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ON PERTURBATIONS OF MINIMUM PROBLEMS

WITH UNBOUNDED CONTROLS

Abstract.
A typical optimal control problem among those considered inthis work in-

cludes dynamics of the formf (x, c) = g0(x)+ g̃0(x)|c|
α (herex andc represent

the state and the control, respectively) and a Lagrangian ofthe form l (x, c) =

l0(x) + l̃0(x)|c|
β , with α ≤ β, and c belonging to a closed, unbounded sub-

set of
�m. We perturb this problem by considering dynamics and Lagrangians

fn(x, c) = gn(x) + g̃n(x)|c|αn , andln(x, c) = l0n(x) + l̃0n(x)|c|
β respectively,

with αn ≤ β, and fn andln approachingf andl . We show that the value functions
of the perturbed problems converge, uniformly on compact sets, to the value func-
tion of the original problem. For this purpose we exploit some comparison results
for Bellman equations with fast gradient-dependence whichhave been recently es-
tablished in a companion paper. Of course the fast growth in the gradient of the
involved Hamiltonians is connected with the presence of unbounded controls. As
an easy consequence of the convergence result, an optimal control for the original
problem turns out to be nearly optimal for the perturbed problems. This is true in
particular, for very general perturbations of the LQ problem, including cases where
the perturbed problem isnot coercive, that is,αn = β(= 2).

1. Introduction

Let us consider a Boltz optimal control problem,

(P)
minimize

∫ T
t̄ l (t, x, c) dt + g(x(T))

ẋ = f (t, x, c) x(t̄) = x̄
(t̄, x̄) ∈ [0, T ] ×

�k ,

wherec = c(t) is a control which takes values in
�m. Let us also consider a sequence of

perturbationsof this problem,

(Pn)
minimize

∫ T
t̄ ln(t, x, c)dt + gn(x(T))

ẋ = fn(t, x, c) x(t̄) = x̄

where the triples( fn, ln, gn) converge to( f, l , g), in a sense to be made precise.

In the present note we address the following question:

Q1. Assume that for every initial data(t̄, x̄) an optimal control c(t̄,x̄) : [ t̄, T ] →
�m is

known. Are these controls nearly optimal for the problem(Pn)?

(Herenearly optimalmeans that the value of the cost functional of (Pn) when the control
c(t̄,x̄) is implemented differs from the optimal value by an error which approaches zero whenn
tends to∞).
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An analogous question can be posed when an optimal feedback control c = c(t, x) of
problem(P) is known:

Q2. Is the feedback control c(t, x) nearly optimal for the problem(Pn)?

The practical usefulness of studying such a theoretical problem is evident: it may happen
that the construction of an optimal control for problem(P) is relatively easy, while the same
task for the perturbed problem(Pn) might result hopeless. In this case, one could be tempted to
implement the(P) optimal control for problem(Pn) as well. And positive answers to questions
like Q1 andQ2 would guarantee that these strategies would be safe. (For a general account on
perturbation theory see e.g. [3]).

Since we are interested in the case when the controlsc are unbounded, questions concerning
the growth inc of f andl turn out to be quite relevant. The crucial hypotheses (seeA1-A5 in
Section 2) here assumed on the dynamicsf and the Lagrangianl are as follows: there existα,
β, both greater than or equal to 1, such that ifQ ⊂

�k is a compact subset andx, y ∈ Q, then

| f (t, x, c)− f (t, y, c)| ≤ L(1 + |c|α)|x − y|(1)

|l (t, x, c)| ≥ l0|c|
β − C(2)

for all c ∈
�m, whereL depends only onQ. The same kind of hypotheses are assumed on

the perturbed pairsfn, ln, with the same growth-exponentβ for the Lagrangiansln, while the
growth-exponentsαn of the fn are allowed to depend onn. Moreover,weak coercivityrelations,
namelyαn ≤ β, α ≤ β, are assumed. Let us observe that whenα < β (strict coercivity) the
optimal trajectories turn out to be (absolutely) continuous, while, ifα = β, an optimal path may
containjumps(in a non trivial sense whichcannotbe resumed by a distributional approach, see
e.g. [7, 8]).

Answers to questionsQ1 andQ2 are given in Theorems 6, 7 below, respectively. The main
theoretical tool on which these results rely consists in a so-called stability theorem (see Theorem
1) for a class of Hamilton-Jacobi-Bellman equations with fast gradient-dependence. In order to
prove the stability theorem we exploit some uniqueness and regularity results for this class of
equations that have been recently established in a companion paper [8] (see also [1] and [6]).
Let us notice that questions likeQ1 andQ2 can be approached with more standard uniqueness
results as soon as the controlsc are bounded.

Similar questions were addressed in a paper by M. Bardi and F.Da Lio [1], where the
authors assumed the following stronger hypothesis onf :

| f (x, c)− f (y, c)| ≤ L |x − y|(3)

(actually a monotonicity hypothesis, weaker than (3) is assumed in [1]; however this is irrelevant
at this stage, while the main point in assuming (3) consists in the fact that it is Lipschitz inx
uniformly with respect to c). Observe that hypothesis (3) still allows for fields growing as|c|α in
the variablec. Yet, while a field of the formf (x, c)

.
= g0(x)+ g1(x)|c|

α agrees with hypothesis
(1), it does not satisfy hypothesis (3) unlessg1(x) is constant. Furthermore, in [1] the exponent
α is required to be strictly less thanβ (strict coercivity).

