, x) € [0, T] x RK and evenyc € C(f), by the assumptiond-As listed below, there
exists a unique solution of the Cauchy problem

x = f(t,x,c)fort € [t, T]
B { x() = X,
(where the dot means differentiation with respedjta/Ve will denote this solution by x[c](-)
(or by x[c](-) if the initial data are meant by the context). For evéryx) € [0, T] x RX let us
consider the optimal control problem

(P) minimize J(f, X, )
ceC(®)
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where T
2E0 = [ 1t e, ct) dt+ godel(T).
f
and let us define thealue function V: [0, T[xRX — R, by setting

VE %) = inf JE X 0).
ceC(b)

We consider also a sequencepefturbedproblems

(Pn) minimize Jn(t, X, )
ceC()

where T
In(t, %, 0) ﬁ/t_ In(t, Xn[c] (1), c(t)) dt + gn(Xn[c](T)),

wherexnp[c] (or x(”_ % [c] if one wishes to specify the initial data), denotes the Soiu— existing
unique by hypotheses1-As below — of

x = fn(t,x,c)fort €[, T]

Let us define the value functiovy, of (Pn) by setting
Vn(E, %) = inf_ Jn(f, %X, 0).
ceC()
We assume that there exist numbersn, 8 satisfying 1< o < 8, 1 < apn < 8, such that the
following hypotheses hold true:

A1 the maps f and f are continuous off0, T] x R x R™ and, for every compact subset
QcC RK, there exists a positive constant L and a modwysverifying

A+ 1) (Lixy — X2l + o1 (It2 — t2])
A+ 1el*M(Lixy — X2l + pf (It — t2])

[ f(t1,X1,0) — f(t2, X2, 0)|

<
[fn(ty, X1,0) — fa(to, X2, 0] <

for all (t1,X1,C), (2, X2,€) € [0, T] x Q x R™ and n € N, (by moduluswe mean a
positive, nondecreasing function, null and continuouseab,

A, there exist two nonnegative constantg &d M, such that

M1(1+ [c*) (L + [X]) + M2(1+[c|*)
M1 (1 + [c*) (L + IX]) + Ma(1 + [c|*™)

[f(t, X, 0)

<
[fa(t,x, 0] <

for every(t, x, ¢) € [0, T] x RK x RM;

A3 the maps | andy are continuous orf0, T] x R x RM and, for every compact subset
Q c RK, there is a modulug satisfying

L+ 1cP) o1 ((tg, X1) — (t2, X))
L+ 1cP) o1 ((tg, X1) — (t2, X))

I (t1, X1, €) — I (t2, X2, ©)|

=<
[In(t1, X1,0) —In(t2, X2, 0)| <

for every(ty, X1, ©), (tp, X2,¢) € [0, T] x Q x RMand ne N;
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A4 there exist positive constantsy and A4 such that the followingoercivity conditions

I(t, %, ) Aolcl? — Aq
Int,x,00 > Aolcl® —Ag,

v

are verified for everyt, x, ¢) € [0, T] x RK x R™ and every nre N;

As the maps ggn are bounded below by a constaB@tand, for every compact @ RX, there
is a modulusog such that

On(X) — (Xl = pg(iX1 —X2D),
9(x1) — 9| = pg(lxy — X))

for every x, xo € Q.

Whena = 8, we also assume a condition of regularityfofindl at infinity in the variable
c. Precisely, we posit the existence of continuous functitiffsandl °°, therecessions functions
of f andl, respectively, verifying

imrf e, x,rw) = £, x, w)
r—0

lim rPre, x, r~tw) = 199, x, w),
r—0

on compact sets of [O'] x RK x RM (e.g., if f(t,x,c) = fo(t,x) + f1(t, X)[c| + fa(t, X)|c|?
then f°°(t, x, w) = fao(t, x)|w|2). Whenan = B we likewise assume the existence of the
recession function$°, |3°, respectively.

Theorem 1 below is the main result of the paper and conceensathvergence of the value
functionsVy, to V. We point out that, unlike previous results on this subjseg([1]), the triples
(fn,In, gn) are allowed to tend t6f, I, g) not uniformly with respect ta andc.

