Rend. Sem. Mat. Univ. Pol. Torino
\ol. 56, 4 (1998)

P. Brandi — A. Salvadori

ON MEASURE DIFFERENTIAL INCLUSIONS
IN OPTIMAL CONTROL THEORY

1. Introduction

Differential inclusions are a fundamental tool in optimahtrol theory. In fact an optimal control
problem

min_ J[x, u]
X,u)e2

can be reduced (via a deparameterization process) to aepnaifl Calculus of Variation whose
solutions can be deduced by suitable closure theoremsfferatitial inclusions.

More precisely, if the cost functional is of the type

Q) J[x,u] = /I fo(t, x(t), u(t)) da
andQ is a class of admissible pairs subjected to differentialstate constraints
2 Oxm)eA X)) = ft,x),ul)), u@) e U@, x) tel
the corresponding differential inclusion is
3 GxtneA X®)eltxw) tel
where multifunctionQ is related to the epigraph of the integrand i.e.

Qt,x) ={(z,v) 12> fot,x, u), u= f(t,x,v), veU( x)}.

We refer to Cesari’s book [8] where the theory is developeBiaholev spaces widely.

The extension of this theory BV setting, motivated by the applications to variational mod-
els for plasticity [2, 3, 6, 13], allowed the authors to prowsv existence results of discontinuous
optimal solutions [4, 5, 9, 10, 11, 12].

This generalized formulation involved differential inslans of the type
(3% t, X)) e A X'(t) € Q(t, X(1)) a.e. inl

whereu’ represents the “essential gradient” of tB¥ functionx, i.e. the density of the abso-
lutely continuous part of the distributional derivativetlviespect to Lebesgue measure; more-
over the Lagrangian functional (1) is replaced by the Seyire relaxed functional

1% J[x,u] = inf liminf I [xk, uk] .
(XK, Uk)— (X,u) k—o00

69



70 P. Brandi — A. Salvadori

A further extension of this theory was given in [4] where wsatissed the existence bf
solutions for the abstract evolution equation

(3%%) (t,u@) e A v(t) € Q(t, u(t)) a.e. inl

whereu andv are two surfaces not necessarely connected. This gersiatiallowed us to deal
with a more general class of optimization problemsBN setting, also including differential
elements of higher order or non linear operators (see [4h®details).

Note that the cost functiondl takes into account of the whole distributional gradienthef t
BV functionu, while the constraints control only the “essential” detiva

To avoid this inconsistency a new class of inclusions invg\the measure distributional deriva-
tive should be taken into consideration. This is the aim ef tasearch we developed in the
present note.

At our knowledge, the first differential inclusion involgrthe distributional derivative of a
BV function was taken into consideration by M. Monteiro Mars|{&8, 19] who discussed the
existence of right continuous ar\V solutions for the inclusion

du

(4) ut) e Ct) ~idul

(t) € Ney(ut)) |duj-a.e. inl
whereC(t) is a closed convex set alNg 1) (@) is the normal cone a(t) in the pointa € C(t).

These inclusions model the so called sweepping processlirted by J.J. Moreau to deal with
some mechanical problems.

In [21, 22] J.J. Moreau generalized this formulation to diescgeneral rigid body mechan-
ics with Coulomb friction and introduced the so called meeadlifferential inclusions
d .
(4 ek Ap—a.e. inl
da
wherex,, = A + |u|, with A is the Lebesgue measure gnds a Borel measure, and whelg(t)
is a cone.

Both the inclusions (4) and {4 are not suitable for our purpose since they can not be applie
to multifunction Q(t, u) = epiF(t, u, -) whose values are not cones, in general.

Recently S.E. Stewart [23] extended this theory to the céseatosed convex set (t),
not necessarely a cone. Inspired by Stewart’s research mgidew here the following measure
differential inclusion

dra 4 Qt,ut))  r-ae.inl
@ ; ax
P ) elQt,ut)]e  ps-ae. inl
dius|

whereu = ua + us is the Lebesgue decomposition of the Borel meaguadmd [Q(t, a)]so IS
the asymptotic cone of the non empty, closed, convexseta).

Note that measurg andBYV functionu are not necessarely correlated, analogously to inclusion

(3**). In particular, if i coincides with the distributional derivative aof i.e. %"A—a = U, the
first inclusion is exactly (8), while the second one involves the singular part of the nmeas
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derivative.

