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GEOMETRIC CONTROL APPROACH

TO SYNTHESIS THEORY

1. Introduction

In this paper we describe the approach used in geometric control theory to deal with optimiza-
tion problems. The concept of synthesis, extensively discussed in [20], appears to be the right
mathematical object to describe a solution to general optimization problems for control systems.

Geometric control theory proposes a precise procedure to accomplish the difficult task of
constructing an optimal synthesis. We illustrate the strength of the method and indicate the
weaknesses that limit its range of applicability.

We choose a simple class of optimal control problems for which the theory provides a
complete understanding of the corresponding optimal syntheses. This class includes various
interesting controlled dynamics appearing in Lagrangian systems of mathematical physics. In
this special case the structure of the optimal synthesis is completely described simply by a couple
of integers, (cfr. Theorem 3). This obviously provides a very simple classification of optimal
syntheses. A more general one, for generic plane control-affine systems, was developed in [18,
10].

First we give a definition of optimal control problem. We discuss the concepts of solution
for this problem and compare them. Then we describe the geometric control approach and finally
show its strength using examples.

2. Basic definitions

Consider an optimal control problem(
�

) in Bolza form:

ẋ = f (x, u), x ∈ M, u ∈ U

min

(∫

L(x, u) dt + ϕ(xterm)

)

xin = x0, xterm ∈ N ⊂ M

whereM is a manifold,U is a set, f : M × U → T M, L : M × U → � , ϕ : M → � ,
the minimization problem is taken over all admissible trajectory-control pairs(x, u), xin is the
initial point andxterm the terminal point of the trajectoryx(·). A solution to the problem(

�
)

can be given by an open loop controlu : [0, T ] → U and a corresponding trajectory satisfying
the boundary conditions.

One can try to solve the problem via a feedback control, that is finding a functionu : M →

U such that the corresponding ODĖx = f (x, u(x)) admits solutions and the solutions to the
Cauchy problem with initial conditionx(0) = x0 solve the problem(

�
). Indeed, one explicits

the dependence of(
�

) on x0, considers the family of problems
�

= (
�

(x0))x0∈M and tries to
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solve them via a unique functionu : M → U , that is to solve the family
�

of problems all
together.

A well-known approach to the solution of
�

is also given by studying the value function, that
is the functionV : M → � assuming at eachx0 the value of the minimum for the corresponding
problem

�
(x0), as solution of the Hamilton-Jacobi-Bellmann equation, see [5, 13]. In general

V is only a weak solution to the HJB equation but can be characterized as the unique “viscosity
solution” under suitable assumptions.

Finally, one can consider a family0 of pairs trajectory-control(γx0, ηx0) such that each of
them solves the corresponding problem

�
(x0). This last concept of solution, called synthesis,

is the one used in geometric control theory and has the following advantages with respect to the
other concepts:

1) Generality

2) Solution description

3) Systematic approach

Let us now describe in details the three items.

1) Each feedback gives rise to at least one synthesis if there are solutions to the Cauchy
problems. The converse is not true, that is a synthesis is notnecessarily generated by a feedback
even if in most examples one is able to reconstruct a piecewise smooth control.

If one is able to define the value function this means that eachproblem
�

(x0) has a solution
and hence there exists at least one admissible pair for each

�
(x0). Obviously, in this case, the

converse is true that is every optimal synthesis defines a value function. However, to have a
viscosity solution to the HJB equation one has to impose extra conditions.

2) Optimal feedbacks usually lack of regularity and generate too many trajectories some of
which can fail to be optimal. See [20] for an explicit example. Thus it is necessary to add some
structure to feedbacks to describe a solution. This is exactly what was done in [11, 22].

Given a value function one knows the value of the minimum for each problem
�

(x0). In
applications this is not enough, indeed one usually needs todrive the system along the optimal
trajectory and hence to reconstruct it from the value function. This is a hard problem, [5]. If one
tries to use the concept of viscosity solutions then in the case of Lagrangians having zeroes the
solution is not unique. Various interesting problems (see for example [28]) present Lagrangians
with zeroes. Recent results to deal with this problem can be found in [16].