The relevance of weakening hypothesis (3) (and the positionα < β) is perhaps better un-
derstood by means of an application to a perturbation question for the linear quadratic problem.
In this case one has:α = 1, β = 2, f (x, c) = Ax + Bc, l (x, c) = x∗ Dx + x∗Ec + c∗Fc,
g(x) = x∗Sx. Here the coercivity hypothesis reduces to the fact thatF is positive definite. As
it is well known, (see e.g. [4]) under suitable hypotheses onA, B, D, E and F , this problem
admits a smooth optimal feedback, which can be actually computed by solving the correspond-
ing Riccati equation. It is obvious that a crucial point in questionsQ1 andQ2 consists in the
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specification ofwhichclass of perturbation problems(Pn) has to be considered. Of course, since
in practical situations the nature of the perturbation is only partially known, the larger this class
is the better. In [1] a positive answer toQ1 is provided when the perturbed fields are of the form

fn(x) = Ax + Bx + ε(n)ϕ(x, c)

with ϕ verifying (3)andε(n) infinitesimal. So, for instance, a perturbed dynamics like

fn = Ax + Bx +
1

n
xc

is not allowed. On the contrary, hypothesis (1) assumed in the present paper is not in contrast
with this (and much more general) kind of perturbation. A further improvement is represented
by the fact that thefn’s growth exponentsαn are allowed to be different from thef ’s growth
exponentα (=1, in this case), and moreover, they can be less than orequal to β (which in this
example is equal to 2). So, for example, perturbed dynamics like

fn = Ax + Bc+ ε(n)(g(x)c + h(x)|c|2)

may be well considered. In this case, the possibility of implementing a(P)-optimal controlc in
the perturbed problem (Pn) may be of particular interest. Indeed, the problems (Pn) are quite
irregular, in that the lack of a sufficient degree of coercivity may give rise to optimal trajectories
with jumps(see Remark 2).

The general approach of the present paper, which is partially inspired by [1], relies on prov-
ing the convergence of the value functions of the problems (Pn) to the value function of(P) via a
PDE argument. However, the enlarged generality of the considered problems makes the exploita-
tion of very recent results on Hamilton-Jacobi-Bellman equations with fast gradient-dependence
crucial (see [8]). In particular, by allowing mixed type boundary conditions, these results cover
the weak coercivity case (α = β). Moreover they do not require an assumption of local Lip-
schitz continuity of the solution of the associated dynamicprogramming equation. Actually,
as a consequence of the fact that we allow value functions which are not equicontinuous, the
Ascoli-Arzelà argument exploited in the stability theorem of [1] does not work here. In order to
overcome this difficulty we join ordinary convergence arguments originally due to G. Barles and
B. Perthame [2] with the reparameterization techniques introduced in [8].

2. A convergence result

For everyt̄ ∈ [0, T ], let � (t̄) denote the set of Borel-measurable maps which belong toLβ([ t̄, T ],
�m). � (t̄) is called the set of controls starting att̄ . Let us point out that the choice of the whole
�m as the set where the controls take values is made just for the sake of simplicity. Indeed,
in view of the Appendix in [8] it is straightforward to generalize the results presented here to
situations where the controls can take values in a (possiblyunbounded) closed subset of

�m. For
every(t̄, x̄) ∈ [0, T ] ×

�k and everyc ∈ � (t̄), by the assumptionsA1-A5 listed below, there
exists a unique solution of the Cauchy problem

(E)

{

ẋ = f (t, x, c) for t ∈ [ t̄, T ]
x(t̄) = x̄ ,

(where the dot means differentiation with respect tot). We will denote this solution byx(t̄,x̄)[c](·)

(or by x[c](·) if the initial data are meant by the context). For every(t̄, x̄) ∈ [0, T ] ×
�k let us

consider the optimal control problem

(P) minimize
c∈� (t̄)

J(t̄, x̄, c)
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where

J(t̄, x̄, c)
.
=

∫ T

t̄
l (t, x[c](t), c(t))dt + g(x[c](T)) ,

and let us define thevalue function V: [0, T [×
�k →

�
, by setting

V(t̄, x̄)
.
= inf

c∈� (t̄)
J(t̄, x̄, c) .

We consider also a sequence ofperturbedproblems

(Pn) minimize
c∈� (t̄)

Jn(t̄, x̄, c)

where

Jn(t̄, x̄, c)
.
=

∫ T

t̄
ln(t, xn[c](t), c(t))dt + gn(xn[c](T)) ,

wherexn[c] (or xn
(t̄,x̄)

[c] if one wishes to specify the initial data), denotes the solution – existing

unique by hypothesesA1-A5 below – of

(En)

{

ẋ = fn(t, x, c) for t ∈ [ t̄, T ]
x(t̄) = x̄

Let us define the value functionVn of (Pn) by setting

Vn(t̄, x̄)
.
= inf

c∈� (t̄)
Jn(t̄, x̄, c) .

We assume that there exist numbersα,αn, β satisfying 1≤ α ≤ β, 1 ≤ αn ≤ β, such that the
following hypotheses hold true:

A1 the maps f and fn are continuous on[0, T ] ×
�k ×

�m and, for every compact subset
Q ⊂

�k , there exists a positive constant L and a modulusρ f verifying

| f (t1, x1, c)− f (t2, x2, c)| ≤ (1 + |c|α)(L |x1 − x2| + ρ f (|t1 − t2|) ,

| fn(t1, x1, c)− fn(t2, x2, c)| ≤ (1 + |c|αn )(L |x1 − x2| + ρ f (|t1 − t2|)

for all (t1, x1, c), (t2, x2, c) ∈ [0, T ] × Q ×
�m and n ∈ � , (by moduluswe mean a

positive, nondecreasing function, null and continuous at zero);

A2 there exist two nonnegative constants M1 and M2 such that

| f (t, x, c)| ≤ M1(1 + |c|α)(1 + |x|) + M2(1 + |c|α)

| fn(t, x, c)| ≤ M1(1 + |c|αn )(1 + |x|) + M2(1 + |c|αn )

for every(t, x, c) ∈ [0, T ] ×
�k ×

�m;

