
Rend. Sem. Mat. Univ. Pol. Torino
Vol. 56, 4 (1998)

P. Brandi – A. Salvadori

ON MEASURE DIFFERENTIAL INCLUSIONS

IN OPTIMAL CONTROL THEORY

1. Introduction

Differential inclusions are a fundamental tool in optimal control theory. In fact an optimal control
problem

min
(x,u)∈�

J[x,u]

can be reduced (via a deparameterization process) to a problem of Calculus of Variation whose
solutions can be deduced by suitable closure theorems for differential inclusions.

More precisely, if the cost functional is of the type

J[x,u] =

∫

I
f0(t, x(t),u(t))dλ(1)

and� is a class of admissible pairs subjected to differential andstate constraints

(t, x(t)) ∈ A x′(t) = f (t, x(t), u(t)), u(t) ∈ U(t, x(t)) t ∈ I(2)

the corresponding differential inclusion is

(t, x(t)) ∈ A x′(t) ∈ Q̃(t, x(t)) t ∈ I(3)

where multifunctionQ̃ is related to the epigraph of the integrand i.e.

Q̃(t, x) = {(z, v) : z ≥ f0(t, x, u), u = f (t, x, v), v ∈ U(t, x)} .

We refer to Cesari’s book [8] where the theory is developed inSobolev spaces widely.

The extension of this theory toBV setting, motivated by the applications to variational mod-
els for plasticity [2, 3, 6, 13], allowed the authors to provenew existence results of discontinuous
optimal solutions [4, 5, 9, 10, 11, 12].

This generalized formulation involved differential inclusions of the type

(3∗) (t, x(t)) ∈ A x′(t) ∈ Q̃(t, x(t)) a.e. inI

whereu′ represents the “essential gradient” of theBV function x, i.e. the density of the abso-
lutely continuous part of the distributional derivative with respect to Lebesgue measure; more-
over the Lagrangian functional (1) is replaced by the Serrin-type relaxed functional

(1∗) J[x, u] = inf
(xk,uk)→(x,u)

lim inf
k→∞

I [xk,uk] .
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A further extension of this theory was given in [4] where we discussed the existence ofL1

solutions for the abstract evolution equation

(3∗∗) (t,u(t)) ∈ A v(t) ∈ Q(t,u(t)) a.e. inI

whereu andv are two surfaces not necessarely connected. This generalization allowed us to deal
with a more general class of optimization problems inBV setting, also including differential
elements of higher order or non linear operators (see [4] forthe details).

Note that the cost functionalJ takes into account of the whole distributional gradient of the
BV functionu, while the constraints control only the “essential” derivative.

To avoid this inconsistency a new class of inclusions involving the measure distributional deriva-
tive should be taken into consideration. This is the aim of the research we developed in the
present note.

At our knowledge, the first differential inclusion involving the distributional derivative of a
BV function was taken into consideration by M. Monteiro Marques [18, 19] who discussed the
existence of right continuous andBV solutions for the inclusion

u(t) ∈ C(t) −
du

|du|
(t) ∈ NC(t)(u(t)) |du|–a.e. inI(4)

whereC(t) is a closed convex set andNC(t)(a) is the normal cone atC(t) in the pointa ∈ C(t).

These inclusions model the so called sweepping process introduced by J.J. Moreau to deal with
some mechanical problems.

In [21, 22] J.J. Moreau generalized this formulation to describe general rigid body mechan-
ics with Coulomb friction and introduced the so called measure differential inclusions

(4∗)
dµ

dλ
(t) ∈ K (t) λµ–a.e. inI

whereλµ = λ+ |µ|, with λ is the Lebesgue measure andµ is a Borel measure, and whereK (t)
is a cone.

Both the inclusions (4) and (4∗) are not suitable for our purpose since they can not be applied
to multifunctionQ̃(t,u) = epiF(t,u, ·) whose values are not cones, in general.

Recently S.E. Stewart [23] extended this theory to the case of a closed convex setK (t),
not necessarely a cone. Inspired by Stewart’s research we consider here the following measure
differential inclusion

(4∗∗)

dµa

dλ
(t) ∈ Q(t,u(t)) λ–a.e. inI

dµs

d|µs|
(t) ∈ [Q(t,u(t))]∞ µs–a.e. inI

whereµ = µa + µs is the Lebesgue decomposition of the Borel measureµ and [Q(t,a)]∞ is
the asymptotic cone of the non empty, closed, convex setQ(t,a).