THEOREM1. Let us assume that for every $81 T] x Q, where Q is a compact subset of
Rk, there exists a functioa: N — [0, co) infinitesimal for n— oo such that

@) Ifn(t,x,©) — f(t,x, 0l < em@+Icf),
(5) lIn(t, %, ©) — I (t, X, O e+ [c)?)

A

IA

for (t,x,c) € [0, T] x Q x R™ and
[gn(X) — g(X)| < e(n)

for every x e Q. Then the value functions,\¢onverge uniformly, as n tends ¢o, to V on
compact subsets §@, T] x RX.

This theorem will be proved in Section 4 via some argumenishmtely on the fact that the
considered value functions are solutions of suitable Hamilacobi-Bellman equations. Actu-
ally, due to the non standard growth properties of the damHamiltonians involved in these
equations do not satisfy a uniform growth assumption in theiat variable which is shared by
most of the uniqueness results existing in literature. leaent paper [8] we have established
some uniqueness and regularity results for this kind of g In the next section we recall
briefly the points of this investigation that turn out to bsesgtial in the proof of Theorem 1.
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3. Reparameterizations and Bellman equations

The contents of this section thoroughly relies on the resflf8]. Let us embed the unperturbed
and the perturbed problems in a class of extended problenthwhve the advantage of involv-
ing only bounded controls. There is a reparameterizatigaraent behind this embedding which
allows one to transform & constraint (implicitly imposed by the coercivity assunopi) into

a L > constraint.

Let us introduce the extended fields

T w). P
f(t, x, wo, w) = f(tx i) v it wo #0
FOO(t, X, v, w) if wp=0anda =g
and
w . P
19°(t, X, v, w) if wo=0ande = 8.

Similarly, for everyn we define the extended fields andl, of fy andln, respectively. Hy-

pothese#\1-As imply the following properties for the map, I, T, andl.

PROPOSITIONL. (i) The functionsfy, Tn, T, andT are continuous or0, T] x RK x
[0, +00[ xR™ and for every compact @ RX we have

T (ta, X1, wo, w) — T (g, Xg, wo, w)| < WE + [w|wh " (LIxg — Xa
+ ot (lt1 —120)),

(Ael) 3 3 on « B—an
[ fr(t1, X1, wo, w) — Tp(te, X2, wo, w)| < (wy" + [W|*Mwg " (LIXg — X2
+ ot (lt1 — t2])
and
(Ae) (t1, X1, wo, w) —I(t2, X2, wo, w)| < (wé3 + 1wl (1(t1. x1) — (t2, X)) ,
e3

Tn(t1, X1, wo, w) — Tn(ta, Xo, wo, w)| < (wh + [wIF) 1 ([t X1) — (t2, X))

Y(t1, X1, wo, w), (t2, X2, wo, w) € [0, T] x RX x [0, +0o[ xR™, wherea, an, 8, L, o,
and p; are the same as in assumptiofhs and As.

MOI’GOVGI’,

ho Tt x, wo, w)l < W& + [wwh (ML + X)) + M),
Tt X, wo. w) < @S + [w]*™wh " (M1 (L+ X)) + Mp)

and

(Ao T(t. X, wo. w) = Aglwl? — Agwolf .

Tn(t, X, wo, w) = Aglwl? — Aqlwol?

V(t, X, wg, w) € [0, T] x RX x [0, +00[ xR™, where M, My, Ag and A1 are the same
asinAj andAg.
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(i) (Positive homogeneity itwg, w)). The mapf, I, T,,, andlp are positively homogeneous
of degrees in (wg, w), that s,

T(t, x, rwg,. rw) =rfF, x, wo, w),  T(t, X, rwg, rw) = rfi, x, wo, w)

T, X, rwg, rw) = rfF L, x, wo, w), Tn(t, X, rwg, rw) = rfnt, x, wg, w)
vr > 0, V(t, X, wg, w) € [0, T] x RKx]0, +-00[ xR™.