In other words formulation (%) is the generalization of {3 in the spirit of (3*).

The closure theorem we prove here for inclusiofij4epresents a natural extension of that
given in [9, 10, 4, 5] for evolution equations of typesYand (3*). In particular we adopt the
same assumption on multifuncti@®, which fits very well for the applications t@ and hence
to optimal control problems.

Moreover, we wish to remark that our results improve thosergby Stewart under stronger
assumptions on multifunctio® (see Section 6).

2. Preliminaries

We list here the main notations and some preliminary results

2.1. On asymptotic cone
DEFINITION 1. Theasymptotic conef a convex set @& R" is given by

[Cloo = { lIm axxy :ak \\ O, Xk € C, ke N}.
k— o0

A discussion of the properties of the asymptotic cone carobad in [16] and [23]. We
recall here only the results that will be useful in the follog:
P;. If C is non empty, closed and convex, ti€j is a closed convex cone.
P>. If C is a closed convex cone, then-£[C] -
P3. If C is non empty, closed and convex, tfi€h is the largest cone K such thatixk c C,
withx € C.

Let(Cj)jeJ be afamily of nonempty closed convex values. Then the foljawsults hold.

Py clco| JICjleo C | clco| J Cj

jed jed 0o

Ps. if () Cj # ¢, then ﬂcj = [ [Cjl-

jed jed 0 jed

2.2. On property (Q)

Let E be a given subset of a Banach space an@lete — R™ be a given multifunction. Fixed
a pointtg € E, and a numbeh > 0, we denote byB,, = B(tg,h) = {t € E : |t —tg| < h}.

DEFINITION 2. Multifunction Q is said to satisfy Kuratowsgroperty (K)at a point )
E, provided

(K) Qto) = [ ¢l | J Q.

h>0 teBp
The graph of multifunction Q is the sgtaphQ = {(t,v) : v € Q(t), t € E}.
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It is well known that (see e.g. [8])
Ps. graphQ is closed in Ex R™ «— Q satisfies conditiofK) at every point.

Cesari [8] introduced the following strengthening of Kasaski condition which is suitable
for the differential inclusions involved in optimal contfroblems inBV setting.

DEFINITION 3. Multifunction Q is said to satisfy Cesarifgoperty (Q)at a pointy € E,
provided

Q Qo) = [ clco | J Q.

h>0 teBp
Note that if (Q) holds, then the s€l(tg) is necessarily closed and convex.

We will denote byC(R™) the class of non empty, closed, convex subseR"of

Property (Q) is an intermediate condition between Kurakbwsndition (K) and upper semicon-
tinuity [8] which is suitable for the applications to optih@ntrol theory. In fact the multifunc-
tion defined by

Q(x, u) = epiF(x, u, -)

satisfies the following results (see [8]).

P;. (3 has closed and convex values iffx; u, -) is lower semicontinuous and convex.
Pg. 6 satisfies propert{Q) iff F is seminormal.

We wish to recall that seminormality is a classical Tonglissumption in problems of calculus
of variations (see e.qg. [8] for more details).

Given a multifunctionQ : E — C(R™M), we denote byQ. : E — C@R™) the multifunc-
tion defined by

Qoo(t) = [Q()] o teE.
PropPosITION]. If Q satisfies propertyQ) at a point g, then also multifunction @ does.

Proof. Since

¢ # Qo) = [ ] clco | J Q)

h>0 teBp
from P4 and P5 we deduce that

Qoo(ty) = ﬂ |:cl co U Q(t):| - ﬂ clco U Qoo ().

h>0 teBp h>0 teBp

The converse inclusion is trivial and the assertion follows
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3. On measure differential inclusions, weak and strong forralations

LetQ : 1 — R", with | C R closed interval, be a given multifunction with nonemptyseid
convex values and lgt be a Borel measure dn of bounded variation.

In [23] Stewart considered the two formulations of measiifferéntial inclusions.
Strong formulation.
© daty e Qty  r-ae.inl
aﬁ(t) € Quo(t) us—a.e.inl
whereu = ua + us be the Lebesgue decomposition of meagure
Weak formulation.

Jiodu
Ji #dr

(W) eclco | J Qw

telNSuppyp

for every¢ € Co, whereCq denotes the set of all continuous functiahs R — R(J)r with
compact support, such thit¢ da # 0.