Note that measureµ andBV functionu are not necessarely correlated, analogously to inclusion
(3∗∗). In particular, ifµ coincides with the distributional derivative ofu, i.e. dµa

dλ
= u′, the

first inclusion is exactly (3∗), while the second one involves the singular part of the measure
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derivative.

In other words formulation (4∗∗) is the generalization of (3∗) in the spirit of (3∗∗).

The closure theorem we prove here for inclusion (4∗∗) represents a natural extension of that
given in [9, 10, 4, 5] for evolution equations of types (3∗) and (3∗∗). In particular we adopt the
same assumption on multifunctionQ, which fits very well for the applications tõQ and hence
to optimal control problems.

Moreover, we wish to remark that our results improve those given by Stewart under stronger
assumptions on multifunctionQ (see Section 6).

2. Preliminaries

We list here the main notations and some preliminary results.

2.1. On asymptotic cone

DEFINITION 1. Theasymptotic coneof a convex set C⊂
�n is given by

[C]∞ = { lim
k→∞

akxk : ak ↘ 0, xk ∈ C, k ∈ �} .

A discussion of the properties of the asymptotic cone can be found in [16] and [23]. We
recall here only the results that will be useful in the following.

P1. If C is non empty, closed and convex, then[C]∞ is a closed convex cone.

P2. If C is a closed convex cone, then C= [C]∞.

P3. If C is non empty, closed and convex, then[C]∞ is the largest cone K such that x+ K ⊂ C,
with x ∈ C.

Let (C j ) j ∈J be a family of nonempty closed convex values. Then the following results hold.

P4. cl co
⋃

j ∈J

[C j ]∞ ⊂


cl co

⋃

j ∈J

C j




∞

P5. if
⋂

j ∈J

C j 6= φ, then


⋂

j ∈J

C j




∞

=
⋂

j ∈J

[C j ]∞.

2.2. On property (Q)

Let E be a given subset of a Banach space and letQ : E →
�m be a given multifunction. Fixed

a pointt0 ∈ E, and a numberh > 0, we denote byBh = B(t0,h) = {t ∈ E : |t − t0| ≤ h}.

DEFINITION 2. Multifunction Q is said to satisfy Kuratowskiproperty (K)at a point t0 ∈

E, provided

(K) Q(t0) =
⋂

h>0

cl
⋃

t∈Bh

Q(t) .

The graph of multifunction Q is the setgraphQ := {(t, v) : v ∈ Q(t), t ∈ E}.
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It is well known that (see e.g. [8])

P6. graphQ is closed in E×
�m ⇐⇒ Q satisfies condition(K) at every point.

Cesari [8] introduced the following strengthening of Kuratowski condition which is suitable
for the differential inclusions involved in optimal control problems inBV setting.

DEFINITION 3. Multifunction Q is said to satisfy Cesari’sproperty (Q)at a point t0 ∈ E,
provided

(Q) Q(t0) =
⋂

h>0

cl co
⋃

t∈Bh

Q(t) .

Note that if (Q) holds, then the setQ(t0) is necessarily closed and convex.

We will denote by� (�m) the class of non empty, closed, convex subsets of
�m.

Property (Q) is an intermediate condition between Kuratowski condition (K) and upper semicon-
tinuity [8] which is suitable for the applications to optimal control theory. In fact the multifunc-
tion defined by

Q̃(x, u) = epiF(x, u, ·)

satisfies the following results (see [8]).

P7. Q̃ has closed and convex values iff F(x, u, ·) is lower semicontinuous and convex.

P8. Q̃ satisfies property(Q) iff F is seminormal.

We wish to recall that seminormality is a classical Tonelli’s assumption in problems of calculus
of variations (see e.g. [8] for more details).

Given a multifunctionQ : E → � (�m), we denote byQ∞ : E → � (�m) the multifunc-
tion defined by

Q∞(t) = [Q(t)]∞ t ∈ E .

PROPOSITION1. If Q satisfies property(Q) at a point t0, then also multifunction Q∞ does.

Proof. Since

φ 6= Q(t0) =
⋂

h>0

cl co
⋃

t∈Bh

Q(t)

from P4 andP5 we deduce that

Q∞(t0) =
⋂

h>0


cl co

⋃

t∈Bh

Q(t)




∞

⊂
⋂

h>0

cl co
⋃

t∈Bh

Q∞(t) .

The converse inclusion is trivial and the assertion follows.
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3. On measure differential inclusions, weak and strong formulations

Let Q : I →
�n, with I ⊂

�
closed interval, be a given multifunction with nonempty closed

convex values and letµ be a Borel measure onI , of bounded variation.