3) Geometric control theory proposes a systematic way towardsthe construction of optimal
syntheses, while there are not general methods to constructfeedbacks or viscosity solutions for
the HJB equation. We describe in the next session this systematic approach.
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3. Optimal synthesis

The approach to construct an optimal synthesis can be summarized in the following way:

a) MP + geometric techniques
⇓

b) Properties of extremal trajectories
⇓

c) Construction of extremal synthesis
⇓

d) Optimal synthesis

We now explain each item of the picture for a complete understanding of the scheme.

a) The Maximum Principle remains the most powerful tool in the study of optimal control
problems forty years after its first publication, see [21]. Abig effort has been dedicated to
generalizations of the MP in recent years, see [6], [23], andreferences therein.

Since late sixties the study of the Lie algebra naturally associated to the control system has
proved to be an efficient tool, see [15]. The recent approach of simplectic geometry proposed
by Agrachev and Gamkrelidze, see [1, 4], provides a deep insight of the geometric properties of
extremal trajectories, that is trajectories satisfying the Maximum Principle.

b) Making use of the tools described ina) various results were obtained. One of the most
famous is the well known Bang-Bang Principle. Some similar results were obtained in [8] for a
special class of systems. For some planar systems every optimal trajectory is not bang-bang but
still a finite concatenation of special arcs, see [19, 24, 25].

Using the theory of subanalytic sets Sussmann proved a very general results on the regularity
for analytic systems, see [26]. The regularity, however, inthis case is quite weak and does not
permit to drive strong conclusions on optimal trajectories.

Big improvements were recently obtained in the study of Sub-Riemannian metrics, see [2,
3]. In particular it has been showed the link between subanalyticity of the Sub-Riemannian
sphere and abnormal extremals.

c) Using the properties of extremal trajectories it is possible in some cases to construct an
extremal synthesis. This construction is usually based on afinite dimensional reduction of the
problem: from the analysis ofb) one proves that all extremal trajectories are finite concatenations
of special arcs. Again, for analytic systems, the theory of subanalytic sets was extensively used:
[11, 12, 22, 27].

However, even simple optimization problems like the one proposed by Fuller in [14] may
fail to admit such a kind of finite dimensional reduction. This phenomenon was extensively
studied in [17, 28].

d) Finally, once an extremal synthesis has been constructed, it remains to prove its optimal-
ity. Notice that no regularity assumption property can ensure the optimality (not even local) of
a single trajectory. But the contrary happens for a synthesis. The classical results of Boltianskii
and Brunovsky, [7, 11, 12], were recently generalized to be applicable to a wider class of systems
including Fuller’s example (see [20]).
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4. Applications to second order equations

Consider the control system:

ẋ = F(x) + uG(x), x ∈ �2, F, G ∈ �3(�2,�2), F(0) = 0, |u| ≤ 1(1)

and let� (τ) be the reachable set within timeτ from the origin. In the framework of [9, 19, 18],
we are faced with the problem of reaching from the origin (under generic conditions onF and
G) in minimum time every point of� (τ). Given a trajectoryγ : [a, b] → �2, we define the
time alongγ asT(γ ) = b − a.
A trajectoryγ of (1) istime optimalif, for every trajectoryγ ′ having the same initial and terminal
points, one hasT(γ ′) ≥ T(γ ). A synthesisfor the control system (1) at timeτ is a family
0 = {(γx, ux)}x∈� (τ ) of trajectory-control pairs s.t.:

(a) for eachx ∈ � (τ) one hasγx : [0, bx ] → �2, γx(0) = 0, γx(bx) = x;

(b) if y = γx(t), wheret is in the domain ofγx, thenγy = γx|[0,t ] .

