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SINGULARITIES OF STABILIZING FEEDBACKS

1. Introduction

This paper is concerned with the stabilization problem fooatrol system of the form
1) X = f(x,u), ue K,

assuming that the set of control valuésc R™ is compact and that the mdp: R" x R™ — R

is smooth. Itis well known [6] that, even if every initial s¢x < R" can be steered to the origin
by an open-loop contral = u*(t), there may not exist a continuous feedback contre! U (x)
which locally stabilizes the system (1). One is thus foraedbbk for a stabilizing feedback
within a class of discontinuous functions. However, thaeto a theoretical difficulty, because,
when the functiord is discontinuous, the differential equation

2) x = f (x,U(X))

may not have any Carathéodory solution. To cope with thdlem, two approaches are possi-
ble.

1) On one hand, one may choose to work with completely arbifiesagiback controlt). In this
case, to make sense of the evolution equation (2), one ntustlirce a suitable definition
of “generalized solution” for discontinuous O.D.E. ForB@olutions, a general existence
theorem should be available.

II) On the other hand, one may try to solve the stabilization lprotwithin a particular class
of feedback control&) whose discontinuities are sufficiently tame. In this caswiill
suffice to consider solutions of (2) in the usual Caratheépdense.

The first approach is more in the spirit of [7], while the settavas taken in [1]. In the
present note we will briefly survey various definitions of geatized solutions found in the liter-
ature [2, 11, 12, 13, 14], discussing their possible appdoao problems of feedback stabiliza-
tion. In the last sections, we will consider particular skes of discontinuous vector fields which
always admit Carathéodory solutions [3, 5, 16], and oatiome research directions related to
the second approach.

In the following, @ and 9 denote the closure and the boundary of a®gtvhile B, is
the open ball centered at the origin with radiusTo fix the ideas, two model problems will be
considered.

Asymptotic Stabilization (AS). Construct a feedbaak= U (x), defined orR" \ {0}, such that
every trajectory of (2) either tends to the origintas> oo or else reaches the origin in
finite time.

Suboptimal Controllability (SOC). Consider the minimum time function

(3) T X =min{t : there exists a trajectory of (1) with(0) = X, x(t) =0} .

87



88 A. Bressan

Call R(r) = {x:T(x) <t} the set of points that can be steered to the origin within
time t. For a givene > 0, we want to construct a feedbaok= U (x), defined on a
neighborhoodv of R(t), with the following property. For every € V, every trajectory

of (2) starting aik reaches a point insidB, within time T (X) + ¢.

Notice that we are not concerned here with time optimal faekiy, but only with subopti-
mal ones. Indeed, already for systemQR?n an accurate description of all generic singularities
of a time optimal feedback involves the classification ofrgéanumber of singular points [4, 15].
In higher dimensions, an ever growing number of differengslarities can arise, and time op-
timal feedbacks may exhibit pathological behaviors. A clatgclassification thus appears to
be an enormous task, if at all possible. By working with sulmogl feedbacks, we expect that
such bad behaviors can be avoided. One can thus hope toumrsstboptimal feedback controls
having a much smaller set of singularities.

2. Nonexistence of continous stabilizing feedbacks

The papers [6, 19, 20] provided the first examples of conystiesns which can be asymptotically
stabilized at the origin, but where no continuous feedbaxkrol u = U (x) has the property
that all trajectories of (2) asymptotically tend to the arigst — oo. One such case is the
following.

ExamPLE 1. Consider the control system 5
(4) (X1, %2, X3) = (Ug, Up, XgUp — XaU7) .

As control setk one can take here the closed unit balRif. Using Lie-algebraic techniques,
it is easy to show that this system is globally controllaldehe origin. However, no smooth
feedbacku = U (x) can achieve this stabilization.

Indeed, the existence of such a feedback would imply theende of a compact neigh-
borhoodV of the origin which is positively invariant for the flow of tremooth vector field
gx) = f (x,U(x)). Calling Ty (x) the contingent cone [2, 8] to the Sétat the pointx, we
thus haveg(x) € Ty (x) at each boundary point € dV. Sinceg cannot vanish outside the
origin, by a topological degree argument, there must be @t pdiwhere the fieldy is parallel
to thexz-axis: g(x*) = (0, 0, y) for somey > 0. But this is clearly impossible by the definition
(4) of the vector field.