Stewart proved that the two formulations are equivalentlenrsuitable assumptions @
(see Theorem 2), by means of a transfinite induction process.

We provide here a direct proof of the equivalence, under ereaksumption.

Moreover, for our convenience, we introduce also the falhgnocal version of weak for-
mulation.

Local-weak formulation. o B
Lettg € | be fixed. There exists = h(tg) > 0 such that for every & h < h,

th pdu
——— eclco Q)
th d) da tgh

for every¢ € Cg such that Supp C By.
Of coursejf u satisfiegW), then(LW) holds for everyg € I.

(LW)

Rather surprising also the convers hold, as we shall sholeifallowing (Theorem 3).
In other words, also this last formulation proves to be egjent to the previous ones.
THEOREM1. Every solution ofS)is also a solution ofW).

Proof. Let¢ € Cg be given. Note thaf, ¢ du = [ ¢ dua + f, ¢ duus moreover

dua duia
5 / d = —_— dA:/ —dA
(5) | ¢dua | dn ¢ \nSupps dA ¢
dus dus
6 / dus = dlu |=/ —du
©) |¢ s [ dIMsId) s InSuppyp dlus] ¢

wherei, andus o are the Borel measures defined respectively by

€)= [0 uso® = [pdlus  EcI.
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From (5), in force of the assumption and taking Theorem 1[3]iinto account, we get

d
_ Ji¢dua Jinsupps R dag
& pda 2g (I N Suppe)

(7) ecco | J Q.

telNSuppyp

In the casgfl ¢dlus| =0, thenfI ¢ dus = 0 and the assertion is an immediate consequence of
(.
Let us put

(7 Qp:=clco [ J Q).
telNSuppyp

Let us assume now thq\‘_ ¢ djus| # 0. Then from (6), in force of the assumption we get, as
before

d
Jy ¢dus  Jinsupps dh dusg
f| ¢ dlus| s, (1 N Suppp)

eclco U Qm(t)c{clco U Q(t)i| =[Qploo
telNSuppp telNSuppp 0o

and since the right-hand side is a cone, we deduce

— Ji ¢ dus _ Ji ¢dus ' Ji ¢ dlus|
> f|¢d)» f|¢d|ﬂs| f,d)dk

From (7) and (8) we have that

®) ¢ € [Qgloo -

d
? Zdl)f =¢a+ ¢sWithpa € Qp  ¢s € [Qpleo
I
and, by virtue ofP3, we conclude that
d
ﬂzdl)ﬁ eQy=clco | J QM

teSuppp

which proves the assertion.
THEOREM?2. Letu be a solution ofLW) intg € I.
(@) If Q has propertiegQ) at ty and the derivative%"f (tp) exists, then
dua
—(t to) -
O (to) € Q(to)
. . d .
(b) If Qoo has propertiegQ) at tg and the derlvatlv%ﬁ (tg) exists, then

—(tg) € Qoo (tp) .

dus
dlus]
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Proof. Let S, denote the set where measwrgis concentrated, i.e5, = {t € | : usft} # 0}.
Sinceps is of bounded variation, the, is denumerable; let us put

Sy={sn, neN.

Let us fix a pointg € | 0. The case wherg is an end-point foll is analogous.

The proof will proceed into steps.

Step 1. Let us prove first that for ever, = B(tg, h) c | with 0 < h < h(tp) and such that
9Bnh NS, = ¢, we have

w(Bh =S  pa(Bnp)
9) o ==, eclco U Q.
teBp
Letn € N be fixed. For every Kk i < n, we consider a constant9rj = rj(M) < ﬁ—;—

such thatB(s;, i) N B(sj.rj) =¢,i #j,1<i,j <n.
n
Moreover, we puly = U BO(s, ri).

i=1

n

Fixed a constant & n < min{h, rj, 1 <i < 0}, we denote byg , = U Bo(s Jri—n)
i=1

and consider the function

0 tel —ByUln,

dnp®) =11 teBhy—In
linear otherwise

Of coursegr ;, € Co thus, by virtue of the assumption, we have

Ji ¢n,ndu
(10) Rn.p, = %———— eclco Q).
! fl ¢ﬁ,n da teLgh
Note that, puCs , = Bp — [In,;, U (Bh—, — I ], we have

th*Iﬁ’n ¢ﬁ,17 d/L _ M(Bh_n - Iﬁ) +-/.(:ﬁ,n ¢ﬁ,17 d/L
JBn—ts, A A (Bh—y — In) "'fcm g di