A synthesis for the control system (1) istime optimalif, for eachx ∈ � (τ), one hasγx(T(x)) =

x, whereT is the minimum time functionT(x) := inf{τ : x ∈ � (τ)}. We indicate by6 a
control system of the type (1) and byOpt(6) the set of optimal trajectories. Ifγ1, γ2 are two
trajectories thenγ1 ∗ γ2 denotes their concatenation. For convenience, we define also the vector
fields: X = F − G, Y = F + G. We say thatγ is anX-trajectory and we writeγ ∈ Traj(X) if
it corresponds to the constant control−1. Similarly we defineY-trajectories. If a trajectoryγ is
a concatenation of anX-trajectory and aY-trajectory, then we say thatγ is aY ∗ X-trajectory.
The timet at which the two trajectories concatenate is calledX-Y switching time and we say
that the trajectory has aX-Y switching at timet . Similarly we define trajectories of typeX ∗ Y,
X ∗ Y ∗ X, etc.
In [19] it was shown that, under generic conditions, the problem of reaching in minimum time
every point of the reachable set for the system (1) admits a regular synthesis. Moreover it was
shown that� (τ) can be partitioned in a finite number of embedded submanifolds of dimension
2, 1 and 0 such that the optimal synthesis can be obtained froma feedbacku(x) satisfying:

• on the regions of dimension 2, we haveu(x) = ±1,

• on the regions of dimension 1, called frame curves (in the following FC), u(x) = ±1
or u(x) = ϕ(x) (whereϕ(x) is a feedback control that depends onF, G and on their
Lie bracket [F, G], see [19]). The frame curves that correspond to the feedback ϕ are
calledturnpikes. A trajectory that corresponds to the controlu(t) = ϕ(γ (t)) is called a
Z-trajectory.

The submanifolds of dimension 0 are called frame points (in the following FP). In [18] it was
provided a complete classification of all types of FP and FC.
Given a trajectoryγ ∈ 0 we denote byn(γ ) the smallest integer such that there existγi ∈

Traj (X) ∪ Traj(Y) ∪ Traj(Z), (i = 1, . . . , n(γ )), satisfyingγ = γn(γ ) ∗ · · · ∗ γ1.

The previous program can be used to classify the solutions ofthe following problem.

Problem: Consider an autonomous ODE in� :

ÿ = f (y, ẏ) ,(2)

f ∈ �3(�2), f (0, 0) = 0(3)
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that describes the motion of a point under the action of a force that depends on the position
and on the velocity (for instance due to a magnetic field or a viscous fluid). Then let apply
an external force, that we suppose bounded (e.g.|u| ≤ 1):

ÿ = f (y, ẏ) + u .(4)

We want to reach in minimum time a point in the configuration space(y0, v0) from the
rest state(0, 0).

First of all observe that if we setx1 = y, x2 = ẏ, (4) becomes:

ẋ1 = x2(5)

ẋ2 = f (x1, x2) + u ,(6)

that can be written in our standard forṁx = F(x) + uG(x), x ∈ �2 by settingx = (x1, x2),
F(x) = (x2, f (x)), G(x) = (0, 1) := G.
A deep study of those systems was performed in [9, 10, 19, 18].From now on we make use of
notations introduced in [19]. A key role is played by the functions1A, 1B:

1A(x) = det(F(x), G(x)) = x2(7)

1B(x) = det(G(x), [F(x), G(x)]) = 1 .(8)

From these it follows:

1
−1
A (0) = {x ∈ �2 : x2 = 0}(9)

1
−1
B (0) = ∅ .(10)

The analysis of [19] has to be completed in the following way.
Lemma 4.1 of [19] has to be replaced by the following (see [19]for the definition ofBad(τ) and
tanA):

LEMMA 1. Let x ∈ Bad(τ) and G(x) 6= 0 then:

A. x ∈ (1−1
A (0) ∩ 1−1

B (0)) ⇒ x ∈ tanA;

B. x ∈ tanA, X(x), Y(x) 6= 0 ⇒ x ∈ (1
−1
A (0) ∩ 1

−1
B (0)).

Proof. The proof ofA. is exactly as in [19]. Let us proveB. BeingG(x) 6= 0 we can choose a
local system of coordinates such thatG ≡ (1, 0). Then, with the same computations of [19], we
have:

1B(x) = −∂1F2(x) .(11)

From x ∈ tanA it follows x ∈ 1
−1
A (0), henceF(x) = αG (α ∈ � ). Assume thatX(x) is

tangent to1−1
A (0), being the other case entirely similar. This means that∇1A(x) · X(x) =

(α−1)∇1A(x) ·G = 0. FromX(x) 6= 0 we have thatα 6= 1, hence∇1A ·G = 0. This implies
∂1F2 = 0 and using (11) we obtain1B(x) = 0, i.e. x ∈ 1

−1
B (0).