For everyt € [0, T] let us introduce the following sets space-time controls
1
'@ = { (wo, w) € B(0, 1], [0, +00) x R™) such thaf+/ wg(s) ds=T
0

and
(@ = {(wo. w) € I'(D) such thatwy > 0 a.e}

whereB([0, 1], [0, +o00) xR™) is the set ol *°, Borel maps, which take values in [@oco[ xR™.
If « < B [respa = g], for every (f,%) € [0, T] x R and every(wg, w) € I't () [resp.
(wg, w) € T'(D)], let us denote byt, Y)(&.5)[wo, w](-) the solution of the éxtende}i Cauchy
problem

(Ee) y'(s) = T(t(s), y(5), wo(s), w(s))

{ () = wh (o

(t(0), y(0) = (£, %),

where the parameterbelongs to the interval [A] and the prime denotes differentiation with
respect ts. When the initial conditions are meant by the context welstdde (t, y)[wg, w](-)
instead of(t, y) ¢ x)[wo, w](). Let us consider the followinge&tendegicost functional

1_
3e(E. %, wo, w) = /O T(t, y)[wo. w]. wo. ) () ds+ g(y[wo. w](L)

and the correspondingXtendellvalue function

Ve:[0,T] x R > R

Ve, ) = inf  Je(f, X, wo, w).
(wo.w)el (D)

Similarly, for everyn € N, for every(f, X) € [0, T] x RK and every(wg, w) € I'(f) letus
introduce the system

(Eey) Y'(s) = Fr(t(s), y(5), wo(s), w(s)) sel0,1]

{ t'(s) = wh(s)
(t(0), y(0)) = (t, %),

and let us denote its solution Igy; y)?t_ )_()[wo, w](-). Let us introduce the cost functionals

1_
Jen (£, X, wo. w) = /O Tn (€ 9 5 w0, ) (9 ds+ gn(ynlwo, wl(2)
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and the corresponding value functions

Ve, 1[0, T xRK > R

Ve, (t, X) = inf Je. (f, X, wo, w) .
en (1, X) (o er en ( 0, W)

Next theorem establishes the coincidence of the value imgbf the original problems
with those of the extended problems.

THEOREM2. Assumeéi1-As.
(i) For every(t,x) € [O,T[><]Rlk and for every ne N one has ¥(t,x) = V(t,x); and
Ve, (t, X) = Vn(t, X);
(i) the maps Yand \g, are continuous of0, T] x RX.

Thanks to this theorem — which, in particular, implies tilatnd V; can be continuously
extended on [0T] x RX — the problem of the convergence of thg is transformed in the
analogous problem for théy, .

We now recall that each of these value functions is the uréguigion of a suitable boundary
value problem. This is a consequence of the comparisonehebelow. To state these results,
let us introduce thextended Hamiltonians

(6)
B

He(t, X, po, p) = sup {—powgy — (P, F(t. X, wo, w)) —I(t, X, wo, w)}
(wo,w) ([0, 400 xRMNSH

whereS} = {(wo, w) € [0, +oo[xRM : |(wo, w)| = 1},

He (t. X, Po. p) = sup {—powh — (p, Tn(t, X, wo, w)) —In(t, X, wo, w)},
(wo,w)e([0,+oo[ xRMNSH

and the corresponding Hamilton-Jacobi-Bellman equations

(HJe) He(t, X, ut, ux) =0,

(HJe,) He, (t, X, ut, ux) = 0.

For the sake of self consistency let us recall the definitibfpossibly discontinuous) vis-
cosity solution, which was introduced by H. Ishii in [5].

Given a functionF : Q@ — R, @ < R, let us consider thepper and lower semicontinuous
envelopesdefined by

F*x) = lim supF(y):ye @, x—yl<r},
r—0t
Fe¥) = lim inf(F(y):yeQ, x—y|<r}, xe@,
r—0t
respectively. Of courses* is upper semicontinuous arf} is lower semicontinuous.