A3 the maps l and ln are continuous on[0, T ] ×
�k ×

�m and, for every compact subset
Q ⊂

�k , there is a modulusρl satisfying

|l (t1, x1, c)− l (t2, x2, c)| ≤ (1 + |c|β )ρl (|(t1, x1)− (t2, x2)|)

|ln(t1, x1, c) − ln(t2, x2, c)| ≤ (1 + |c|β )ρl (|(t1, x1)− (t2, x2)|)

for every(t1, x1, c), (t2, x2, c) ∈ [0, T ] × Q ×
�m and n∈ � ;
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A4 there exist positive constants30 and31 such that the followingcoercivity conditions

l (t, x, c) ≥ 30|c|β −31

ln(t, x, c) ≥ 30|c|β −31 ,

are verified for every(t, x, c) ∈ [0, T ] ×
�k ×

�m and every n∈ � ;

A5 the maps g, gn are bounded below by a constantG and, for every compact Q⊂
�k , there

is a modulusρg such that

|gn(x1)− gn(x2)| ≤ ρg(|x1 − x2|) ,

|g(x1)− g(x2)| ≤ ρg(|x1 − x2|)

for every x1, x2 ∈ Q.

Whenα = β, we also assume a condition of regularity off andl at infinity in the variable
c. Precisely, we posit the existence of continuous functionsf ∞ andl∞, therecessions functions
of f andl , respectively, verifying

lim
r→0

r β f (t, x, r −1w)
.
= f ∞(t, x, w)

lim
r→0

r β l (t, x, r −1w)
.
= l∞(t, x, w) ,

on compact sets of [0, T ] ×
�k ×

�m (e.g., if f (t, x, c) = f0(t, x) + f1(t, x)|c| + f2(t, x)|c|
2

then f ∞(t, x, w) = f2(t, x)|w|2). Whenαn = β we likewise assume the existence of the
recession functionsf ∞

n , l∞n , respectively.

Theorem 1 below is the main result of the paper and concerns the convergence of the value
functionsVn to V . We point out that, unlike previous results on this subject (see [1]), the triples
( fn, ln, gn) are allowed to tend to( f, l , g) not uniformly with respect tox andc.

THEOREM 1. Let us assume that for every set[0, T ] × Q, where Q is a compact subset of
�k , there exists a functionε : � → [0,∞) infinitesimal for n→ ∞ such that

| fn(t, x, c) − f (t, x, c)| ≤ ε(n)(1 + |c|β ) ,(4)

|ln(t, x, c)− l (t, x, c)| ≤ ε(n)(1 + |c|β )(5)

for (t, x, c) ∈ [0, T ] × Q ×
�m and

|gn(x) − g(x)| ≤ ε(n)

for every x ∈ Q. Then the value functions Vn converge uniformly, as n tends to∞, to V on
compact subsets of[0, T ] ×

�k .

This theorem will be proved in Section 4 via some arguments which rely on the fact that the
considered value functions are solutions of suitable Hamilton-Jacobi-Bellman equations. Actu-
ally, due to the non standard growth properties of the data, the Hamiltonians involved in these
equations do not satisfy a uniform growth assumption in the adjoint variable which is shared by
most of the uniqueness results existing in literature. In a recent paper [8] we have established
some uniqueness and regularity results for this kind of equations. In the next section we recall
briefly the points of this investigation that turn out to be essential in the proof of Theorem 1.
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3. Reparameterizations and Bellman equations

The contents of this section thoroughly relies on the results of [8]. Let us embed the unperturbed
and the perturbed problems in a class of extended problems which have the advantage of involv-
ing only bounded controls. There is a reparameterization argument behind this embedding which
allows one to transform aLβ constraint (implicitly imposed by the coercivity assumptions) into
a L∞ constraint.

Let us introduce the extended fields

f (t, x, w0, w)
.
=

{

f
(

t, x, w
w0

)

· w
β
0 if w0 6= 0

f ∞(t, x, v,w) if w0 = 0 andα = β

and

l (t, x, w0, w)
.
=

{

l
(

t, x, w
w0

)

· w
β
0 if w0 6= 0

l∞(t, x, v, w) if w0 = 0 andα = β .

Similarly, for everyn we define the extended fieldsfn and ln of fn and ln, respectively. Hy-
pothesesA1-A5 imply the following properties for the mapsfn, ln, f , andl .

PROPOSITION1. (i) The functionsfn, ln, f , and l are continuous on[0, T ] ×
�k ×

[0,+∞[×
�m and for every compact Q⊂

�k we have

(Ae1)

| f (t1, x1, w0, w)− f (t2, x2, w0, w)| ≤ (wα
0 + |w|α)w

β−α
0 (L |x1 − x2|

+ ρ f (|t1 − t2|)) ,

| f n(t1, x1, w0, w)− f n(t2, x2, w0, w)| ≤ (w
αn
0 + |w|αn)w

β−αn
0 (L |x1 − x2|

+ ρ f (|t1 − t2|))

and

(Ae3)
|l (t1, x1, w0, w)− l (t2, x2, w0, w)| ≤ (w

β

0 + |w|β )ρl (|(t1, x1)− (t2, x2)|) ,

|l n(t1, x1, w0, w)− ln(t2, x2, w0, w)| ≤ (w
β
0 + |w|β )ρl (|(t1, x1)− (t2, x2)|)

∀(t1, x1, w0, w), (t2, x2, w0, w) ∈ [0, T ] ×
�k × [0,+∞[×

�m, whereα, αn, β, L, ρ f ,
andρl are the same as in assumptionsA1 andA3.