Now the proof of Theorem 4.2 of [19] is completed consideringthe following case:

(4) G(x) 6= 0, X(x) = 0 or Y(x) = 0 .
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Note that (4) impliesx ∈ tanA. In this case we assume the generic condition ((P1), . . . , (P8)

were introduced in [19]):

(P9) 1B(x) 6= 0 .

SupposeX(x) = 0 andY(x) 6= 0. The opposite case is similar. Choose a new local system of
coordinates such thatx is the origin,Y = (0,−1) and1

−1
A (0) = {(x1, x2) : x2 = 0}.

TakeU = B(0, r ), the ball of radiusr centered at 0, and chooser small enough such that:

• 0 is the only bad point inU ;

• 1B(x) 6= 0 for everyx ∈ U ;

• for everyx ∈ U we have:

|X(x)| � 1 .(12)

Let U1 = U ∩ {(x1, x2) : x2 > 0}, U2 = U ∩ {(x1, x2) : x2 < 0}. We want to prove the
following:

THEOREM 1. If γ ∈ Opt (6) and{γ (t) : t ∈ [b0, b1]} ⊂ U then we have a bound on the
number of arcs, that is∃Nx ∈ � s.t. n( γ |[b0,b1]) ≤ Nx .

In order to prove Theorem 1 we will use the following Lemmas.

LEMMA 2. Letγ ∈ Opt (6) and assume thatγ has a switching at time t1 ∈ Dom(γ ) and
that1A(γ (t1)) = 0. Then1A(γ (t2)) = 0, t2 ∈ Dom(γ ), iff t2 is a switching time forγ .

Proof. The proof is contained in [10].

LEMMA 3. Let γ : [a, b] → U be an optimal trajectory such thatγ ([a, b]) ⊂ U1 or
γ ([a, b]) ⊂ U2, then n(γ ) ≤ 2.

Proof. It is a consequence of Lemma 3.5 of [19] and of the fact that every point of U1 (respec-
tively U2) is an ordinary point i.e.1A(x) · 1B(x) 6= 0.

LEMMA 4. Considerγ ∈ Opt (6), {γ (t) : t ∈ [b0, b1]} ⊂ U. Assume that there exist a
X-Y switching timēt ∈ (b0, b1) for γ andγ (t̄) ∈ U1. Thenγ |[ t̄,b1] is a Y -trajectory.

Proof. Assume by contradiction thatγ switches at timet ′ ∈ (b0, b1), t ′ > t̄ . If γ (t ′) ∈ U1 then
this contradicts the conclusion of Lemma 3. Ifγ (t ′) ∈ 1−1

A (0) then this contradicts Lemma 2.

Assumeγ (t ′) ∈ U2. From sgn1A(γ (t̄)) = −sgn1A(γ (t ′)) we have that12 X(γ (t̄)) ∧ Y =

−1
2(X(γ (t ′)) ∧ Y). This means that:

sgn(X2(γ (t̄)) = −sgn(X2(γ (t ′)) ,(13)

whereX2 is the second component ofX. Chooset0 ∈ (b0, t̄) and define the trajectorȳγ satis-
fying γ̄ (b0) = γ (b0) and corresponding to the controlū(t) = −1 for t ∈ [b0, t0] and ū(t) = 1
for t ∈ [t0, b1]. From (13) there existst1 > t0 s.t. γ̄ (t1) = γ (t) ∈ U2. Using (12) it is easy to
prove thatt1 < t . This contradicts the optimality ofγ (see fig. 1).
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Figure 1:

of Theorem 1.For sake of simplicity we will writeγ instead ofγ |[b0,b1] .