In [23] Stewart considered the two formulations of measure differential inclusions.

Strong formulation.

(S)

{
dµa
dλ
(t) ∈ Q(t) λ–a.e. inI

dµs
d|µs|

(t) ∈ Q∞(t) µs–a.e. inI

whereµ = µa + µs be the Lebesgue decomposition of measureµ.

Weak formulation.

(W)

∫
I φ dµ∫
I φ dλ

∈ cl co
⋃

t∈I ∩Suppφ
Q(t)

for everyφ ∈ �0, where�0 denotes the set of all continuous functionsφ :
�

→
�+

0 , with
compact support, such that

∫
I φ dλ 6= 0.

Stewart proved that the two formulations are equivalent, under suitable assumptions onQ
(see Theorem 2), by means of a transfinite induction process.

We provide here a direct proof of the equivalence, under weaker assumption.

Moreover, for our convenience, we introduce also the following local version of weak for-
mulation.

Local-weak formulation.
Let t0 ∈ I be fixed. There existsh = h(t0) > 0 such that for every 0< h < h,

(LW)

∫
Bh
φ dµ

∫
Bh
φ dλ

∈ cl co
⋃

t∈Bh

Q(t)

for everyφ ∈ �0 such that Suppφ ⊂ Bh.

Of course,if µ satisfies(W), then(LW) holds for every t0 ∈ I .

Rather surprising also the convers hold, as we shall show in the following (Theorem 3).

In other words, also this last formulation proves to be equivalent to the previous ones.

THEOREM 1. Every solution of(S) is also a solution of(W).

Proof. Let φ ∈ �0 be given. Note that
∫

I φ dµ =
∫

I φ dµa +
∫

I φ dµs moreover
∫

I
φ dµa =

∫

I

dµa

dλ
φ dλ =

∫

I ∩Suppφ

dµa

dλ
dλφ(5)

∫

I
φ dµs =

∫

I

dµs

d|µs|
φ d|µs| =

∫

I ∩Suppφ

dµs

d|µs|
dµs,φ(6)

whereλφ andµs,φ are the Borel measures defined respectively by

λφ(E) =

∫

E
φ dλ µs,φ(E) =

∫

E
φ d|µs| E ⊂ I .
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From (5), in force of the assumption and taking Theorem 1.3 in[1] into account, we get

φa :=

∫
I φ dµa∫
I φ dλ

=

∫
I ∩Suppφ

dµa
dλ

dλφ

λφ(I ∩ Suppφ)
∈ cl co

⋃

t∈I ∩Suppφ
Q(t) .(7)

In the case
∫

I φ d|µs| = 0, then
∫

I φ dµs = 0 and the assertion is an immediate consequence of
(7).

Let us put

(7′) Qφ := cl co
⋃

t∈I ∩Suppφ
Q(t) .

Let us assume now that
∫

I φ d|µs| 6= 0. Then from (6), in force of the assumption we get, as
before

∫
I φ dµs∫

I φ d|µs|
=

∫
I ∩Suppφ

dµs
d|µs|

dµs,φ

µs,φ(I ∩ Suppφ)

∈ cl co
⋃

t∈I ∩Suppφ
Q∞(t) ⊂


cl co

⋃

t∈I ∩Suppφ
Q(t)




∞

= [Qφ ]∞

and since the right-hand side is a cone, we deduce

φs :=

∫
I φ dµs∫
I φ dλ

=

∫
I φ dµs∫

I φ d|µs|
·

∫
I φ d|µs|∫

I φ dλ
∈ [Qφ ]∞ .(8)

From (7) and (8) we have that
∫

I φ dµ∫
I φ dλ

= φa + φs with φa ∈ Qφ φs ∈ [Qφ ]∞

and, by virtue ofP3, we conclude that
∫

I φ dµ∫
I φ dλ

∈ Qφ = cl co
⋃

t∈Suppφ
Q(t)

which proves the assertion.

THEOREM 2. Letµ be a solution of(LW) in t0 ∈ I .

(a) If Q has properties(Q) at t0 and the derivativedµa
dλ
(t0) exists, then

dµa

dλ
(t0) ∈ Q(t0) .

(b) If Q∞ has properties(Q) at t0 and the derivativedµs
d|µs|

(t0) exists, then

dµs

d|µs|
(t0) ∈ Q∞(t0) .
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Proof. Let Sµ denote the set where measureµs is concentrated, i.e.Sµ = {t ∈ I : µs{t} 6= 0}.
Sinceµs is of bounded variation, thenSµ is denumerable; let us put

Sµ = {sn, n ∈ �} .