Moreover,

(Ae2)
| f (t, x, w0, w)| ≤ (wα

0 + |w|α)w
β−α

0 (M1(1 + |x|) + M2) ,

| f n(t, x, w0, w)| ≤ (w
αn
0 + |w|αn )w

β−αn
0 (M1(1 + |x|) + M2)

and

(Ae4)
l (t, x, w0, w) ≥ 30|w|β −31|w0|β ,

ln(t, x, w0, w) ≥ 30|w|β −31|w0|β

∀(t, x, w0, w) ∈ [0, T ] ×
�k × [0,+∞[×

�m, where M1, M2,30 and31 are the same
as inA2 andA4.
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(ii) (Positive homogeneity in(w0, w)). The mapf , l, f n, andl n are positively homogeneous
of degreeβ in (w0, w), that is,

f (t, x, rw0, rw) = r β f (t, x, w0, w),

f n(t, x, rw0, rw) = r β f n(t, x, w0, w),

l (t, x, rw0, rw) = r β l (t, x, w0, w)

l n(t, x, rw0, rw) = r β l n(t, x, w0, w)

∀r > 0, ∀(t, x, w0, w) ∈ [0, T ] ×
�k×]0,+∞[×

�m.

For everyt̄ ∈ [0, T ] let us introduce the following sets ofspace-time controls

0(t̄)
.
=

{

(w0, w) ∈ � ([0, 1], [0,+∞)×
�m) such that̄t +

∫ 1

0
w

β
0 (s) ds = T

}

and
0+(t̄)

.
=

{

(w0, w) ∈ 0(t̄) such thatw0 > 0 a.e.
}

where� ([0, 1], [0,+∞)×
�m) is the set ofL∞, Borel maps, which take values in [0,+∞[×

�m.
If α < β [resp.α = β], for every (t̄, x̄) ∈ [0, T ] ×

�k and every(w0, w) ∈ 0+(t̄) [resp.
(w0, w) ∈ 0(t̄)], let us denote by(t, y)(t̄,x̄)[w0, w](·) the solution of the (extended) Cauchy
problem

(Ee)







t ′(s) = w
β

0 (s)
y′(s) = f (t (s), y(s), w0(s), w(s))
(t (0), y(0)) = (t̄, x̄) ,

where the parameters belongs to the interval [0, 1] and the prime denotes differentiation with
respect tos. When the initial conditions are meant by the context we shall write (t, y)[w0, w](·)
instead of(t, y)(t̄,x̄)[w0, w](·). Let us consider the following (extended) cost functional

Je(t̄, x̄, w0, w)
.
=

∫ 1

0
l ((t, y)[w0, w], w0, w) (s) ds+ g(y[w0, w](1))

and the corresponding (extended) value function

Ve : [0, T ] ×
�k →

�

Ve(t̄, x̄)
.
= inf

(w0,w)∈0(t̄)
Je(t̄, x̄, w0, w) .

Similarly, for everyn ∈ � , for every(t̄, x̄) ∈ [0, T ] ×
�k and every(w0, w) ∈ 0(t̄) let us

introduce the system

(Een)







t ′(s) = w
β
0 (s)

y′(s) = f n(t (s), y(s), w0(s), w(s)) s ∈ [0, 1]
(t (0), y(0)) = (t̄, x̄) ,

and let us denote its solution by(t, y)n
(t̄,x̄)

[w0, w](·). Let us introduce the cost functionals

Jen(t̄, x̄, w0, w)
.
=

∫ 1

0
l n

(

(t, y)n
(t̄,x̄)

, w0, w
)

(s) ds+ gn(yn[w0, w](1))
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and the corresponding value functions

Ven : [0, T ] ×
�k →

�

Ven(t̄, x̄)
.
= inf

(w0,w)∈0(t̄)
Jen(t̄, x̄, w0, w) .

Next theorem establishes the coincidence of the value functions of the original problems
with those of the extended problems.

THEOREM 2. AssumeA1-A5.

(i) For every (t, x) ∈ [0, T [×
�k and for every n∈ � one has Ve(t, x) = V(t, x); and

Ven(t, x) = Vn(t, x);

(ii) the maps Ve and Ven are continuous on[0, T ] ×
�k .

Thanks to this theorem – which, in particular, implies thatV andVn can be continuously
extended on [0, T ] ×

�k – the problem of the convergence of theVn is transformed in the
analogous problem for theVen .

We now recall that each of these value functions is the uniquesolution of a suitable boundary
value problem. This is a consequence of the comparison theorem below. To state these results,
let us introduce theextended Hamiltonians

He(t, x, p0, p)
.
= sup

(w0,w)∈([0,+∞[×
�m)∩S+

m

{−p0w
β
0 − 〈p, f (t, x, w0, w)〉 − l (t, x, w0, w)}

(6)

whereS+
m
.
= {(w0, w) ∈ [0,+∞[×

�m : |(w0, w)| = 1},

Hen(t, x, p0, p)
.
= sup

(w0,w)∈([0,+∞[×
�

m)∩S+
m

{−p0w
β
0 −〈p, fn(t, x, w0, w)〉− ln(t, x, w0, w)} ,

and the corresponding Hamilton-Jacobi-Bellman equations

(H Je) He(t, x, ut ,ux) = 0 ,

(H Jen) Hen(t, x, ut ,ux) = 0 .

For the sake of self consistency let us recall the definition of (possibly discontinuous) vis-
cosity solution, which was introduced by H. Ishii in [5].

Given a functionF : � →
�

, � ⊆
�k , let us consider theupper and lower semicontinuous

envelopes,defined by

F∗(x)
.
= lim

r→0+

sup{F(y) : y ∈ �, |x − y| ≤ r } ,

F∗(x)
.
= lim

r→0+

inf{F(y) : y ∈ �, |x − y| ≤ r } , x ∈ � ,

respectively. Of course,F∗ is upper semicontinuous andF∗ is lower semicontinuous.