Using a mollification procedure, from a continuous stabilizfeedback one could easily con-
struct a smooth one. Therefore, the above argument alse oulethe existence of continuous
stabilizing feedbacks.

We describe below a simple case where the problem of subabtiomtrollability to zero
cannot be solved by any continuous feedback.

EXAMPLE 2. Consider the system
(5) (X1, %) = (U, —x2),  ue[-1,1].

The set of points that can be steered to the origin within tiree 1 is found to be

1 1/1
(6 RO = {(Xl, X2) 1 X1 € [-1,1], §|Xf| =X2 = 1 <§ + Xl + X% - |X%|>} .
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figure 1

Moreover, all time-optimal controls are bang-bang with astrone switching, as shown in fig. 1.
Assume that for every > 0 there exists a continuous feedbad¢ksuch that all trajectories
of
% = (i, %) = (Ue00, —xF)

starting at some point € R(1) reach the balB, within time T (X) +¢. To derive a contradiction,
fix the pointP = (0, 1/24). By continuity, for eache sufficiently small, there will be at least
one trajectory?® (-) starting from a point on the upper boundary

1/1
) 0+R) = {(xl, xp) xel-11 xp=7 (5 +xgl 2 — |xf|>}

and passing througR before reaching a point iB;. By compactness, as— 0 we can take a
subsequence of trajectorigs(-) converging to functionx*(-) on [0, 1]. By constructionx*(-) is
then a time optimal trajectory starting from a point on theemboundary® R(1) and reaching
the origin in minimum time, passing through the potat some intermediate time €]0, 1][.
But this is a contradiction because no such trajectory xist

3. Generalized solutions of a discontinuous O.D.E.

Let g be a bounded, possibly discontinuous vector fiel®Bn In connection with the O.D.E.
®) X=9(x),

various concepts of “generalized” solutions can be founthénliterature. We discuss here the
two main approaches.

(A) Starting fromg, by some regularization procedure, one constructs an wggraicontinu-
ous multifunctionG with compact convex values. Every absolutely continuoustion
which satisfies a.e. the differential inclusion

9) X € G(X)

can then be regarded as generalized solutions of (8).
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In the case oKrasovskii solutionsone takes the multifunction
(10) G(x) = [ Tolg(y) : ly — x| <&} .
e>0

HereTo Adenotes the closed convex hull of the setTheFilippov solutionsare defined simi-
larly, except that one now excludes sets of measure zerotfierdomain ofy. More precisely,
calling V the family of setsA ¢ R" of measure zero, one defines

(11) G =[] (] coloy :ly—xl<e y¢A}.
£>0 AeN

Concerning solutions of the multivalued Cauchy problem

(12) x(0) = X, X(t) € G (X(1)) tel0,T],

one has the following existence result [2].

THEOREM1. Let g be a bounded vector field &Y. Then the multifunction G defined by
either (10) or (11) is upper semicontinuous with compactvesrvalues. For every initial data
X, the familyF* of Carathéodory solutions of (12) is a nonempty, compamtnected, acyclic
subset o ([O, T]; R”). The mapx — FX is upper semicontinuous. If g is continuous, then
G(x) = {g(x)} for all x, hence the solutions of (8) and (9) coincide.

It may appear that the nice properties of Krasovskii or pitip solutions stated in Theorem
1 make them a very attractive candidate toward a theory afodinuous feedback control.
However, quite the contrary is true. Indeed, by Theorem Istietion sets for the multivalued
Cauchy problem (12) have the same topological properti¢seasolution sets for the standard
Cauchy problem

13) x(0) =X, X(t) = g (x(1) tel0.T]

with continuous right hand side. As a result, the same tapodd obstructions found in Ex-
amples 1 and 2 will again be encountered in connection withs&vskii or Filippov solu-
tions. Namely [10, 17], for the system (4) one can show thaefery discontinuous feedback
u = U(x) there will be some Filippov solution of the correspondingcdintinuous O.D.E. (2)
which does not approach the origintas> oo. Similarly, for the system (5), when > 0 is
small enough there exists no feedback U (x) such that every Filippov solution of (2) starting
from some poink € R(1) reaches the baB, within time T (X) + .