Assume first that no switching happens on1−1
A (0). We have the following cases (see fig. 2

for some of these):

(A) γ has no switching;n(γ ) = 1;

(B) for someε > 0, γ |[b0,b0+ε] is anX-trajectory,γ (b0) ∈ U1, n(γ ) > 1;

(B1) if γ switches toY in U1, by Lemma 4,n(γ ) = 2;

(B2) if γ crosses1−1
A (0) and switches toY in U2, by Lemma 3,γ does not switch

anymore. Hencen(γ ) = 2;

(C) for someε > 0, γ |[b0,b0+ε] is anX-trajectory,γ (b0) ∈ U2, n(γ ) > 1;

(C1) if γ switches toY before crossing1−1
A (0) then, by Lemma 3,n(γ ) = 2;

(C2) if γ reachesU1 without switching, then we are in the(A) or (B) case, thusn(γ ) ≤ 2;

(D) for someε > 0, γ |[b0,b0+ε] is aY-trajectory,γ (b0) ∈ U1, n(γ ) > 1;

(D1) if γ switches toX in U1 and never crosses1−1
A (0) then by Lemma 3n(γ ) = 2;

(D2) if γ switches toX in U1 (at timet0 ∈ [b0, b1]) and then it crosses1−1
A (0), then

γ |[t0,b1] satisfies the assumptions of(A) or (C). Hencen(γ ) ≤ 3;

(D3) if γ switches toX in U2 at t0 ∈ [b0, b1] and then it does not cross1−1
A (0), we have

n(γ ) = 2;

(D4) if γ switches toX in U2 and then it crosses1−1
A (0) we are in cases(A) or (B) and

n(γ ) ≤ 3;

(E) for someε > 0, γ |[b0,b0+ε] is aY-trajectory,γ (b0) ∈ U2, n(γ ) > 1.

(E1) if γ switches toX in U2 and it does not cross1−1
A (0) thenn(γ ) = 2;
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(E2) if γ switches toX in U2 and then it crosses1−1
A (0), we are in case(A) or B. Hence

n(γ ) ≤ 3.

If γ switches at1−1
A (0), by Lemma 2 all the others switchings ofγ happen on the set1−1

A (0).
Moreover, ifγ switches toY it has no more switchings. Hencen(γ ) ≤ 3.

The Theorem is proved withNx = 3.

By direct computations it is easy to see that thegenericconditionsP1, . . . , P9, under which
the construction of [19] holds, are satisfied under the condition:

f (x1, 0) = ±1 ⇒ ∂1 f (x1, 0) 6= 0(14)

that obviously impliesf (x1, 0) = 1 or f (x1, 0) = −1 only in a finite number of points.
In the framework of [9, 19, 18] we will prove that, for our problem (5), (6), with the condition
(14), the “shape” of the optimal synthesis is that shown in fig. 3. In particular the partition of the
reachable set is described by the following

THEOREM 2. The optimal synthesis of the control problem (5) (6) with thecondition (14),
satisfies the following:

1. there are no turnpikes;

2. the trajectoryγ ± (starting from the origin and corresponding to constant control ±1) exits
the origin with tangent vector(0, ±1) and, for an interval of time of positive measure,
lies in the set{(x1, x2) : x1, x2 ≥ 0} respectively{(x1, x2) : x1, x2 ≤ 0};

3. γ ± is optimal up to the first intersection (if it exists) with thex1-axis. At the point in
whichγ + intersects the x1-axis it generates a switching curve that lies in the half plane
{(x1, x2) : x2 ≥ 0} and ends at the next intersection with the x1-axis (if it exists). At that
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Figure 3: The shape of the optimal synthesis for our problem.

point another switching curve generates. The same happens for γ − and the half plane
{(x1, x2) : x2 ≤ 0};

4. let yi , for i = 1, . . . , n (n possibly+∞) (respectively zi , for i = 1, . . . , m (m possibly
+∞)) be the set of boundary points of the switching curves contained in the half plane
{(x1, x2) : x2 ≥ 0} (respectively{(x1, x2) : x2 ≤ 0}) ordered by increasing (resp.
decreasing) first components. Under generic assumptions, yi and zi do not accumulate.
Moreover:

• For i = 2, . . . , n, the trajectory corresponding to constant control+1 ending at yi
starts at zi−1;

• For i = 2, . . . , m, the trajectory corresponding to constant control−1 ending at zi
starts at yi−1.