DEFINITION 1. Let E be a subset & and let G be a real map, thdamiltonian defined
on E x R x RS. An upper[resp. lower]-semicontinuous function u is a @&ty subsolution
[resp. supersolution] of

) G(y,u,uy) =0
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aty e E iffor everygp € C1(RS) such that y is a local maximum [resp. minimum] point of ¢
on E one has

Gy, 0(y), ¢y(y) =0
[resp.

G*(y. ¢(¥), ¢y(y) = 0] .

A function u is a viscosity solution of (7) ateyE if u* is a viscosity subsolution at y and is
a viscosity supersolution at y.

THEOREM3 (COMPARISON). AssumeA-As. Let g : [0, T] x RK — R be an upper
semicontinuous, bounded below, viscosity subsolutiofHal) in ]0, T[ka, continuous on
({0} x Rk) U({T} x Rk). Letw : [0, T] x R — R be a lower semicontinuous, bounded below,
viscosity supersolution @H Je) in [0, T[xRX. For every xe R¥, assume that

U(T, X) < ux(T, x)
or
Uy is a viscosity supersolution ¢H Jeg) at (T, X) .

Then
up(t, X) < up(t,X) V(t,x) € [0, T] x R¥.

The same statement holds true for the equatidthsg,).

As a consequence of this theorem and of a suitable dynamigaroning principle for the
extended problems one can prove the following:

THEOREMA4. The value function ¥is the unique map which
i) is continuous on({0} x Rk) U{T} x Rk);

i) is a viscosity solution ofH Je) in ]0, T[ka;

iii) satisfies the following mixed type boundary condition:

Ve(T,X) < g(X) Vx e RKand

(BCer) Ve(T, x) = g(x)
or
Ve is a viscosity supersolution 0 Je) at (T, X) .
Once we replacéH Je) by (H Jg,), the same statement holds true for the mags V

Finally let us recall a regularity result which will be uskifiuthe proof of Theorem 1.

THEOREM5. AssumeAi-As and fix R> 0. Then there exists’'R> R and positive con-
stants G, C» such that

[Ve(t, X1) — Ve(t, x2)| < C10 (C2lx2 — X11) + pg(C2lx2 — X1)

for every(t, xq) (t, x2) € [0, T] x B[O; R], wherep; and pg are the modulus appearing i3
and the modulus of uniform continuity of g, respectivelyresponding to the compafd, T] x
B[0; R’]. Moreover for every < [0, T[ one has

[Ve(t, x) — Ve(, )| < nz(t — 1))
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for every(t, x) € [0, T[x B[0; R], wherenz is a suitable modulus, and for everyts— ng(s) is
an increasing map. The same statement holds true for the Mgapwith the samey;.

REMARK 1. We do not need, for our purposes, an explicit expressiof,oivhich, how-
ever, can be found in [8]. Also in that paper sharper regiylagisults are established. Finally let
us point out that though an estimate like the second one infEhe5 is not available fdr= T
the mapVe is continuous orfT} x R¥, (see Theorem 2).

4. Proof of the convergence theorem

Proof of Theorem 1.n view of Theorem 2 it is sufficient to show that the mafg converge to
Ve. Observe that the assumptions (4), (5) imply

®) [Tt x, wo. w) — F(t, X, wo. w)| < e} + wlf)
and
©) Tn(t. X, wo, w) —T(t, X, wo. w)| < e(M(wh + [wlf).

for every(t, x, wg, w) € [0, T] x Q x [0, co[ xR™ and everyn € N.

Moreover, by the coercivity conditiofle, and by the obvious local uniform boundedness of
Ve,, andVe when the initial conditions are taken in a bBIj0, R] it is not restrictive to consider
only those space time controls such that

1
(10) /O (wo(® + w(e))* ds < Kr

whereKR is a suitable constant depending BnBy Holder’s inequality we have also that
1
/0 (wo(S) + (O P uwo®F e ds < (T + D(Kr+1).

Hence by Gronwall's Lemma, we can assume that there exisifi 80, R'] RK containing
all the trajectories issuing froB[0, R].