The above considerations show the necessity of a new defirgfi“generalized solution”
for a discontinuous O.D.E. which will allow the solution $etbe possibly disconnected. The
next paragraph describes a step in this direction.

(B) Following a second approach, one defines an algorithm wiocistoucts a family of-
approximate solutiong,. Letting the approximation parameter— 0, every uniform
limit x(-) = lim,_, g X () is defined to be a generalized solution of (8).

Of course, there is a wide variety of techniques [8, 13, 14]cfinstructing approximate
solutions to the Cauchy problem (13). We describe here twiicpéarly significant procedures.

Polygonal Approximations. By a generapolygonale-approximatesolution of (13) we mean
any functionx : [0, T] — R" constructed by the following procedure. Consider a parti-
tion of the interval [0 T], say O=tg < t; < --- < tm = T, whose mesh size satisfies

maxty —ti_1) <e¢.
i
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Fori = 0,...,m— 1, choose arbitrary outer and inner perturbatiqnsal( e R", with
the only requirement thag | < e, |ei/| < ¢. By induction oni, determine the values
such that

(14) IXo — X| <&, Xit1 =X + (tipt1—t) (6 +9(x +€))

Finally, definex(-) as the continuous, piecewise affine function such xitg) = x; for
alli =0,...,m.

Forward Euler Approximations. By aforward Eulere-approximatesolution of (13) we mean
any polygonal approximation constructed without taking eamer perturbation, i.e. with
e =0foralli.
|

In the following, the trajectories of the differential ingiion (12), withG given by (10) or
(12) will be called respectivelKrasovskiior Filippov solutionsof (13). By aforward Euler
solutionwe mean a limit of forward Euler-approximate solutions, as— 0. Some relations
between these different concepts of solutions are illtestrbelow.

THEOREM2. The set of Krasovskii solutions of (13) coincides with thteo$eall limits of
polygonale-approximate solutions, as— 0.

For a proof, see [2, 9].

ExamMPLE 3. On the real line, consider the vector field (fig. 2)

wo |1 fx=o,
90=1 1 ifx<o.

The corresponding multifunctioB, according to both (10) and (11) is
{1} if x>0,
G(x)=1{ [-1,1] ifx=0,
{(—-1} if X <0.

The set of Krasovskii (or Filippov) solutions to (13) withtial dataXx = 0 thus consists of all

functions of the form
0 ift<rt,

X(t):{ t—7 ift>r,

together with all functions of the form

0 ift<rt,
X(t)z{ T—t ift>rt,

for anyt > 0. On the other hand, there are only two forward Euler sahstio
Xt =t, Xo(t) = —t.

In particular, this set of limit solutions is not connected.

EXAMPLE 4. OnR? consider the vector field (fig. 3)

0,-1) ifxp>0,
gxy,x2) =1{ (0,1) ifxp <O,
(1,0) ifxp=0.
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figure 2 figure 3

The corresponding Krasovskii multivalued regularizat{o) is

{(0, -1)} if xo >0,
co{(0, —-1), (0, 1), (1,00} ifxo=0.

Given the initial conditiorx = (0, 0), the corresponding Krasovskii solutions are all the func-
tions of the formt — (x1(t), 0), with X1(t) € [0, 1] almost everywhere. These coincide with
the limits of forward Euler approximations. On the other dhasince the lingx, = 0} is a null
set, the Filippov multivalued regularization (11) is

{0, =1} if xo >0,
Gr(x1,X2) = | {(0,1)} if X <0,
co{(0,-1),(0,1)} ifxo=0.

Therefore, the only Filippov solution starting from thegini is the functionx(t) = (0, 0) for all
t>0.

4. Patchy vector fields

For a general discontinuous vector figjdthe Cauchy problem for the O.D.E.
(15) X = g(x)

may not have any Carathéodory solution. Or else, the solsgt may exhibit very wild behavior.

It is our purpose to introduce a particular class of disecardus mapg whose corresponding
trajectories are quite well behaved. This is particulantgfesting, because it appears that various
stabilization problems can be solved by discontinuousifaekl controls within this class.

DEFINITION 1. By apatchwe mean a paif$2, g) where ¢ R" is an open domain with
smooth boundary and g is a smooth vector field defined on alm@igbod of2 which points
strictly inward at each boundary point & 9<2.