Let us fix a pointt0 ∈ I 0. The case wheret0 is an end-point forI is analogous.

The proof will proceed into steps.

Step 1. Let us prove first that for everyBh = B(t0, h) ⊂ I with 0 < h < h(t0) and such that
∂Bh ∩ Sµ = φ, we have

µ(Bh − Sµ)

2h
=
µa(Bh)

2h
∈ cl co

⋃

t∈Bh

Q(t) .(9)

Let n ∈ � be fixed. For every 1≤ i ≤ n, we consider a constant 0< r i = r i (n) ≤ 1
n2i

such thatB(si , r i ) ∩ B(sj , r j ) = φ, i 6= j , 1 ≤ i , j ≤ n.

Moreover, we putIn =

n⋃

i=1

B0(si , r i ).

Fixed a constant 0< η < min{h, r i , 1 ≤ i ≤ n}, we denote byIn,η =

n⋃

i=1

B0(si , r i −η)

and consider the function

φn,η(t) =





0 t ∈ I − Bh ∪ In,η

1 t ∈ Bh−η − In
linear otherwise

Of courseφn,η ∈ �0 thus, by virtue of the assumption, we have

Rn,η :=

∫
I φn,η dµ∫
I φn,η dλ

∈ cl co
⋃

t∈Bh

Q(t) .(10)

Note that, putCn,η = Bh −
[
In,η ∪ (Bh−η − In)

]
, we have

Rn,η =

∫
Bh−In,η

φn,η dµ
∫

Bh−In,η
φn,η dλ

=
µ

(
Bh−η − In

)
+

∫
Cn,η

φn,η dµ

λ
(
Bh−η − In

)
+

∫
Cn,η

φn,η dλ
.(11)

If we let η → 0, we get

Bh−η − In ↗ B0
h − In In,η ↗ In

and hence
Cn,η ↘ ∂Bh = {t0 − h, t0 + h} .

As a consequence, we have (see e.g. [14])

lim
η→0

µ(Bh−η − In) = µ(Bh − In)

lim
η→0

λ(Bh−η − In) = λ(Bh − In)

lim
η→0

|µ|(Cn,η) = lim
η→0

λ(Cn,η) = 0

(12)
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and hence

(12′) lim
η→0

∫

Cn,η

φn,η dµ = lim
η→0

∫

Cn,η

φn,η dλ = 0 .

From (11), (12) and (12′), we obtain

lim
η→0

Rn,η =
µ(Bh − In)

λ(Bh − In)
=
µa(Bh − In)+ µs(Bh − In)

λ(Bh − In)
.(13)

Note that since

λ(In) =

n∑

i=1

2r i ≤
2

n

n∑

i=1

1

2i
<

2

n

we have

lim
n→+∞

λ(In) = lim
n→+∞

µa(In) = 0 .(14)

Moreover

|µs(Bh − In)| ≤ |µs|(Bh − In) ≤ |µs|(Sµ − In) =
∑

n>n

|µs|({sn})

and, recalling thatµ has bounded variation

(14′) lim
n→+∞

|µs(Bh − In)| ≤ lim
n→+∞

∑

n>n

|µs|({sn}) = 0 .

Finally, from (13), (14) and (14′) we conclude that

lim
n→+∞

lim
η→0

Rn,η =
µa(Bh)

2h

that, by virtue of (10), proves (9).

Step 2. Let us prove now part(a). We recall that

dµa

dλ
(t0) = lim

h→0

µa(Bh)

2h
(15)

By virtue of step 1, for every fixedh > 0 such thatBh ⊂ I , we have

µa(Bh)

2h
∈ cl co

⋃

t∈Bh

Q(t) ⊂ cl co
⋃

t∈Bh

Q(t) λ–a.e. 0< h < h

and hence, by lettingh → 0, and taking (15) into account, we get

dµa

dλ
(t0) ∈ cl co

⋃

t∈Bh

Q(t) .

By virtue of the arbitrariness ofh > 0 and in force of assumption (Q), we conclude that

dµa

dλ
(t0) ∈

⋂

h>0

cl co
⋃

t∈Bh

Q(t) = Q(t0) .
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Step 3. For the proof of part(b) let us note that

dµs

d|µs|
(t0) =

µs({t0})

|µs|({t0})
(16)

sinceµs({t0}) =
∫
{t0}

dµs =
∫
{t0}

dµs
d|µs|

d|µs| =
dµs

d|µs|
(t0) |µs|({t0}).