DEFINITION 1. Let E be a subset of
�s and let G be a real map, theHamiltonian, defined

on E ×
�

×
�s. An upper[resp. lower]-semicontinuous function u is a viscosity subsolution

[resp. supersolution] of

G(y,u,uy) = 0(7)
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at y ∈ E if for everyφ ∈ �1(
�s) such that y is a local maximum [resp. minimum] point of u−φ

on E one has
G∗(y, φ(y), φy(y)) ≤ 0

[resp.
G∗(y, φ(y), φy(y)) ≥ 0] .

A function u is a viscosity solution of (7) at y∈ E if u∗ is a viscosity subsolution at y and u∗ is
a viscosity supersolution at y.

THEOREM 3 (COMPARISON). AssumeA1-A5. Let u1 : [0, T ] ×
�k →

�
be an upper

semicontinuous, bounded below, viscosity subsolution of(H Je) in ]0, T [×
�k , continuous on

({0}×
�k)∪ ({T}×

�k). Let u2 : [0, T ] ×
�k →

�
be a lower semicontinuous, bounded below,

viscosity supersolution of(H Je) in [0, T [×
�k . For every x∈

�k , assume that






u1(T, x) ≤ u2(T, x)
or

u2 is a viscosity supersolution of(H Je) at (T, x) .

Then
u1(t, x) ≤ u2(t, x) ∀(t, x) ∈ [0, T ] ×

�k .

The same statement holds true for the equations(H Jen).

As a consequence of this theorem and of a suitable dynamic programming principle for the
extended problems one can prove the following:

THEOREM 4. The value function Ve is the unique map which

i) is continuous on({0} ×
�k) ∪ ({T} ×

�k);

ii) is a viscosity solution of(H Je) in ]0, T [×
�k ;

iii) satisfies the following mixed type boundary condition:

(BCem)























Ve(T, x) ≤ g(x) ∀x ∈
�k and







Ve(T, x) = g(x)
or

Ve is a viscosity supersolution of(H Je) at (T, x) .

Once we replace(H Je) by (H Jen), the same statement holds true for the maps Ven .

Finally let us recall a regularity result which will be useful in the proof of Theorem 1.

THEOREM 5. AssumeA1-A5 and fix R> 0. Then there exists R′ ≥ R and positive con-
stants C1, C2 such that

|Ve(t, x1)− Ve(t, x2)| ≤ C1ρl (C2|x2 − x1|)+ ρg(C2|x2 − x1|)

for every(t, x1) (t, x2) ∈ [0, T ] × B[0; R], whereρl andρg are the modulus appearing inA3
and the modulus of uniform continuity of g, respectively, corresponding to the compact[0, T ] ×

B[0; R′]. Moreover for everyt ∈ [0, T [ one has

|Ve(t, x)− Ve(t, x)| ≤ ηt (|t − t |)



142 F. Rampazzo – C. Sartori

for every(t, x) ∈ [0, T [×B[0; R], whereηt is a suitable modulus, and for every s,t → ηt (s) is
an increasing map. The same statement holds true for the mapsVen , with the sameηt .

REMARK 1. We do not need, for our purposes, an explicit expression ofηt , which, how-
ever, can be found in [8]. Also in that paper sharper regularity results are established. Finally let
us point out that though an estimate like the second one in Theorem 5 is not available fort = T
the mapVe is continuous on{T} ×

�k , (see Theorem 2).

4. Proof of the convergence theorem

Proof of Theorem 1.In view of Theorem 2 it is sufficient to show that the mapsVen converge to
Ve. Observe that the assumptions (4), (5) imply

| f n(t, x, w0, w)− f (t, x, w0, w)| ≤ ε(n)(wβ
0 + |w|β )(8)

and

|l n(t, x, w0, w)− l (t, x, w0, w)| ≤ ε(n)(wβ
0 + |w|β ) ,(9)

for every(t, x, w0, w) ∈ [0, T ] × Q × [0,∞[×
�m and everyn ∈ � .

Moreover, by the coercivity conditionAe4 and by the obvious local uniform boundedness of
Ven, andVe when the initial conditions are taken in a ballB[0, R] it is not restrictive to consider
only those space time controls such that

∫ 1

0
(w0(s)+ |w(s)|)β ds ≤ KR(10)

whereKR is a suitable constant depending onR. By Hölder’s inequality we have also that

∫ 1

0
(w0(s)+ |w(s)|)αnw0(s)

β−αn ds ≤ (T + 1)(KR + 1) .

Hence by Gronwall’s Lemma, we can assume that there exists a ball B[0, R′] ⊂
�k containing

all the trajectories issuing fromB[0, R].

Let us fix T < T : by Theorem 5 the mapsVen are equicontinuous and equibounded on
[0, T ] × B[0, R], so we can apply Ascoli-Arzela’s Theorem to get a subsequence of Ven , still
denoted byVen , converging to a continuous function. Actually by takingR larger and larger,
via a standard diagonal procedure we can assume that theVen converge to a continuous function
�

: [0, T ] ×
�k →

�
, uniformly on compact sets of [0, T ] ×

�k . Now, for every(t, x) ∈

[0, T ] ×
�k , let us consider theweak limits

V(t, x)
.
= lim sup

n→∞

(s,y)→(t,x)

(s,y)∈[0,T ]×�k

Ven(s, y)

and
V(t, x)

.
= lim inf

n→∞

(s,y)→(t,x)

(s,y)∈[0,T ]×�k

Ven(s, y) .
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Our goal is to apply a method (see [2]) based on the application of the comparison theorem
(see Theorem 3) to these weak limits. Let us observe that bothV andV coincide with