Calling n(x) the outer normal at the boundary poigtwe thus require

(16) (g(¥),n(x)) <0 forallx € 9%2.
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DEFINITION 2. We say that g Q — R" is a patchy vector fielbn the open domaig if
there exists a family of patché&2y, gx) : @ € A} such that
- Ais atotally ordered set of indices,
- the open set8, form a locally finite covering of2,
- the vector field g can be written in the form

17) g(X) = gu(X) if X € Qg \ U Qp.
B>«
By defining
(18) a*(X) =max{e e A: X € Q) ,

we can write (17) in the equivalent form
19) 9(X) = Gyr(x)(X) forall x € .

We shall occasionally adopt the longer notat(m g, (R, ga)aeA) to indicate a patchy
vector field, specifying both the domain and the single pegcl©f course, the patchéR,, dy)
are not uniquely determined by the vector figldindeed, whenevar < 8, by (17) the values
of gy on the sef24 \ Q24 are irrelevant. This is further illustrated by the followilemma.

LEMMA 1. Assume that the open sd&?g form a locally finite covering of2 and that, for
eacha € A, the vector field g satisfies the condition (16) at every poinExdQqy \ Ug=q 28-
Then g is again a patchy vector field.

Proof. To prove the lemma, it suffices to construct vector figidswhich satisfy the inward
pointing property (16) at every point € 9Qy and such thafly = go 0N Qo \ Ug=oQg. TO
accomplish this, for eacta we first consider a smooth vector fiaelg such thaty (x) = —n(x)
on 3. The mapd, is then defined as the interpolation

Go () = 9 (X) G (X) + (1 — @(X)) va (X),
whereg is a smooth scalar function such that
|1 ifxeQa\Up=aQp,
p(x) = { 0 if x € 9Qq and(g(x), n(x)) > 0.
O

The main properties of trajectories of a patchy vector fiéigd ¢) are collected below.

THEOREM3. Let(R, 9, (. Gu), 1) be a patchy vector field.

(i) Ift — x(t) is a Carathéodory solution of (15) on an open interval J nthe— X(t) is
piecewise smooth and has a finite set of jumps on any compziatewal J ¢ J. The
function t — a™*(x(t)) defined by (18) is piecewise constant, left continuous amd no
decreasing. Moreover there holds

(20) X((t—)) = g(x(t)) forallt € J.

(ii) For eachx € Q, the Cauchy problem for (15) with initial condition(® = X has at
least one local forward Carathéodory solution and at mast dackward Carathéodory
solution.
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figure 4

(iii) The set of Carathéodory solutions of (15) is closed. Moexigely, assume that, x:
[ay, by] — Qis a sequence of solutions and,as> oo, there holds

a, — a, b, — b, Xy(t) = X(t) forallt €]a, b[ .

Thenx(-) is itself a Carathéodory solution of (15).

(iv) The set of a Carathéodory solutions of the Cauchy proble3h ¢tincides with the set of
forward Euler solutions.

Proof. We sketch the main arguments in the proof. For details see [1]

To prove(i), observe that on any compact interval ] a solutionx(-) can intersect only
finitely many domain£2,, say those with indices; < ap < --- < am. It is now convenient
to argue by backward induction. Sin€g,,, is positively invariant for the flow ofyy,,, the
set of times{t € [a, b] : X(t) € Qq,,} Must be a (possibly empty) interval of the forim]b].
Similarly, the set{t efa, b]: x) e Qamfl} is an interval of the formt},_1,tm]. After m
inductive steps we conclude that

(1) = Gy (X(1)  t€ltj il

for some timegj witha =t; <ty < --- < tyy1 = b. All statements ini) now follow from
this fact. In particular, (20) holds because eachsketis open and positively invariant for the
flow of the corresponding vector fiely,.
Concerning(ii ), to prove the local existence of a forward Carathéodorytsmi, consider
the index
a=max{e € A:X € Qq} .

Because of the transversality condition (16), the solutibthe Cauchy problem

X = 0gg(X), x(0) = X
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remains inside; for allt > 0. Hence it provides also a solution of (15) on some positive
interval [Q, §].