Let us fixT < T: by Theorem 5 the map¥ge, are equicontinuous and equibounded on
[0, T] x BIO, R], so we can apply Ascoli-Arzela’s Theorem to get a subsecgi@fiVg,, still
denoted byVe,, converging to a continuous function. Actually by takiRglarger and larger,
via a standard diagonal procedure we can assume thefthenverge to a continuous function
V : [0, T] x RK — R, uniformly on compact sets of [T] x RK. Now, for every(t, x) e
[0, T] x Rk, let us consider theveak limits

V(t,x) = limsup Ve, (s, y)
n—oo
(s.y)=>(t.x)
(s.y)e[0. T]xRK

and
V(t,x) = liminf Ve, (S, Y).
n—oo
(s.y)—>(t.x)
(s,y)e[0. T]xRK
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Our goal is to apply a method (see [2]) based on the applicatithe comparison theorem
(see Theorem 3) to these weak limits. Let us observe thatWathdV coincide withV on the
boundary{0} x RX: in particular they are continuous ¢} x RX. Since the Hamiltonianslg,
converge tdHe uniformly on compact subsets of,[0] x RK xR x R¥, standard arguments imply
thatV is a (upper semicontinuous) viscosity subsolutioriléfle) in [0, T) x RX, whileV is a
(lower semicontinuous) viscosity supersolutionBfJe) in [0, T) x RX. Hence the convergence
result is proven as soon as one showsthat V in [0, T] x RK. For this purpose it is sufficient
to show thatv andV verify the hypotheses of Theorem 3. Actually the only hygsih which
is left to be verified is the one concerning the boundary sufisex RX. We claim that

(12) lim Ve, (S, y) = Ve(T, X)
n—oo
(8.y)—~>(T.x)
(s,y)e[0, T]xRK

which impliesV (T, -) = V(T, -) = Ve(T, -). In particular the map¥ (T, -) andV (T, -) turn out
to be continuous, so all assumptions of Theorem 3 are verifiee remaining part of this proof

is thus devoted to prove (11). Let us considerx, € B[O, R] and controls(0, wn) € I'(T)
such that, settingtn, xn) = (t, y)?T xp[0: wn] (), we have

1_
Ve, (T, X1) Z/O In(tn, Xn, 0, wn)(S) ds+ gn(Xn(1)) — €.

Hence, settingfn, 1) = (t, ¥)(T,x,) [0, wn](-) and noticing thatn(s) = tn(s) = T Vs € [0, 1],
we have

Ve(T, X2) — Ve, (T, X1)

IA

1
/0 I(T, %n, 0, wn)(S) dS+ gn(%n (1))

1
_/0 Tn(T, Xn, 0, wn)(s) ds — gn(xn (1)) + €

A

1
< /0 lwn(9)1P[e() + o1 (1%n(S) — Xn(S)D] ds
+pg(I%n (D) — Xn (D)) + €(n) + €,

wheree(n), o and pg (seeAz andAs) are determined with reference to the compact subset
Q = B[O, R]. If L is the determination of in (Ag,) for B[O, R'] then

% (S) — Xn(S)] < (IXg — X2l + €(N)(T + 1(KR + 1)etr (T+HDKr+D

This, together with the fact that a similar inequality canpbeved (in a similar way) when the
roles of Ve and Vg, are interchanged, implies
[Ve(T, X2) — Ve, (T, x1)| < Krpy [(IX1 — X2

+ eM(T + D(Kr + 1))eLR/(T+1>(KR+1>]
(12)
+ rg [(le —Xo| +e(N)(T + (KR + 1))eLR’(T+1)(KR+1)]

+ (KR +De(n).
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Now, for r < T, let us estimate the differendé,, (r, X) — Ve(T, X), assuming that this
difference is non negative. Let us s&t, xn)(-) = (1, y)?t X)(zi)o, 0)(-) with wg(s) = (T —

1
7) B Vs € [0, 1]. Then the Dynamic Programming Principle
1_
Ve (20 = Va(T, 0 < [ Tt Xn, 0, 0/(5) d+ Ve (T, (1) = Ve(T, ).