If we letn — 0, we get

(11 Ran =

Bhoy—In /Bl —ln  lny /o

and hence
Cr,p \(9Bnh = {tg—h,tg+h}.
As a consequence, we have (see e.g. [14])

r:iino“(Bh_” —In) = n(Bh - In)
(12) r:iLnOK(Bh—n —Im =A(Bp — Ip)

li Chy) = lim A(Cq,) =0
ninolul( ) nino Cn,yp)
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and hence

12) lim #h,, dp = I|m #rpdi=0
n—0 Criy -0 Cn.p

From (11), (12) and (12, we obtain

_ p(Bpn—=Ip)  paBn—In) +us(Bh —In) .

(13) R = By =) *(Br— )

Note that since

n
A(ln)—er, Sézzi<§

we have

(14) _ im A(lp) = _ Iim wua(ly) =0
nN—+00 n—+4o00

Moreover

lus(Bn — Im)| < Iusl(Bh — 1) < Ius|(Su — In) = ) Iusl({sn)

n>n
and, recalling that. has bounded variation

14) _lim - jus(Bp — Ipl = _lim Z Iusl(fsn}) =0
n—+o00 nN— 400 n=n

Finally, from (13), (14) and (3 we conclude that

_ pra(Bp)
li li =
HJTOO n[)nO RA, n = 2h
that, by virtue of (10), proves (9).
Step 2. Let us prove now parta). We recall that

dMa i “a(Bn)
15 —(t
(15) 5 (fo) = lim m—n

By virtue of step 1, for every fixed > 0 such thaB; C |, we have

Ha(Bh) =
o eclco J Qtycclco| J Q) r-ae. O<h<h
teBp teBy

and hence, by letting — 0, and taking (15) into account, we get

(to) eclco | ] Q.

teBy

By virtue of the arbitrariness &f > 0 and in force of assumption (Q), we conclude that

d
S2to e Neleo|J Q) = Qo).

h>0 teBy
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Step 3. For the proof of partb) let us note that

dus us({to})
16 tn) =
(18) dinsl @ = Tasl((toD

sincepus({to}) = fii) dits = fi) oty dius| = £ (to) lus|(fto}).
Leth > 0 be fixed in such a way th&, = B(tg,h) c |I. For every O< n < hwe
consider the continuous function defined by

1 te Bg
oM =1 0 tel —By
linear otherwise

Note that (see e.qg. [14])
(17) us({to)) = ,,"_TOM(B%) = 77|iL1ﬂO/L(Bn).

Moreover we have

By) = du = du — d
u( 127) /;n¢n H /;‘PU M Ln_Bg¢n M

o oo |
= . dA._ d .
Ji dpdr P B,~By Pndit

(18)

By assumption we know that

Ji ¢ du
eclco Q(t) cclco Q)
Ji dpdn U tgh

let us put

Qn:=clco | J Q).

teBp

Since lim / ¢y du = 0, by virtue of P4 we get
n—0Jj

f| ¢y du /
19
(19) 77—>0 jl d’nd)\ ¢n € [Qnloo -
Furthermore, by virtue of (17) we have
n—0
(20) / ¢pdu| < |M|(B,,)—|M|(Bg)longrightarr0w0
anBg

thus, from (18) and taking (17), (19) and (20) into accourg,olutain
1({to}) € [Qnleo for everyh > Osuch thaiB,, = B(tg,h) C I .
Finally, recallingPs we deduce that

n({to) € () [Qnloo = [ﬂ Qh:| = Quo(to)

h>0 h>0
and taking (16) into account, sSin€gx (tg) is a cone, the assertion follows.
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|

DEFINITION 4. Let 1 be a given measure. We will say thapeoperty P holds (A, us)—
a.e. if property P is satisfied for every point t with the exwepperhaps of a set N with
A(N) + us(N) = 0.

From Theorem 2 the following result can be deduced.