To show the backward uniqueness propertyxigt), xo(-) be any two Carathéodory solu-
tions to (15) withx1(0) = xo(0) = X. Fori = 1, 2, call

o () = maxfe € A: X (1) € Qq} .

By (i), the maps > o (t) are piecewise constant and left continuous. Hence theseséx 0
such that
af() =a5(t) =a =max{a € A: X € Q) forallt €] —45,0].

The uniqueness of backward solutions is now clear, becaude-os, 0] both x; andx, are
solutions of the same Cauchy problem with smooth coeffisient

X = Oz (X), x(0) = Xx.

Concerningiii ), to prove thak(-) is itself a Carathéodory solution, we observe that on any
compact subinterval C]a, b[ the functionsu,, are uniformly continuous and intersect a finite
number of domain§,, say with indicesr; < oo < --- < am. For eachy, the function

af(t) = max{a € A: Xy (t) € Qq}
is non-decreasing and left continuous, hence it can beemritt the form
ay(t) =ajift e]t}), }’Jrl] .

By taking a subsequence we can assume that, as oo, tJV — fj for all j. By a standard
convergence result for smooth O.D.E’s, the functioprovides a solution t& = gq; (X) on
each open subinterva| i]fj , fj +1[- Since the domain®g are open, there holds

X(t) ¢ Qpforall g >aj, telj.

On the other hand, sinagy; is inward pointing, a limit of trajectorief, = gq; (xy) taking
values withinQaj must remain in the interior oﬂaj. Hencea™ ()?(t)) =aj forallt e Ij,
achieving the proof ofiii ).

Regardingiv), letx, : [0, T] — Q be a sequence of forward Eukeapproximate solutions
of (13), converging tX(-) ase — 0. To show thak is a Carathéodory solution, we first observe
that, fore > 0 sufficiently small, the maps— o™ (x¢(t)) are non-decreasing. More precisely,
there exist finitely many indicag; < --- < am and times 0= tg < tf <..-<t§ =Tsuch
that

oa* (Xe (1) = @ t E]tf,y tf] .

By taking a subsequence, we can assmfn(-» fj for all j, ase — 0. On each open interval

]fj_l, fj[ the trajectoryX is thus a uniform limit of polygonal approximate solutionstbe
smooth O.D.E.

(22) X = 0o (X) .
By standard O.D.E. theory,is itself a solution of (21). As in the proof of paiti ), we conclude
observing thatr* (X(t)) = «j for all t €]fj_1. fj].

To prove the converse, lat: [0, T] — € be a Carathéodory solution of (13). By, there
existindicesr; < --- < amandtimesO=tg <t; < --- < tm = T such thai(t) = Qo (X(1)
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fort €]tj_1,tj[. For eachn > 1, consider the polygonal ma(-) which is piecewise affine
on the subintervals| i, tj k+1], j = 1,...,m k=1,...,nand takes valueg(tj k) = Xj k-
The timegtj k and the values;j i are here defined as

) k ) _
ik =1+~ =D, Xk =X k+2 .

Asn — oo, it is now clear thatxa, — x uniformly on [0, T]. On the other hand, for a fixed
¢ > 0 one can show that the polygonalg(-) are forward Eulee-approximate solutions, for all
n > N; sufficiently large. This concludes the proof of pérnt).

|
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figure 5

ExAMPLE 5. Consider the patchy vector field on the plane (fig. 5) defimed17), by
taking
Q= R2, Qo = {xp > X2}, Q3 = {xp < —X2},
01(X1, X2) = (1, 0), ga(x1,X2) =(0, 1), 93X, x2) = (0, —1).
Then the Cauchy problem starting from the origin at time= 0 has exactly three forward
Carathéodory solutions, namely

xPDty=t,0, xPv=0t, xPt=@©-t) t=o0.
The only backward Carathéodory solution is
xPt)y=t.0 t=<o.