If M = maxMzi + My, 1}, by (Ae,) we havelxn(1) — x| < M(1 + R)|T — 7]. Hence, if
K;Q > (t,x)e[omr?i(s[o, R/]I n(t, x, 1, 0), by the positive homogeneity b and by the first part of
the proof we ggktlain
(13) Ven (7, X) — Ve(T, X) < Kg[T — 7| +on(|T — 7))
where
on(s) =KrpI[(M(L+ R)s+ e(n)(T + D (Kg + )etr THDKrTD)]
+ pgl(M(L + R)s + e()(T + (KR + 1))et R THDEKRED] 1 (Kp 4 1)e(n).

Now let us estimate the differens&(T, X)—Ve, (7, X), assuming it non negative. Let us consider
a sequence of controlsvg,, wn) € T'(r) such that, settingtn, xn) = (t, y)?T X)[won, wn](+),
one has

1
Ve, (7, X) Z/O In(tn, Xn, wo,, wn)(S) ds+ gn(Xn (1) — €.

Then the control$0, wn) belong tol' (T), and, settingtn, Xn) = (t, ¥)[0, wn](-), we obtain

1— ~
Ve(T, %) — Ve (7. %) < / (G, %n, 0, wn)(9) dS -+ g(%n (1))
0
(14) 1
_/O In(tn, Xn, wo,, wn)(S) dS— gn(Xn(1)) + €
for everyn € N. Now one has
1 — — o~
[Xn(S) — Xn(S)| E/c; [ fn(tn, Xn, wo,,, wn)(S) — f(th, Xn, 0, wn)(s)| ds
1 J— J—
< /;) [ frtn, Xn, wo,, wn)(S) — f(th, Xn, wo,, wn)(s)|ds
1 — — o~
(15) +/0 | f (tn, Xn, wo,, wn)(S) — f(tn, Xn, wo,, wn)(s)| ds
1 — — o~
+/0 | f (tn, Xn, wo,, wn)(S) — f(tn, Xn, wo,, wn)(s)|ds
1 — — o~
-I—/O | f (tn, %n, wo,, wn)(S) — f(tn, Xn, 0, wn)(s)| ds.

for all s € [0, 1]. In view of the parameter-free character of the systera ésg. [7] for the case
o = B = 1), itis easy to show that one can transform the integral 8¢@f) into the pointwise
bound

|(wo, w)(s)| < Kr¥s € [0, 1],
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whereK g is a constant depending @ Therefore, in view of basic continuity properties of the
composition operator, there exists a modyusuch that the last integral in the above inequality
is smaller than or equal to(|T — t|). Therefore, applying Gronwall’s inequality to (15) we

obtain

IXn(s) = Xn(s)| <(T + D(KR + D) + p£ (IT — )

(16) +p(T — zpyjebr THD(KRED)

Hence (14) yields
1 — =~
Ve(T, X) — Ve, (7, X) 5/0 I (th, Xn, 0, wn)(s) — I (tn, Xn, O, wn)(s)| ds

1 — —
+/0 T (G, %0, 0. wn)(9)] S — T(tn, Xn. O, wn) ()| ds

17 1 )
+/0 T(tn, Xn. O, wn)(S) — T(tn, Xn, woy» wn)(S) ds

1 — —
+/0 [[(tn, Xn, wo,» wn)(S) — In(tn, Xn, wo,, wn)(s)| ds
+ pg(IXn (1) = Xn (D)) .

Again, an argument based on the continuity properties of tingposition operator allows one to
conclude that there exists a modujiisuch that

1
/0 [[(tn, Xn, 0, wn)(S) — I (tn, Xn, wo,, wn)(S)| ds < o(|T — z|)
Therefore, plugging (15) into (16), we obtain

Ve(T, X) — Ve, (1, X) <Pr(p1 + pg)[PR(e(M) + p1 (IT = 7I) + p(IT — 7]))e R PR]

(18) ~
+ PRI (IT =) +eM] + 5T — 7)),
wherePR = (T + D)(Kr + 1).
Estimates (12), (13) and (18) imply the claim, so the thecseproved.