Let h > 0 be fixed in such a way thatBh = B(t0,h) ⊂ I . For every 0< η < h we
consider the continuous function defined by

φη(t) =





1 t ∈ Bη
2

0 t ∈ I − Bη

linear otherwise.

Note that (see e.g. [14])

µs({t0}) = lim
η→0

µ(Bη
2
) = lim

η→0
µ(Bη).(17)

Moreover we have

µ(Bη
2
) =

∫

Bη

φη dµ =

∫

I
φη dµ−

∫

Bη−Bη
2

φη dµ

=

∫
I φη dµ∫
I φη dλ

·

∫

I
φη dλ−

∫

Bη−Bη
2

φη dµ .

(18)

By assumption we know that
∫

I φη dµ∫
I φη dλ

∈ cl co
⋃

t∈Bη

Q(t) ⊂ cl co
⋃

t∈Bh

Q(t)

let us put
Qh := cl co

⋃

t∈Bh

Q(t) .

Since lim
η→0

∫

I
φη dµ = 0, by virtue ofP4 we get

lim
η→0

∫
I φη dµ∫
I φη dλ

·

∫

I
φη dλ ∈ [Qh]∞ .(19)

Furthermore, by virtue of (17) we have
∣∣∣∣∣∣

∫

Bη−Bη
2

φη dµ

∣∣∣∣∣∣
≤ |µ|(Bη)− |µ|(Bη

2
)

η→0
longrightarrow 0(20)

thus, from (18) and taking (17), (19) and (20) into account, we obtain

µ({t0}) ∈ [Qh]∞ for everyh > 0such thatBh = B(t0,h) ⊂ I .

Finally, recallingP5 we deduce that

µ({t0}) ∈
⋂

h>0

[Qh]∞ =

[ ⋂

h>0

Qh

]

∞

= Q∞(t0)

and taking (16) into account, sinceQ∞(t0) is a cone, the assertion follows.
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DEFINITION 4. Let µ be a given measure. We will say that aproperty P holds(λ, µs)–
a.e. if property P is satisfied for every point t with the exception perhaps of a set N with
λ(N) + µs(N) = 0.

From Theorem 2 the following result can be deduced.

THEOREM 3. Assume that

(i ) Q has properties(Q) λ–a.e.

(i i ) Q∞ has properties(Q)µs–a.e.

Then every measureµ which is a solution of(LW) (λ,µs)–a.e. is also a solution of(S).

As we will observe in Section 6, the present equivalence result [among the three formula-
tions (S), (W), (LW)] improves the equivalence between strong and weak formulation proved by
Stewart, by means of a transfinite process in [23].

It is easy to see that Theorem 3 admits the following generalization.

THEOREM 4. Let Qh : I → � (�m), h ≥ 0 be a net of multifunctions and letµ be a Borel
measure. Assume that

(i ) Q0(t0) =
⋂

h>0

Qh(t0) λ–a.e.;

(i i ) [Q0]∞(t0) =
⋂

h>0

[Qh]∞(t0) µs–a.e.;

(i i i ) for (λ,µs)–a.e. t0 there existsh = h(t0) > 0 such that for every0< h < h
∫

Bh
φ dµ

∫
Bh
φ dλ

∈ Qh(t0)

for everyφ ∈ �0 such thatSuppφ ⊂ Bh.

Thenµ is a solution of(S).

Proof. Let t0 ∈ I be fixed in such a way that all the assumptions hold.
Following the proof of step 1 in Theorem 3, from assumption(i i i ) we deduce that

µa(Bh)

2h
∈ Qh(t0)

and hence from assumption(i ) (as in step 2) we get

dµa

dλ
(t0) ∈

⋂

h>0

Qh(t0) = Q0(t0) .

Finally, analogously to the proof of step 3, from asumptions(i i i ) and(i i ) we obtain

µ({t0}) ∈
⋂

h>0

[Qh]∞(t0) = Q∞(t0)
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and sinceQ∞(t0) is a cone, we get

dµs

d|µs|
(t0) =

µ({t0})

|µ|({t0})
∈ Q∞(t0) .

4. The main closure theorem

Let I ⊂
�

be a closed interval and letQk : I → � (�m), k ≥ 0, be a sequence of multifunctions.

We introduce first the following definition.