On the other hand there exist infinitely many Filippov sans. In particular, for every < 0 <
7/, the function
t—-170 ift<rt,
xt) =1 (0,0) ift e[z,7],
t—=1,0 ift>1
provides a Filippov solution, and hence a Krasovskii soluis well.
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5. Directionally continuous vector fields

Following [3], we say that a vector fielglon R" is directionally continuousf, at every pointx
whereg(x) # 0 there holds

(22) Jim _g0m) = g(x)
for every sequence, — X such that

Xn —X g(x)
[Xn —X| (9]

Heres = §(x) > 0 is a function uniformly positive on compact sets. In otherds (fig. 6),
one requireg(Xn) — g(x) only for the sequences converging¢aontained inside a cone with
vertex atx and opening around an axis having the direction @fx).

(23) <dforalln>1.

figure 6

For these vector fields, the local existence of Carathgotiajectories is known [16]. It
seems natural to ask whether the stabilization problem3 GAESOC) can be solved in terms
of feedback controls generating a directionally contirmgactor field. The following lemma
reduces the problem to the construction of a patchy vector fie

LEMMA 2. Let(Q, g, (Qq, ga)aeA) be a patchy vector field. Then the m@plefined by

(24) GO0 = Ga () ifx € Qo \ | Qp

B>«
is directionally continuous. Every Carathéodory solatiaf
(25) % = §(x)
is also a solution ok = g(x). The set of solutions of (25) may not be closed.
Since directionally continuous vector fields form a muchdler class of maps than patchy

vector fields, solving a stabilization problem in terms afgbg fields thus provides a much better
result. To see that the solution set of (25) may not be clasmtsider
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ExamMPLE 6. Consider the patchy vector field B¢ defined as follows.

QI =R2, Q={x<0), g1(x1,x2) =(1,0), ga(xs,%) = (0, —1).

_[ @0 x>0,
(26) 9(x, X2) = { ©,—1) ifxy<0.
The corresponding directionally continuous field is (fig. 7)

i [ @0 ifxp>0,
27 9(x1, X2) = { (0,-1) ifxy<0.

The functiong — X, (t) = (t, &) are trajectories of both (26) and (27). Howevergas 0, the
limit functiont — x(t) = (t, 0) is a trajectory of (26) but not of (27).

g g

TITTIT TTTTT

figure 7

6. Stabilizing feedback controls

In this section we discuss the applicability of the previthesory of discontinuous O.D.E’s to-
ward the construction of a stabilizing feedback. We firsaliee basic definition [7, 18].

DEFINITION 3. The system (1) is said to be globatigymptotically controllablé¢o the
origin if the following holds.

1 - Attractivity. For eachx e R" there exists some admissible controkwX (t) such that the
corresponding solution of

(28) (t) = f (x(t), u*(t)), x(0) = X

either tends to the origin as-t> oo or reaches the origin in finite time.

2 - Lyapunov stability. For eache > 0 there existss > 0 such that the following holds. For
everyX € R with [X| < § there is an admissible controFuas in 1. steering the system
from X to the origin, such that the corresponding trajectory d)(8atisfiegx(t)| < e for
allt > 0.

The next definition singles out a particular class of piesewdonstant feedback controls,
generating a “patchy” dynamics.

DEFINITION 4. Let (Q 0, (R, ga)aEA) be a patchy vector field. Assume that there exist
control values k € K such that, for eackk € A

(29) Qe () = f(x. ky) forallx e Q4 \ ) 5.

B>«
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Then the piecewise constant map

(30) U = ke ifx e Qo \ | 2

B>a

is called apatchy feedbackontrol on€.

The main results concerning stabilization by discontirufaedback controls can be stated
as follows. For the proofs, see [7] and [1] respectively.

THEOREMA4. If the system (1) is asymptotically controllable, then ¢hexists a feedback
control U : R" \ {0} — K such that every uniform limit of sampling solutions eittends
asymptotically to the origin, or reaches the origin in finitae.

THEOREMS. If the system (1) is asymptotically controllable, then éhekists a patchy
feedback control U such that every Carathéodory solutib(2peither tends asymptotically to
the origin, or reaches the origin in finite time.

Proof. In view of part(iv) of Theorem 3, the result stated in Theorem 4 can be obtained as
consequence of Theorem 5. The main part of the proof of The&reonsists in showing that,
given two closed ball8’ ¢ B centered at the origin, there exists a patchy feedback tbatss
every pointx € B inside B’ within finite time. The basic steps of this construction deetshed
below. Further details can be found in [1].