5. Implementing optimal controls in the presence of perturtations

As an application of Theorem 1, Theorems 6 and 7 below pro¥atethe special case of the
linear quadratic problem, an answer to the general ques@igrandQ», respectively. Let us re-
mark that the perturbation we consider is not the most géasrang those allowed by Theorem
1. However, it well illustrates the degree of improvementhwespect to previous results con-
cerning questions lik®, andQ> (see Introduction). Let us also remark that the linear-catix
problem is just a model case. Indeed, it is evident that Téreds below holds also if we replace
the linear-quadratic problem with a problem that (satisfpdthese®A1-As, (4), and (5) and)
admits an optimal.# control, while Theorem 7 is still valid for any problem for igh (f is Lip-
schitz inc uniformly for (t, x) in a compact subset of [0] x RX and) a Lipschitz continuous
feedback controt(x) does exist.
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Let us be more precise by stating that by linear-quadratiblpm we mean here an optimal
control problem as the ones considered in the previousosestivith

f=f(xc=Ax+Bc Ixc)=x'Dx+cEc gx) =x'Sx,

whereD, E, Sare symmetric matrices (of suitable dimensiori3)and S are nonnegative defi-
nite, F is positive definite, while no assumptions are madeAomB, C. Let us observe that the
fields f, 1, g satisfies hypothese%:-As. In particular, one has = 1, 8 = 2, andAg is the
smallest eigenvalue d&.

Let us consider the following perturbations of the mdpk g:

fn = Ax+ Bc+en(t,x,0
In = x!Dx+c'Ec+6n(t, x, 0
o = X!SX+yYnX).

We assume that for each compact suli3et RX there exist a constantand modulip andp
such that:

i) For every n, the mapn : [0, T] x RK x RM — RK is continuous and verifies
lgn(t1, X1, ©) — @n(t2, X2, ©)] < (14 [¢|*M)(AlXy — Xo| + p(Ity — t2)

for all (t1, X1, ©), (t2, X2, €) € [0, T] x Q x R™ and for a suitablexn € [1, 2] (varying
with n and independent of Q).

i) There exist constan{sy, uo such that for every e N one has
len(t, X, ©)] < a1+ 1e1"M) (1 + [X]) + p2(1+ [cl*™)
for every(t, x, ¢) € [0, T] x RK x R™,
iii) ForeveryneN, 6n:[0, T] x RK x R™ — RK is continuous and verifies
16n(t1. X1. ©) — fn (. X2, O] < (L+ [cI2)B(I(t1, X1) — (t, X))

for every(ty, X1, ©), (t2, X2, ©) € [0, T] x Q x R™.
iv) There exist a (possibly negative) constagystrictly larger than the opposite of the small-
est eigenvalue of E, and a positive constapsuch that
On(t, X, ©) > Aglc|2 — g

for every n and everit, x, ¢) € [0, T] x RK x R™.
V) Yn :RK = Ris continuous andn > 0.
Moreover we assume that for every compac'cQRk there exists a function : N — N,

infinitesimal as n— oo such that
lpn(x. 0l = eM@+[cP).
a0l < em@+Icl?)

for every(x,c) € Q x R™ and

[Yn ()] < e(n)

for every xe Q.
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REMARK 2. Let us observe that the above assumptions imply that thethgses of the
convergence theorem (Theorem 1) are verified. Let us alstt pot that we allowxn to be
equalto B(= 2) (see Remark 1).

THEOREM6 (OPENLOOP). Fix (f, X) € [0, T] x RK. Assume that is an optimal control

for the unperturbed problem that is(fl X,€) = V(f, X). Thent is nearly optimal for the
perturbed problem, i.e.,

(19) nlew|Jn(t,X,C) — Vg, (, X)| = 0.