THEOREM 3. Assume that
(i) Q has propertiegQ) 1—a.e.
(ii) Qoo has propertiegQ) us—a.e.
Then every measuye which is a solution ofLW) (1, us)—a.e. is also a solution ¢B).
As we will observe in Section 6, the present equivalenceltrgmmong the three formula-

tions (S), (W), (LW)] improves the equivalence betweenrggrand weak formulation proved by
Stewart, by means of a transfinite process in [23].

It is easy to see that Theorem 3 admits the following gereatidin.

THEOREM4. Let Q, : | — C(R™), h > 0 be a net of multifunctions and lgt be a Borel
measure. Assume that

(i) Qoto) = (1] Qn(to) 1-ae;;

h>0
(i) [Qoleo(to) = [)[Qnles(to) ns-a.e;;
h>0
(iii) for (r, us)—a.e. p there existdh = h(tg) > 0 such that for everp < h < h
B #du
jthW € Qn(to)
Bh

for everyg € Cq such thatSuppy C By,.

Theny is a solution of(S).

Proof. Lettg € | be fixed in such a way that all the assumptions hold.
Following the proof of step 1 in Theorem 3, from assumption) we deduce that

ua(Bp)
2h

and hence from assumptign) (as in step 2) we get

€ Qn(to)

d
ﬁ(ta) € hOO Qn(to) = Qofto) -

Finally, analogously to the proof of step 3, from asumpti@is) and(ii ) we obtain

n(ito)) € [)[Qnloo(to) = Qoo (to)
h>0
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and sinceQqo (tg) is a cone, we get

dus w({to})
diisl @ = i € M

4. The main closure theorem

Letl c Rbe aclosed interval and 1€ : | — C(R™M), k > 0, be a sequence of multifunctions.
We introduce first the following definition.

DEFINITION 5. We will say that(Qg)k=0 satisfies condition (QK) at a poitg € E pro-
vided

(QK) Qotto) = (] () el {Jcleo | J Qkty.

h>0neN k>n teBp
We are able now to state and prove our main closure result.

THEOREMS. Let Q¢ : | — C(R™), k > Obe a sequence of multifunctions and(ek)k=o
be a sequence of Borel measures such that

(i) (Quk=o satisfiedQK) condition(x, ug s)-a.e.;
(i) ug w*—converges t@ug;

ditka
5o (D € Qe )r—a.e.
(”I) { %(t)e[Qk]m(t) Uk s—a.€.

Then the following inclusion holds

dlﬁ%a (t) € Qo) r—a.e.
Ko,s t t
Wiy ® € [Qoloo()  os—ace.

Proof. We prove this result as an application of Theorem 4 to the net

Qny= (e Jclco [ Q).

neN k>n TeB(t,h)
By virtue of P5 assumptior(i) assures that both assumptignsand(i) in Theorem 4 hold.

Now, lettg € | be fixed in such a way that assumpti@n ) holds and let € Cg be given
with Suppp € ByN |.
From Theorem 1 we deduce

weclco lJ &t keN
Jsuppy @ d2 teSuppp

and from assumptiofii ) we get

fSuppp ¢ duo — i fSuppp ¢ duk
Jsupps®dr  k=+oo [gypp, @ dA
which gives assumptio(ii ) in Theorem 4.

(1)

(22) € Qn(to)
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5. Further closure theorems for measure differential inclisions

We present here some applications of the main result to kexhkr classes of measure differen-
tial inclusions.

According to standard notations, we denoteLBythe space of summable functions | —
R™ and byBV the space of the functionse L1 which are of bounded variation in the sense of
Cesari [7],i.eV(u) < +oo0.

Letuy : | — R™ k > 0, be a given sequenceit and letQ : | x A c R"1 . ¢c@®M)
be a given multifunction.
DEFINITION 6. We say that the sequencay)k>o satisfies the property ofocal equi-
oscillationat a point ) € | provided
(LEO) lim_lim sup sup |uk(t) — up(tg)| = 0.
—U k-0 teBy

Itis easy to see that the following result holds.

PrRoPOSITION2. If ug converges uniformly to a continuous functiog, then condition
(LEO) holds everywhere in |.

In [10] an other sufficient condition for property (LEO) car bound (see the proof of
Theorem 1).

PropPoOsITIONS. If (Uk)k=0 is a sequence of BV functions such that
(i) uk converges togir—a.e. inl;

(i) supV (ug) < +oo.
keN

Then a subsequencas, )k satisfies conditioLEO) A—a.e. in |.