�
on the

boundary{0} ×
�k : in particular they are continuous on{0} ×

�k . Since the HamiltoniansHen

converge toHe uniformly on compact subsets of [0, T ]×
�k ×

�
×
� k , standard arguments imply

that V is a (upper semicontinuous) viscosity subsolution of(H Je) in [0, T) ×
�k , while V is a

(lower semicontinuous) viscosity supersolution of(H Je) in [0, T)×
�k . Hence the convergence

result is proven as soon as one shows thatV ≤ V in [0, T ] ×
�k . For this purpose it is sufficient

to show thatV andV verify the hypotheses of Theorem 3. Actually the only hypothesis which
is left to be verified is the one concerning the boundary subset {T} ×

�k . We claim that

lim
n→∞

(s,y)→(T,x)

(s,y)∈[0,T ]×�k

Ven(s, y) = Ve(T, x)(11)

which impliesV(T, ·) = V(T, ·) = Ve(T, ·). In particular the mapsV(T, ·) andV(T, ·) turn out
to be continuous, so all assumptions of Theorem 3 are verified. The remaining part of this proof
is thus devoted to prove (11). Let us considerx1, x2 ∈ B[0, R] and controls(0, wn) ∈ 0(T)
such that, setting(tn, xn)

.
= (t, y)n

(T,x1)
[0, wn](·), we have

Ven(T, x1) ≥

∫ 1

0
l n(tn, xn,0, wn)(s)ds+ gn(xn(1))− ε .

Hence, setting(t̃n, x̃n)
.
= (t, y)(T,x2)[0, wn](·) and noticing that̃tn(s) = tn(s) = T ∀s ∈ [0, 1],

we have

Ve(T, x2)− Ven(T, x1) ≤

∫ 1

0
l (T, x̃n,0, wn)(s)ds+ gn(x̃n(1))

−

∫ 1

0
l n(T, xn,0, wn)(s) ds− gn(xn(1))+ ε

≤

∫ 1

0
|wn(s)|

β [ε(n)+ ρl (|x̃n(s)− xn(s)|)] ds

+ρg(|x̃n(1)− xn(1)|)+ ε(n)+ ε ,

whereε(n), ρl andρg (seeA3 andA5) are determined with reference to the compact subset
Q = B[0, R′]. If L R′ is the determination ofL in (Ae1) for B[0, R′] then

|x̃n(s)− xn(s)| ≤ (|x1 − x2| + ε(n)(T + 1)(KR + 1))eL R′ (T+1)(K R+1) .

This, together with the fact that a similar inequality can beproved (in a similar way) when the
roles ofVe andVen are interchanged, implies

|Ve(T, x2)− Ven(T, x1)| ≤ KRρl
[

(|x1 − x2|

+ ε(n)(T + 1)(KR + 1))eL R′ (T+1)(K R+1)
]

+ ρg

[

(|x1 − x2| + ε(n)(T + 1)(KR + 1))eL R′ (T+1)(K R+1)
]

+ (KR + 1)ε(n) .

(12)
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Now, for τ ≤ T , let us estimate the differenceVen(τ, x) − Ve(T, x), assuming that this
difference is non negative. Let us set(tn, xn)(·)

.
= (t, y)n

(τ,x)
(w̃0,0)(·) with w̃0(s)

.
= (T −

τ)
1
β ∀s ∈ [0, 1]. Then the Dynamic Programming Principle

Ven(τ, x)− Ve(T, x) ≤

∫ 1

0
ln(tn, xn, w̃0,0)(s) ds+ Ven(T, xn(1))− Ve(T, x) .

If M
.
= max{M1 + M2,1}, by (Ae2) we have|xn(1) − x| ≤ M(1 + R′)|T − τ |. Hence, if

K ′
R ≥ max

(t,x)∈[0,T]×B[0,R′]
n∈�

l n(t, x, 1, 0), by the positive homogeneity ofl n and by the first part of

the proof we obtain

Ven(τ, x)− Ve(T, x) ≤ K ′
R|T − τ | + σn(|T − τ |)(13)

where

σn(s) =KRρl [(M(1 + R′)s + ε(n)(T + 1)(KR + 1))eL R′ (T+1)(K R+1)]

+ ρg[(M(1 + R′)s + ε(n)(T + 1)(KR + 1))eL R′ (T+1)(K R+1)] + (KR + 1)ε(n) .

Now let us estimate the differenceVe(T, x)−Ven (τ, x), assuming it non negative. Let us consider
a sequence of controls(w0n, wn) ∈ 0(τ) such that, setting(tn, xn)

.
= (t, y)n

(τ,x)
[w0n, wn](·),

one has

Ven(τ, x) ≥

∫ 1

0
ln(tn, xn, w0n, wn)(s)ds+ gn(xn(1))− ε .

Then the controls(0, wn) belong to0(T), and, setting(t̃n, x̃n)
.
= (t, y)[0, wn](·), we obtain

Ve(T, x)− Ven(τ, x) ≤

∫ 1

0
l (t̃n, x̃n,0, wn)(s)ds+ g(x̃n(1))

−

∫ 1

0
ln(tn, xn, w0n, wn)(s)ds− gn(xn(1))+ ε

(14)

for everyn ∈ � . Now one has

|xn(s)− x̃n(s)| ≤

∫ 1

0
| f n(tn, xn, w0n, wn)(s)− f (t̃n, x̃n, 0, wn)(s)| ds

≤

∫ 1

0
| f n(tn, xn, w0n, wn)(s)− f (tn, xn, w0n, wn)(s)| ds

+

∫ 1

0
| f (tn, xn, w0n, wn)(s)− f (t̃n, xn, w0n, wn)(s)| ds

+

∫ 1

0
| f (t̃n, xn, w0n, wn)(s)− f (t̃n, x̃n, w0n, wn)(s)| ds

+

∫ 1

0
| f (t̃n, x̃n, w0n, wn)(s)− f (t̃n, x̃n,0, wn)(s)| ds.