Proof. As in the proof of Theorem 1, when the initial condition arkeia in a ballB[0, R], by
the coercivity conditiorA4 we can consider only controls such that

-
/ 1+ Ic(9)D? ds < KR,
0
whereKR is a suitable constant depending BnThen, by Holder’s inequality we have also,
T
/;) A+ e ds< (KR+D(T +1)

which, by Gronwall’'s inequality, implies that there is a Ib&[0, R'] which contains all the

trajectories issuing fronB[0, R]. Settingx(-) = X )[C](-) andxn(-) = x(”t_ % [Cl(-), we have

T
[Xn(t) — X(0)] 5/t_ [ fn(s, Xn(8), T(S)) — f (s, X(8),T(s))|ds
T
(20) < /t [AXn(S) — AX(S) + ¢n(Xn, T)(S)| dS

T
< (T+1)(KR+1)e(n)+HAH/t_ (IXn(s) — x(s)|) ds

wheree(n) is relative toB[0, R] and ||A|| is the operator norm of the matri&. Hence, Gron-
wall's Lemma implies

(21) IXn(S) — X(8)| < (T + 1)(Kg + Demel AT |

for everyt € [t, T]. Since
T
[dn(t, X, T) — J(t, X, T)| 5[ 1% (S)!DXn(S) — X(s)! Dx(s)| ds
t

.
+ﬁ |6n(Xn(S), T(s))| ds
22) t
+ Xn(MS%(T) = X(TISXT)| + [¥n(Xn(T))]
T
< IIDII/t_ [Xn(S) — X(S)|(IXn (s]) + [X(S)]) ds
+ISI1%n(S) — X&)% (TH] + IX(TH]) + (ML + KR),

in view of estimate (22) and of Theorem 1, the theorem is prove
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THEOREM?7. Let ox) be a locally Lipschitz continuous optimal feedback contfoolthe
unperturbed problem. Then this control is nearly optimaltfe perturbed problem, that is

Jim 1 3n(E, X, ©) — Ven (£, X1 = 0.

Proof. If we denote byx(-) andxn(-) the solutions to E) to (Ep), respectively, corresponding
to the feedback contral(x), we obtain

pn(®) — X (D] = /t T fats X0(). CO(E)) — (5. X(5) cx())] ds
< /t T Aa(®) + Boxn(s) — AX(S) — Bex()| ds
+ /t T on00(9), cn(s)] ds
< /t_T(nAn L IBI(I¥a(S) — x(9)] s+ (T + (KR + De(n)

wherey is the Lipschitz constant of the mayx) corresponding to the compact $&f0, R'].
Hence one has

Xn(S) — X(9)] < (T + D (KR + De(nye MBIy

and from here on one can proceed as in the proof of Theorem 6.
|

REMARK 3. As we have mentioned in the Introduction, when= g it may happen that
a perturbed problemR,) does not possess a minimum in the class of absolutely comim
trajectories. Indeed, due to the fact that the growth réﬁi(): 1) is not greater than 1, the
minimizing sequences could converge tdiscontinuous trajectoryin this case, the possibility
of implementing a control that is optimal for the unpertuwtsystem — which is now assumed
sufficiently coercive, that is, satisfying < 8 — turns out to be of some interest whenever one is
worried to avoid a discontinuous performance of the systederticonsideration.

To be more concrete, let us consider the very simple (liggadratic) minimum-problem
wherel = x2 + A0c2 and f = 0. In this case8 = 2 and« can be taken equal to 1. Let us

perturb this problem by takinth =1 and fn = f +¢on = ¢n = *TCZ Observe that these
perturbations give rise tquadratic-quadraticproblems, that is problems whesg = g = 2.
Let us consider the initial data= 0 andx > 0. The constant mag(t) = X is the unique
trajectory of the unperturbed system, so the coréi(bl = Ovt € [0, T] turns out to be optimal.
In view of Theorem 6 this control is nearly optimal for the fpebed problems as well. However,
as soorx is sufficiently large and\ is sufficiently small with respect tﬁ, an application of the
Maximum Principle to the space-time extension of the pbedrsystem shows that the “optimal
trajectory” of the perturbed problem is the concatenatibaro“initial jump” (from X to a point
xn €]0, X[) and a suitable absolutely continuous map.
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