Let us prove now a sufficient condition for property (QK).

THEOREM6. Assume that the following conditions are satisfied at a pijrt |

(i) Q satisfies propertyQ);
(i) (upk=o satisfies conditiofLEO).

Then the sequence of multifunctiong Q — CR™M), k > 0, defined by
Qk(t) = Q(t, uk(t)) k>0
satisfies propertyQK) at tg.
Proof. By virtue of assumptioriii ), fixede > 0 a number O< h, < ¢ exists such that for every
0 < h < hg anintegeky, exists with the property that for eveky> kp
t € Bp(tp) = |up(to) — uk(®)| < €.
Then for everyk > kp,
clco | Q. uk() c clco U Q(t,X) = Qg .

teBn [t—to|<e,|Xx—Uo(to)|<¢
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Fixedn > kp
cl U clco U Q(t, ug()) C Qg
k>n teBn
and hence
ﬂ cl U clco U Q(t, uk(®)) C Qs
neN k>n teBn

Finally, by virtue of assumptiofi), we have

(e cleo | J Q. uk®) c [ Qe = Qto. up(to))

e>0neN k>n teBp e>0

which proves the assertion.
|

In force of this result, the following closure Theorem 5 candeduced as an application of
the main theorem.

THEOREM7. Let Q : | x A ¢ R™1 — ¢(@®R™) be a multifunction, letiu)k=0 be a
sequence of Borel measures of bounded variations andile u— A, k > 0 be a sequence of
BV functions which satisfy the conditions

(i) Q has propertiegQ) at every point(t, x) with the exception of a set of points whose t-
coordinate lie on a set afx, i s)—null measure;

i) { dﬁi(t) cQt ut)  i-ae.
m(t) € Qoo(t, Uk(t)) uks—a.e.
(iii) uk w*—converges teug;
(iv) supen V(uk) < +o0;
(v) uk converges to g pointwiser—a.e. and satisfies conditi¢hEO) at 1o s—a.e.

Then the following inclusion holds

Ko,
aluo,i\ (1) € Qoo(t, Up())  pos—a.e.

{ dioa 1) ¢ Q(t,upt))  r-ae.
REMARK 1. We recall that the distributional derivative oBa/ functionu is a Borel mea-
sure of bounded variation [17] that we will denote fy.
Moreoveru admits an “essential derivatival’ (i.e. computed by usual incremental quo-

tients disregarding the values takeniwn a suitable Lebesgue null set) which coincides with

duua [o5)

Note that Theorem 7 is an extension and a generalizationeofrthin closure theorem in
[10] (Theorem 1) given for a differential inclusion of thepty

u'(t) € Q(t, u(t)) r—a.e.inl .

To this purpose, we recall that {tix)k>0, is a sequence of equ functions, then a subse-
guence of distributional derivatives*—converges.

The following closure theorem can be considered as a paticase of Theorem 7.
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THEOREMS. Let Q: | x E — C(R™), with E subset of a Banach space, be a multifunc-
tion, let (uk)k=0 be a sequence of Borel measures of bounded variations are)gt-o be a
sequence in E. Assume that the following conditions arsfeedi

(i) Q has propertiegQ) at every point(t, x) with the exception of a set of points whose t-
coordinate lie on a set afx, g s)—null measure;
y E,—d’%a ®eQtay  i-ae.
(” ) Hk.s
m(t) € Qoo(t,ax) i s—a.e.
(iii ) uk w*—converges t@;
(iv) (ax)k converges to@
Then the following inclusion holds

dﬁ%a (1) € Q(t, ap) r—a.e.
Ho,s t t
Tiog (M) € Quo(t.a0)  pos—ace.

As we will prove in Section 6, this last result is an extensidolosure Theorem 3 in [10].
As an application of Theorem 7 also the following result carploved.

THEOREMO. Let Q: | xR" x RP — C(R™), be a multifunction, let f | x R" x R4 —
R" be a function and letuy, vk) : | — R" x RY, k > 0, be a sequence of functions.
Assume that

(i) Q satisfies propertyQ) at every point(t, X, y) with the exception of a set of points whose
t-coordinate lie on a set afx, wy,,s)—null measure;

(ii) f is a Carathéodory function and
[ (t U, 0)] < Y () + Yat) Jul + wat) vl with g e L1i =1,2,3;

v[{f(t) € Q(t, uk(®) — fF(t, u(®), v () r-a.e.