DEFINITION 5. We will say that(Qk)k≥0 satisfies condition (QK) at a pointt0 ∈ E pro-
vided

(QK) Q0(t0) =
⋂

h>0

⋂

n∈N

cl
⋃

k≥n

cl co
⋃

t∈Bh

Qk(t) .

We are able now to state and prove our main closure result.

THEOREM 5. Let Qk : I → � (�m), k ≥ 0 be a sequence of multifunctions and let(µk)k≥0
be a sequence of Borel measures such that

(i ) (Qk)k≥0 satisfies(QK) condition(λ,µ0,s)–a.e.;

(i i ) µk w
∗–converges toµ0;

(i i i )

{ dµk,a
dλ

(t) ∈ Qk(t) λ–a.e.
dµk,s

d|µk,s|
(t) ∈ [Qk]∞(t) µk,s–a.e.

Then the following inclusion holds
{ dµ0,a

dλ
(t) ∈ Q0(t) λ–a.e.

dµ0,s
d|µ0,s|

(t) ∈ [Q0]∞(t) µ0,s–a.e.

Proof. We prove this result as an application of Theorem 4 to the net

Qh(t) =
⋂

n∈N

cl
⋃

k≥n

cl co
⋂

τ∈B(t,h)

Qk(τ) .

By virtue of P5 assumption(i ) assures that both assumptions(i ) and(i i ) in Theorem 4 hold.

Now, let t0 ∈ I be fixed in such a way that assumption(i i i ) holds and letφ ∈ �0 be given
with Suppφ ⊂ Bh ∩ I .
From Theorem 1 we deduce∫

Suppφ φ dµk∫
Suppφ φ dλ

∈ cl co
⋃

t∈Suppφ
Qk(t) k ∈ �(21)

and from assumption(i i ) we get
∫
Suppφ φ dµ0∫
Suppφ φ dλ

= lim
k→+∞

∫
Suppφ φ dµk∫
Suppφ φ dλ

∈ Qh(t0)(22)

which gives assumption(i i i ) in Theorem 4.
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5. Further closure theorems for measure differential inclusions

We present here some applications of the main result to remarkable classes of measure differen-
tial inclusions.

According to standard notations, we denote byL1 the space of summable functionsu : I →�m and byBV the space of the functionsu ∈ L1 which are of bounded variation in the sense of
Cesari [7], i.e.V(u) < +∞.

Let uk : I →
�m, k ≥ 0, be a given sequence inL1 and letQ : I × A ⊂

�n+1 → � (�m)

be a given multifunction.

DEFINITION 6. We say that the sequence(uk)k≥0 satisfies the property oflocal equi-
oscillationat a point t0 ∈ I provided

(LEO) lim
h→0

lim sup
k→∞

sup
t∈Bh

|uk(t)− u0(t0)| = 0 .

It is easy to see that the following result holds.

PROPOSITION2. If uk converges uniformly to a continuous function u0, then condition
(LEO) holds everywhere in I .

In [10] an other sufficient condition for property (LEO) can be found (see the proof of
Theorem 1).

PROPOSITION3. If (uk)k≥0 is a sequence of BV functions such that

(i ) uk converges to u0 λ–a.e. in I;

(i i ) sup
k∈�

V(uk) < +∞.

Then a subsequence(usk)k≥0 satisfies condition(LEO) λ–a.e. in I.

Let us prove now a sufficient condition for property (QK).

THEOREM 6. Assume that the following conditions are satisfied at a pointt0 ∈ I

(i ) Q satisfies property(Q);

(i i ) (uk)k≥0 satisfies condition(LEO).

Then the sequence of multifunctions Qk : I → � (�m), k ≥ 0, defined by

Qk(t) = Q(t,uk(t)) k ≥ 0

satisfies property(QK) at t0.

Proof. By virtue of assumption(i i ), fixedε > 0 a number 0< hε < ε exists such that for every
0< h < hε an integerkh exists with the property that for everyk ≥ kh

t ∈ Bh(t0) H⇒ |u0(t0)− uk(t)| < ε .

Then for everyk ≥ kh

cl co
⋃

t∈Bh

Q(t,uk(t)) ⊂ cl co
⋃

|t−t0|≤ε,|x−u0(t0)|≤ε

Q(t, x) = Qε .
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Fixedn ≥ kh
cl

⋃

k≥n

cl co
⋃

t∈Bh

Q(t,uk(t)) ⊂ Qε

and hence ⋂

n∈�
cl

⋃

k≥n

cl co
⋃

t∈Bh

Q(t,uk(t)) ⊂ Qε .