REMARK 1. The union ofγ ± with the switching curves is a one dimensional�0 manifold
M. Above this manifold the optimal control is+1 and below is−1.

REMARK 2. The optimal trajectories turn clockwise around the origin and switch along the
switching part ofM. They stop turning after the lastyi or zi and tend to infinity withx1(t)
monotone after the last switching.

From4. of Theorem 2 it follows immediately the following:

THEOREM 3. To every optimal synthesis for a control problem of the type (5) (6) with the
condition (14), it is possible to associate a couple(n,m) ∈ (� ∪ ∞)2 such that one of the
following cases occurs:

A. n = m, n finite;

B. n = m + 1, n finite;

C. n = m − 1, n finite;
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D. n = ∞, m = ∞.

Moreover, if01, 02 are two optimal syntheses for two problems of kind (5), (6), (14), and
(n1, m1) (resp.(n2, m2)) are the corresponding couples, then01 is equivalent to02 iff n1 = n2
and m1 = m2.

REMARK 3. In Theorem 3 the equivalence between optimal syntheses isthe one defined in
[9].

of Theorem 3.Let us consider the synthesis constructed by the algorithm described in [9]. The
stability assumptions (SA1),. . . ,(SA6) holds. The optimality follows from Theorem 3.1 of [9].

1. By definition a turnpike is a subset of1
−1
B (0). From (8) it follows the conclusion.

2. We leave the proof to the reader.

3. Let γ
±

2 (t) = π2(γ
±(t)), whereπ2 : �2 → � , π2(x1, x2) = x2, and consider the adjoint

vector fieldv : �2 × Dom(γ ±) × Dom(γ ±) → �2 associated toγ ± that is the solution
of the Cauchy problem:

{

v̇(v0, t0; t) = (∇F ± ∇G)(γ ±(t)) · v(v0, t0; t)
v(v0, t0; t0) = v0 ,

(15)

We have the following:

LEMMA 5. Consider theγ ± trajectories for the control problem (5), (6). We have that
v(G, t;0) and G are parallel iff1A(γ ±(t)) = 0 (i.e. γ ±

2 (t) = 0).

Proof. Consider the curveγ +, the case ofγ − being similar. From (9) we know that
1A(γ +(t)) = 0 iff γ +

2 (t) = 0. First assume1A(γ +(t)) = 0. We have thatG and
(F + G)(γ +(t)) are collinear that isG = α(F + G)(γ +(t)) with α ∈ � . For fixedt0, t
the map:

ft0,t : v0 7→ v(v0, t0; t)(16)

is clearly linear and injective, then using (15) andγ̇ +(t) = (F + G)(γ +(t)), we obtain
v(G, t;0) = αv

(

(F + G)(γ +(t)), t; 0
)

= α(F + G)(0) = αG.
Viceversa assumev(G, t;0) = αG, then (as above) we obtainv(G, t;0) = αv((F +

G)(γ +(t)), t; 0). From the linearity and the injectivity of (16) we haveG = α(F +

G)(γ +(t)) hence1A(γ +(t)) = 0.

LEMMA 6. Consider the trajectoryγ + for the control problem (5), (6). Let̄t > 0 (pos-
sibly +∞) be the first time such thatγ +

2 (t̄) = 0. Thenγ + is extremal exactly up to time
t̄. And similarly forγ −.

Proof. In [19] it was defined the functionθ(t) = arg
(

G(0), v
(

G(γ +(t)), t, 0
))

. This
function has the following properties:

(i) sgn(θ̇(t)) = sgn(1B(γ (t)), that was proved in Lemma 3.4 of [19]. From (8) we have
that sgn(θ̇(t)) = 1 soθ(t) is strictly increasing;
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(ii) γ + is extremal exactly up to the time in which the measure of the range ofθ is π i.e.
up to the time:

t+ = min{t ∈ [0, ∞] : |θ(s1) − θ(s2)| = π, for somes1, s2 ∈ [0, t+]} ,(17)

under the hypothesiṡθ(t+) 6= 0. This was proved in Proposition 3.1 of [9].