(15)

for all s ∈ [0,1]. In view of the parameter-free character of the system (see e.g. [7] for the case
α = β = 1), it is easy to show that one can transform the integral bound (10) into the pointwise
bound

|(w0, w)(s)| ≤ K̃R ∀s ∈ [0, 1] ,
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whereK̃R is a constant depending onR. Therefore, in view of basic continuity properties of the
composition operator, there exists a modulusρ such that the last integral in the above inequality
is smaller than or equal toρ(|T − τ |). Therefore, applying Gronwall’s inequality to (15) we
obtain

|xn(s)− x̃n(s)| ≤(T + 1)(KR + 1)[ε(n)+ ρ f (|T − τ |)

+ ρ(|T − τ |)]eL R′ (T+1)(K R+1) .
(16)

Hence (14) yields

Ve(T, x) − Ven(τ, x) ≤

∫ 1

0
|l (t̃n, x̃n,0, wn)(s)− l (t̃n, xn,0, wn)(s)| ds

+

∫ 1

0
|l (t̃n, xn,0, wn)(s)| ds− l (tn, xn,0, wn)(s)| ds

+

∫ 1

0
|l (tn, xn,0, wn)(s)− l (tn, xn, w0n, wn)(s)ds

+

∫ 1

0
|l (tn, xn, w0n, wn)(s)− ln(tn, xn, w0n, wn)(s)| ds

+ ρg(|xn(1)− x̃n(1)|) .

(17)

Again, an argument based on the continuity properties of thecomposition operator allows one to
conclude that there exists a modulusρ̃ such that

∫ 1

0
|l (tn, xn,0, wn)(s)− l (tn, xn, w0n, wn)(s)| ds ≤ ρ̃(|T − τ |)

Therefore, plugging (15) into (16), we obtain

Ve(T, x) − Ven(τ, x) ≤PR(ρl + ρg)[ PR(ε(n)+ ρ f (|T − τ |)+ ρ(|T − τ |))eL R′ PR]

+ PR[ρl (|T − τ |)+ ε(n)] + ρ̃(|T − τ |) ,
(18)

wherePR
.
= (T + 1)(KR + 1).

Estimates (12), (13) and (18) imply the claim, so the theoremis proved.

5. Implementing optimal controls in the presence of perturbations

As an application of Theorem 1, Theorems 6 and 7 below provide, for the special case of the
linear quadratic problem, an answer to the general questions Q1 andQ2, respectively. Let us re-
mark that the perturbation we consider is not the most general among those allowed by Theorem
1. However, it well illustrates the degree of improvement with respect to previous results con-
cerning questions likeQ1 andQ2 (see Introduction). Let us also remark that the linear-quadratic
problem is just a model case. Indeed, it is evident that Theorem 6 below holds also if we replace
the linear-quadratic problem with a problem that (satisfy hypothesesA1-A5, (4), and (5) and)
admits an optimalLβ control, while Theorem 7 is still valid for any problem for which ( f is Lip-
schitz inc uniformly for (t, x) in a compact subset of [0, T ] ×

�k and) a Lipschitz continuous
feedback controlc(x) does exist.
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Let us be more precise by stating that by linear-quadratic problem we mean here an optimal
control problem as the ones considered in the previous sections, with

f = f (x, c)
.
= Ax + Bc l(x, c)

.
= xt Dx + ct Ec g(x) = xt Sx,

whereD, E, S are symmetric matrices (of suitable dimensions),D andS are nonnegative defi-
nite, F is positive definite, while no assumptions are made onA, B,C. Let us observe that the
fields f, l , g satisfies hypothesesA1-A5. In particular, one hasα = 1, β = 2, and30 is the
smallest eigenvalue ofE.

Let us consider the following perturbations of the mapsf, l , g:

fn
.
= Ax + Bc+ ϕn(t, x, c)

ln
.
= xt Dx + ct Ec+ θn(t, x, c)

gn
.
= xt Sx+ ψn(x) .

We assume that for each compact subsetQ ⊂
�k there exist a constantλ and moduliρ andρ

such that:

i) For every n, the mapϕn : [0, T ] ×
�k ×

�m →
�k is continuous and verifies

|ϕn(t1, x1, c)− ϕn(t2, x2, c)| ≤ (1 + |c|αn )(3|x1 − x2| + ρ(|t1 − t2|)

for all (t1, x1, c), (t2, x2, c) ∈ [0, T ] × Q ×
�m and for a suitableαn ∈ [1, 2] (varying

with n and independent of Q).

ii) There exist constantsµ1, µ2 such that for every n∈ � one has

|ϕn(t, x, c)| ≤ µ1(1 + |c|αn )(1 + |x|) + µ2(1 + |c|αn )

for every(t, x, c) ∈ [0, T ] ×
�k ×

�m.

iii) For every n∈ � , θn : [0, T ] ×
�k ×

�m →
�k is continuous and verifies

|θn(t1, x1, c)− θn(t2, x2, c)| ≤ (1 + |c|2)ρ(|(t1, x1)− (t2, x2)|)

for every(t1, x1, c), (t2, x2, c) ∈ [0, T ] × Q ×
�m.

iv) There exist a (possibly negative) constantλ0, strictly larger than the opposite of the small-
est eigenvalue of E, and a positive constantλ1 such that

θn(t, x, c) ≥ λ0|c|
2 − λ1

for every n and every(t, x, c) ∈ [0, T ] ×
�k ×

�m.

v) ψn :
�k →

�
is continuous andψn ≥ 0.