Finally, by virtue of assumption(i ), we have
⋂

ε>0

⋂

n∈�
cl

⋃

k≥n

cl co
⋃

t∈Bh

Q(t, uk(t)) ⊂
⋂

ε>0

Qε = Q(t0,u0(t0))

which proves the assertion.

In force of this result, the following closure Theorem 5 can be deduced as an application of
the main theorem.

THEOREM 7. Let Q : I × A ⊂
�n+1 → � (�m) be a multifunction, let(µk)k≥0 be a

sequence of Borel measures of bounded variations and let uk : I → A, k ≥ 0 be a sequence of
BV functions which satisfy the conditions

(i ) Q has properties(Q) at every point(t, x) with the exception of a set of points whose t-
coordinate lie on a set of(λ,µ0,s)–null measure;

(i i )

{ dµk,a
dλ

(t) ∈ Q(t,uk(t)) λ–a.e.
dµk,s

d|µk,s|
(t) ∈ Q∞(t,uk(t)) µk,s–a.e.

(i i i ) µk w
∗–converges toµ0;

(i v) supk∈� V(uk) < +∞;

(v) uk converges to u0 pointwiseλ–a.e. and satisfies condition(LEO) atµ0,s–a.e.

Then the following inclusion holds

{ dµ0,a
dλ

(t) ∈ Q(t,u0(t)) λ–a.e.
dµ0,s

d|µ0,s|
(t) ∈ Q∞(t,u0(t)) µ0,s–a.e.

REMARK 1. We recall that the distributional derivative of aBV functionu is a Borel mea-
sure of bounded variation [17] that we will denote byµu.

Moreoveru admits an “essential derivative”u′ (i.e. computed by usual incremental quo-
tients disregarding the values taken byu on a suitable Lebesgue null set) which coincides with
dµu,a

dλ
[25].

Note that Theorem 7 is an extension and a generalization of the main closure theorem in
[10] (Theorem 1) given for a differential inclusion of the type

u′(t) ∈ Q(t,u(t)) λ–a.e. inI .

To this purpose, we recall that if(uk)k≥0, is a sequence of equi–BV functions, then a subse-
quence of distributional derivativesw∗–converges.

The following closure theorem can be considered as a particular case of Theorem 7.
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THEOREM 8. Let Q : I × E → � (�m), with E subset of a Banach space, be a multifunc-
tion, let (µk)k≥0 be a sequence of Borel measures of bounded variations and let(ak)k≥0 be a
sequence in E. Assume that the following conditions are satisfied

(i ) Q has properties(Q) at every point(t, x) with the exception of a set of points whose t-
coordinate lie on a set of(λ,µ0,s)–null measure;

(i i )

{ dµk,a
dλ

(t) ∈ Q(t,ak) λ–a.e.
dµk,s

d|µk,s|
(t) ∈ Q∞(t,ak) µk,s–a.e.

(i i i ) µk w
∗–converges toµ0;

(i v) (ak)k converges to a0.

Then the following inclusion holds
{ dµ0,a

dλ
(t) ∈ Q(t,a0) λ–a.e.

dµ0,s
d|µ0,s|

(t) ∈ Q∞(t,a0) µ0,s–a.e.

As we will prove in Section 6, this last result is an extensionof closure Theorem 3 in [10].

As an application of Theorem 7 also the following result can be proved.

THEOREM 9. Let Q : I ×
�n ×

� p → � (�m), be a multifunction, let f: I ×
�n ×

�q →�n be a function and let(uk, vk) : I →
�n ×

�q , k ≥ 0, be a sequence of functions.
Assume that

(i ) Q satisfies property(Q) at every point(t, x, y) with the exception of a set of points whose
t-coordinate lie on a set of(λ, µv0,s)–null measure;

(i i ) f is a Carathéodory function and
| f (t,u, v)| ≤ ψ1(t)+ ψ2(t) |u| + ψ3(t) |v| withψi ∈ L1 i = 1, 2,3;

(i i i )

{
v′k(t) ∈ Q(t,uk(t))− f (t,uk(t), vk(t)) λ–a.e.
dµvk,s

d|µvk,s|
(t) ∈ Q∞(t,uk(t)) µvk,s–a.e.

(i v) supk∈� V(vk) < +∞ and(vk)k converges tov0 λ–a.e.;

(v) (uk)k converges uniformly to a continuous function u0.

Then the following inclusion holds
{
v′0(t) ∈ Q(t, u0(t))− f (t,u0(t), v0(t)) λ–a.e.
dµv0,s

d|µv0,s|
(t) ∈ Q∞(t,u0) µv0,s–a.e.