(iii) { H\Zz—t:;(t) € Qoolt, Uy (1)) Uy s—a.€.

(iv) supen V (vk) < +oo and (v converges tag A—a.e.;

(v) (ug)k converges uniformly to a continuous functiafn u

Then the following inclusion holds
{ vé(t) € Q(t, ug(t)) — f(t, ug(t), vo(t)) Ar-a.e.

Hvg,s
m(t) € Quo(t, ug) Hyg,s—a.€.

Proof. If we consider the sequence of Borel measures defined by

b
vk([a, b)) =/ [v (1) + f(t, uc(), oe@)]dr  [a,b] C | k>0
a

it is easy to see that

dvk.a /
d): (1) = v (V) + (1, uet), ve(t)) A—a.e.

It is easy to verify that assumptions assure thady>g is a sequence oBV measure which
w*—converges and the result is an immediate application obEme 7.

de,s = dl/-uk,s

|
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REMARK 2. Differential incusions of this type are adopted as a méatetigid body dy-
namics (see [20] for details). As we will observe in Sectiailé previous result improves the
analogous theorem proved in [23] (Theorem 4).

6. On comparison with Stewart’s assumptions

This section is dedicated to a discussion on the comparistmelen our assumptions and that
adopted by Stewart in [23].

LetQ : E — C(R") be a given multifunction wherE is a subset of a Banach space.

The main hypotheses adopted by Stewart in [23] on muntifaned are the closure of the
graph (i.e. property (K)) and the following condition:
for every € Ethere existbg > Oand Ry > Osuch that
(23) sup inf |Ix| < Rg.
te BE xeQ(t) =Ro

We will prove here that these assumptions are stricly sgotitan property (Q). As a con-
sequence, the results of the present paper improve that igiy23].

PrRoPOSITION4. Let Q be a multifunction with closed graph and lgt¢ E be fixed.
Assume that
for a given g € E there existg > 0 and Ry > 0 such that

sup inf x| <
teBﬁXEQ(t) Ro

then multifunction Q satisfies propeii®) at to.

Proof. By virtue of Lemma 5.1 in [23], fixed a number> 0, there exist§ = §(tg, &) > 0 such
that

t € Bs = Q(t) C Q(tp) + ¢ B(0, 1) + (Qoo(t0))

where(Quo (tp)), denotes the—enlargement of the s€« (tg).
Since the right-hand side is closed and convex

clco | J Q) C Q(to) + & B(0, 1) + (Quo (o)),

teBs

then

Q*(to) := () clco | Q) € Qto) + & B(O, ) + (Qoo(t0)) -
§>0 teBs

Now, fixed an integen € Nand O< ¢ < % we get

Q*(to) C Q(to) +¢ B(0,1) + (Quo(t0)), C Q(to) + B0, 1) + (Qoo(to))%
and lettinge — 0, we obtain
(24) Q*(to) € Qto) + (Qoo(to)) 1 -

Recalling that (se®3)
Q(tp) + Qoo (tp) C Q(to)
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we have
Q(to) + (Qoo(to))% C (Q(to))% + (Qoo(to))% C (Q(tp) + Qoo(to))% C (Q(to))%
and from (24) lettingn — +oo we get

Q*(tg) C Q(tp)

which proves the assertion.
|

This result proves that even if Kuratowski condition (K) isaker than Cesari’s property (Q)
(see Section 2), together with hypothesis (23) it becomésoager assumption. The following
example will show that assumption (23) and (K) are strictigisger than property (Q).

Finally, we recall that inBV setting property (Q) can not be replaced by condition (K)itas
occurs in Sobolev's setting (see [10], Remark 1).

EXAMPLE 1. Let us consider the functidn : R(J)r x R — R defined by

lsiPl i t#0

F(t’”)z{ v] t=0

and the multifunction .
Q(t, ) = epiF(t, ).
Of course assumptioii ) in Proposition 2 does not holds f@ at the pointg = 0.
Moreover, in force of the Corollary to Theorem 3 in A.W.J. &lart [24], it can be easily proved
thatF is seminormal. Thu® satisfies condition (Q) at every point Rar (seePg).
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