Moreover we assume that for every compact Q⊂
�k there exists a functionε : � → � ,

infinitesimal as n→ ∞ such that

|φn(x, c)| ≤ ε(n)(1 + |c|2) ,

|θn(x, c)| ≤ ε(n)(1 + |c|2)

for every(x, c) ∈ Q ×
�m and

|ψn(x)| ≤ ε(n)

for every x∈ Q.
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REMARK 2. Let us observe that the above assumptions imply that the hypotheses of the
convergence theorem (Theorem 1) are verified. Let us also point out that we allowαn to be
equalto β(= 2) (see Remark 1).

THEOREM 6 (OPEN LOOP). Fix (t̄, x̄) ∈ [0, T ] ×
�k . Assume thatc is an optimal control

for the unperturbed problem that is J(t̄, x̄, c) = V(t̄, x̄). Thenc is nearly optimal for the
perturbed problem, i.e.,

lim
n→∞

|Jn(t̄, x̄, c)− Ven(t̄, x̄)| = 0 .(19)

Proof. As in the proof of Theorem 1, when the initial condition are taken in a ballB[0, R], by
the coercivity conditionA4 we can consider only controls such that

∫ T

0
(1 + |c(s)|)2 ds ≤ KR ,

whereKR is a suitable constant depending onR. Then, by Hölder’s inequality we have also,

∫ T

0
(1 + |c(s)|)αn ds ≤ (KR + 1)(T + 1)

which, by Gronwall’s inequality, implies that there is a ball B[0, R′] which contains all the
trajectories issuing fromB[0, R]. Settingx(·)

.
= x(t̄ ,x̄)[c](·) andxn(·)

.
= xn

(t̄,x̄)
[c](·), we have

|xn(t)− x(t)| ≤

∫ T

t̄
| fn(s, xn(s), c(s))− f (s, x(s), c(s))| ds

≤

∫ T

t̄
|Axn(s)− Ax(s) + φn(xn, c)(s)| ds

≤ (T + 1)(KR + 1)ε(n)+ ‖A‖

∫ T

t̄
(|xn(s)− x(s)|) ds

(20)

whereε(n) is relative toB[0, R] and‖A‖ is the operator norm of the matrixA. Hence, Gron-
wall’s Lemma implies

|xn(s)− x(s)| ≤ (T + 1)(KR + 1)ε(n)e‖A‖T ,(21)

for everyt ∈ [ t̄, T ]. Since

|Jn(t, x, c)− J(t, x, c)| ≤

∫ T

t̄
|xn(s)

t Dxn(s)− x(s)t Dx(s)| ds

+

∫ T

t̄
|θn(xn(s), c(s))| ds

+ |xn(T)
t Sxn(T)− x(T)t Sx(T)| + |ψn(xn(T))|

≤ ‖D‖

∫ T

t̄
|xn(s)− x(s)|(|xn(s|)+ |x(s)|) ds

+ ‖S‖|xn(s)− x(s)|(|xn(T)| + |x(T)|)+ ε(n)(1 + KR) ,

(22)

in view of estimate (22) and of Theorem 1, the theorem is proven.
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THEOREM 7. Let c(x) be a locally Lipschitz continuous optimal feedback controlfor the
unperturbed problem. Then this control is nearly optimal for the perturbed problem, that is

lim
n→∞

|Jn(t̄, x̄, c) − Ven(t̄, x̄)| = 0 .

Proof. If we denote byx(·) andxn(·) the solutions to (E) to (En), respectively, corresponding
to the feedback controlc(x), we obtain

|xn(t)− x(t)| ≤

∫ T

t̄
| fn(s, xn(s), c(xn(s)))− f (s, x(s), c(x(s)))| ds

≤

∫ T

t̄
|Axn(s)+ Bc(xn(s))− Ax(s)− Bc(x(s))| ds

+

∫ T

t̄
|φn(xn(s), c(xn(s))| ds

≤

∫ T

t̄
(‖A‖ + ‖B‖γ )(|xn(s)− x(s)| ds+ (T + 1)(KR + 1)ε(n)

whereγ is the Lipschitz constant of the mapc(x) corresponding to the compact setB[0, R′].
Hence one has

|xn(s)− x(s)| ≤ (T + 1)(KR + 1)ε(n)eT‖A‖+‖B‖γ ,

and from here on one can proceed as in the proof of Theorem 6.

REMARK 3. As we have mentioned in the Introduction, whenαn = β it may happen that
a perturbed problem (Pn) does not possess a minimum in the class of absolutely continuous
trajectories. Indeed, due to the fact that the growth ratioβ

αn
(= 1) is not greater than 1, the

minimizing sequences could converge to adiscontinuous trajectory. In this case, the possibility
of implementing a control that is optimal for the unperturbed system – which is now assumed
sufficiently coercive, that is, satisfyingα < β – turns out to be of some interest whenever one is
worried to avoid a discontinuous performance of the system under consideration.

To be more concrete, let us consider the very simple (linear-quadratic) minimum-problem
wherel = x2 + 30c2 and f = 0. In this caseβ = 2 andα can be taken equal to 1. Let us

perturb this problem by takingln = l and fn = f + ϕn = ϕn
.
= −c2

n . Observe that these
perturbations give rise toquadratic-quadraticproblems, that is problems whereαn = β = 2.
Let us consider the initial datāt = 0 and x̄ > 0. The constant mapx(t) = x̄ is the unique
trajectory of the unperturbed system, so the controlĉ(t) = 0∀t ∈ [0, T ] turns out to be optimal.
In view of Theorem 6 this control is nearly optimal for the perturbed problems as well. However,
as soon̄x is sufficiently large and30 is sufficiently small with respect to1n , an application of the
Maximum Principle to the space-time extension of the perturbed system shows that the “optimal
trajectory” of the perturbed problem is the concatenation of an “initial jump” (from x̄ to a point
xn ∈]0, x̄[) and a suitable absolutely continuous map.
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