Proof. If we consider the sequence of Borel measures defined by

νk([a, b]) =

∫ b

a
[v′k(t)+ f (t,uk(t), vk(t))] dλ [a, b] ⊂ I k ≥ 0

it is easy to see that

dνk,s = dµvk,s
dνk,a

dλ
(t) = v′k(t)+ f (t,uk(t), vk(t)) λ–a.e.

It is easy to verify that assumptions assure that(νk)k≥0 is a sequence ofBV measure which
w∗–converges and the result is an immediate application of Theorem 7.
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REMARK 2. Differential incusions of this type are adopted as a modelfor rigid body dy-
namics (see [20] for details). As we will observe in Section 6the previous result improves the
analogous theorem proved in [23] (Theorem 4).

6. On comparison with Stewart’s assumptions

This section is dedicated to a discussion on the comparison between our assumptions and that
adopted by Stewart in [23].

Let Q : E → � (�n) be a given multifunction whereE is a subset of a Banach space.

The main hypotheses adopted by Stewart in [23] on muntifunction Q are the closure of the
graph (i.e. property (K)) and the following condition:

for every t0 ∈ Ethere existσ0 > 0and R0 > 0such that

sup
t∈Bσ

inf
x∈Q(t)

‖x‖ ≤ R0 .
(23)

We will prove here that these assumptions are stricly stronger than property (Q). As a con-
sequence, the results of the present paper improve that given in [23].

PROPOSITION4. Let Q be a multifunction with closed graph and let t0 ∈ E be fixed.
Assume that
for a given t0 ∈ E there existσ0 > 0 and R0 > 0 such that

sup
t∈Bσ

inf
x∈Q(t)

‖x‖ ≤ R0

then multifunction Q satisfies property(Q) at t0.

Proof. By virtue of Lemma 5.1 in [23], fixed a numberε > 0, there existsδ = δ(t0, ε) > 0 such
that

t ∈ Bδ H⇒ Q(t) ⊂ Q(t0)+ ε B(0,1)+ (Q∞(t0))ε
where(Q∞(t0))ε denotes theε–enlargement of the setQ∞(t0).
Since the right-hand side is closed and convex

cl co
⋃

t∈Bδ

Q(t) ⊂ Q(t0)+ ε B(0,1)+ (Q∞(t0))ε

then
Q∗(t0) :=

⋂

δ>0

cl co
⋃

t∈Bδ

Q(t) ⊂ Q(t0)+ ε B(0,1)+ (Q∞(t0))ε .

Now, fixed an integern ∈ � and 0< ε < 1
n , we get

Q∗(t0) ⊂ Q(t0)+ ε B(0,1)+ (Q∞(t0))ε ⊂ Q(t0)+ ε B(0,1)+ (Q∞(t0)) 1
n

and lettingε → 0, we obtain

Q∗(t0) ⊂ Q(t0)+ (Q∞(t0)) 1
n
.(24)

Recalling that (seeP3)
Q(t0)+ Q∞(t0) ⊂ Q(t0)
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we have

Q(t0)+ (Q∞(t0)) 1
n

⊂ (Q(t0)) 1
n

+ (Q∞(t0)) 1
n

⊂ (Q(t0)+ Q∞(t0)) 1
n

⊂ (Q(t0)) 2
n

and from (24) lettingn → +∞ we get

Q∗(t0) ⊂ Q(t0)

which proves the assertion.

This result proves that even if Kuratowski condition (K) is weaker than Cesari’s property (Q)
(see Section 2), together with hypothesis (23) it becomes a stronger assumption. The following
example will show that assumption (23) and (K) are strictly stronger than property (Q).
Finally, we recall that inBV setting property (Q) can not be replaced by condition (K), asit
occurs in Sobolev’s setting (see [10], Remark 1).

EXAMPLE 1. Let us consider the functionF :
�+

0 ×
�

→
�

defined by

F(t, v) =

{ 1
t sin2 1

t + |v| t 6= 0
|v| t = 0

and the multifunction
Q̃(t, ·) = epiF(t, ·) .

Of course assumption(i i ) in Proposition 2 does not holds for̃Q at the pointt0 = 0.
Moreover, in force of the Corollary to Theorem 3 in A.W.J. Stoddart [24], it can be easily proved
that F is seminormal. Thus̃Q satisfies condition (Q) at every pointt ∈

�+
0 (seeP8).
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