From Lemma 5 we have that1A(γ +(t)) = 0 iff there existsn ∈ � satisfying:

θ(G, v(G, t, 0)) = nπ .(18)

In particular (18) holds fort = t̄ and somen. From the fact that̄t is the first time in which
γ +

2 (t̄) = 0 and hence the first time in which1A(γ +(t̄)) = 0, we have thatn = 1.

Fromθ(t̄) = π and sgn(θ̇(t̄)) = 1 the Theorem is proved witht+ = t̄ .

From Lemma 6,γ ± are extremal up to the first intersection with thex1-axis.

Let t be the time such thatγ −(t) = z1, defined in4 of Theorem 2. The extremal trajecto-
ries that switch along theC-curve starting aty1 (if it exists), are the trajectories that start
from the origin with control−1 and then, at some timet ′ < t, switch to control+1. Since
the first switching occurs in the orthant{(x1, x2) : x1, x2 < 0}, by a similar argument to
the one of Lemma 6, the second switch has to occur in the half space{(x1, x2) : x2 > 0},
because otherwise between the two switches we have meas(range(θ(t))) > π . This
proves that the switching curves never cross thex1-axis.

4. The two assertions can be proved separately. Let us demonstrate only the first, being the proof
of the second similar. Definey0 = z0 = (0, 0). By definition the+1 trajectory starting
at z0 reachesy1. By Lemma 2 we know that if an extremal trajectory has a switching at
a point of thex1-axis, then it switches iff it intersects thex1-axis again. This means that
the extremal trajectory that switches atyi has a switching atz j for some j . By induction
one hasj ≥ i − 1. Let us prove thatj = i − 1. By contradiction assume thatj > i − 1,
then there exists an extremal trajectory switching atzi−1 that switches on theC curve
with boundary pointsyi−1, yi . This is forbidden by Lemma 2.

EXAMPLES 1. In the following we will show the qualitative shape of the synthesis of some
physical systems coupled with a control. More precisely we want to determine the value of the
couple(m, n) of Theorem 3.

Duffin Equation
The Duffin equation is given by the formuläy = −y − ε(y3 + 2µẏ), ε, µ > 0, ε small. By
introducing a control term and transforming the second order equation in a first order system, we
have:

ẋ1 = x2(19)

ẋ2 = −x1 − ε(x3
1 + 2µx2) + u .(20)

From this form it is clear thatf (x) = −x1 − ε(x3
1 + 2µx2).

Consider the trajectoryγ +. It starts with tangent vector(0, 1), then, from (19), we see that it
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Figure 4: The synthesis for the Van Der Pol equation.

moves in the orthant� := {(x1, x2), x1, x2 > 0}. To know the shape of the synthesis we need
to know where(F + G)2(x) = 0. If we seta = 1

2εµ
, this happens where

x2 = a(1 − x1 − εx3) .(21)

From (19) and (20) we see that, after meeting this curve, the trajectory moves witḣγ +

1 > 0 and

γ̇
+

2 < 0. Then it meets thex1-axis because otherwise ifγ +(t) ∈ � we necessarily have (for

t → ∞) γ
+

1 → ∞, γ̇
+

2 → 0, that is not permitted by (20). The behavior of the trajectory γ − is
similar.

In this case, the numbers(n, m) are clearly(∞,∞) because the+1 trajectory that starts at
z1 meets the curve (21) exactly one time and behaves likeγ +. So theC-curve that starts aty1
meets again thex1 axis. The same happens for the−1 curve that starts aty1. In this way an
infinite sequence ofyi andzi is generated.

Van der Pol equation
The Van der Pol equation is given by the formulaÿ = −y+ε(1−y2)ẏ+u, ε > 0 and small. The
associated control system is:ẋ1 = x2, ẋ2 = −x1 + ε(1− x2

1)x2 + u. We have(F + G)2(x) = 0

on the curvesx2 = − 1
ε(x1+1)

for x1 6= ±1, x1 = −1. After meeting these curves, theγ + tra-

jectory moves withγ̇ +

1 > 0 andγ̇ +

2 < 0 and, for the same reason as before, meets thex1-axis.
Similarly for γ −. As in the Duffin equation, we have thatm andn are equal to+∞. But here,

starting from the origin, we cannot reach the regions:
{

(x1, x2) : x1 < −1, x2 ≥ − 1
ε(x1+1)

}

,
{

(x1, x2) : x1 > −1, x2 ≤ − 1
ε(x1−1)

}

(see fig. 4).

Another example
In the following we will study an equation whose synthesis has n, m < ∞. Consider the equa-
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Figure 5: The synthesis for the control problem (22), (23). The sketched region is
reached by curves that start from the origin with control−1 and then switch to+1
control between the pointsA andB.

tion: ÿ = −ey + ẏ + 1. The associated control system is:

ẋ1 = x2(22)

ẋ2 = −ex1 + x2 + 1 + u(23)

We haveγ̇ +

2 = 0 on the curvex2 = ex1 − 2. After meeting this curve, theγ + trajectory meets
thex1-axis.

Now the synthesis has a different shape because the trajectories corresponding to control−1
satisfyγ̇2 = 0 on the curve:

x2 = ex1(24)

that is contained in the half plane{(x1, x2) : x2 > 0}. Henceγ − never meets the curve given by
(24) and this means thatm = 0. Since we know thatn is at least 1, by Remark 4, we haven = 1,
m = 0. The synthesis is drawn in fig. 5.

5. Optimal syntheses for Bolza Problems

Quite easily we can adapt the previous program to obtain information about the optimal synthe-
ses associated (in the previous sense) to second order differential equations, but for more general
minimizing problems.

We have the well known:

LEMMA 7. Consider the control system:

ẋ = F(x) + uG(x), x ∈ �2, F, G ∈ �3(�2,�2), F(0) = 0, |u| ≤ 1 .(25)
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Let L : �2 → � be a�3 bounded function such that there existsδ > 0 satisfying L(x) > δ for
any x∈ �2.
Then, for every x0 ∈ �2, the problem:min

∫ τ
0 L(x(t)) dt s.t. x(0) = 0, x(τ) = x0, is equivalent

to theminimum time problem(with the same boundary conditions) for the control systemẋ =

F(x)/L(x) + uG(x)/L(x).

By this lemma it is clear that if we have a second order differential equation with a bounded-
external forcëy = f (y, ẏ)+u, f ∈ �3(�2), f (0, 0) = 0, |u| ≤ 1, then the problem of reaching a
point in the configuration space(y0, v0) from the origin, minimizing

∫ τ
0 L(y(t), ẏ(t)) dt, (under

the hypotheses of Lemma 7) is equivalent to the minimum time problem for the system:̇x1 =

x2/L(x), ẋ2 = f (x)/L(x) + 1/L(x)u. By setting: α : �2 →]0, 1/δ[, α(x) := 1/L(x),
β : �2 → � , β(x) := f (x)/L(x), we have:F(x) = (x2α(x), β(x)), G(x) = (0, α(x)). From
these it follows:1A(x) = x2α2, 1B(x) = α2(α + x2∂2α).
The equations defining turnpikes are:1A 6= 0, 1B = 0, that with our expressions become the
differential conditionα + x2∂2α = 0 that in terms ofL is:

L(x) − x2∂2L(x) = 0(26)

REMARK 4. SinceL > 0 it follows that the turnpikes never intersect thex1-axis. Since
(26) depends onL(x) and not on the control system, all the properties of the turnpikes depend
only on the Lagrangian.

Now we consider some particular cases of Lagrangians.

L= L(y) In this case the Lagrangian depends only on the positiony and not on the velocitẏy
(i.e. L = L(x1)). (26) is never satisfied so there are no turnpikes.

L= L(ẏ) In this case the Lagrangian depends only on velocity and the turnpikes are horizontal
lines.

L=V(y) + 1
2 ẏ2 In this case we want to minimize an energy with a kinetic part1

2 ẏ2 and a pos-
itive potential depending only on the position and satisfying V(y) > 0. The equation for
turnpikes is(x2)2 = 2V(x1).
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