1. By assumption, for each poifite B, there exists an open loop conttol> u*(t) that steers
the system fronx into a pointx’ in the interior ofB’ at some timer > 0. By a density
and continuity argument, we can replacewith a piecewise constant open loop control
G (fig. 8), say

Ut) = ko € Kif t €]ty ty11] .
for some finite partition G= tg < t1 < --- < tm = 7. Moreover, it is not restrictive to
assume that the corresponding trajectory y (t) = x(t; X, 0) has no self-intersections.

figure 8

2. We can now define a piecewise constant feedback couatrel U (x), taking the constant
valuesky;, ... , Ky, ON a narrow tubd aroundy, so that all trajectories starting inside
I" eventually reach the interior &’ (fig. 9).
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figure 9

3. By slightly bending the outer surface of each section of theeT", we can arrange so that
the vector fieldg, (x) = f (X, ky) point strictly inward along the portiobQy \ Qg 1.
Recalling Lemma 1, we thus obtain a patchy vector field (fig. d€fined on a small
neighborhood of the tubié, which steers all points of a neighborhoodkahto the interior
of B.

figure 10

4. The above construction can be repeated for every pointthe compact seB. We now se-
lect finitely many pointxq, ... , XN and patchy vector fields{,Qi 2 Gis (000 Gi0)gen; )
with the properties that the domaites cover B, and that all trajectories of each fiaigl

eventually reach the interior &’. We now define the patchy feedback obtained by the
superposition of thg;, in lexicographic order:

9(X) =di,a X if X € Qj o \ U Qj.p-
(j.B)= (i)

This achieves a patchy feedback control (fig. 11) defined oeighborhood ofB \ B’
which steers each point & into the interior ofB’.

5. For every integer, call BY be the closed ball centered at the origin with radiu$ 2By the
previous steps, for evenythere exists a patchy feedback contthl steering each point
in B, insideB, 1, say

(31) Uy =knaif xeQua\ | Q5.

B>a

The property of Lyapunov stability guarantees that the fami all open set§Q, 4 :

veZ,a=1,...,N,}forms alocally finite covering aR" \ {0}. We now define the
patchy feedback control
(32) Up(X) = Kyo if X € Quov \ U Qg

(1, B)=(v,)
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figure 11

where the set of indice®, @) is again ordered lexicographically. By construction, the
patchy feedback (32) steers each poir¢ BY into the interior of the smaller ba'+1
within finite time. Hence, every trajectory either tendsltte origin as — oo or reaches
the origin in finite time.

|

7. Some open problems

By Theorem 5, the asymptotic stabilization problem can Beesbwithin the class of patchy
feedback controls. We conjecture that the same is true éoptbblem of suboptimal controlla-
bility to zero.

Conjecture 1. Consider the smooth control system (1). For a fixed 0, call R(z) the set of
points that can be steered to the origin within timeThen, for every > 0, there exists
a patchy feedbackt = U (x), defined on a neighborhodd of R(z), with the following
property. For everg € V, every trajectory of (2) starting &t reaches a point insidB,
within time T (X) + ¢.

Although the family of patchy vector fields forms a very peutar subclass of all discon-
tinuous maps, the dynamics generated by such fields maypstitery complicated and
structurally unstable. In this connection, one should ples¢éhat the boundaries of the
setsQ2, may be taken in generic position. More precisely, one caihtli modify these
boundaries so that the following property holdsx IE dQq; N - - - N 3Qq,, then the unit
normalsng,, ... , N, are linearly independent. However, since no assumptiotaised
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on the behavior of a vector fielg, at boundary points of a different domagty with
B # a, even the local behavior of the set of trajectories may beeglifficult to classify.
More detailed results may be achieved for the special capkapér systems with control
entering linearly:

m
(33) X =Y fiooui, U= (Ug,...,Uum) € K,
i=1

whereK ¢ R™ is a compact convex set. In this case, it is natural to comjedhe exis-
tence of stabilizing feedbacks whose dynamics has a veiitelinset of singular points.
More precisely, consider the following four types of sirgities illustrated in fig. 12. By
acutwe mean a smooth curve along which the fieldy has a jump, pointing outward
from both sides. At points at the of a cut, the figlds always tangent tg. We call the
endpoint arincoming edg®r anoutgoing edgelepending on the orientation gf A point
where three distinct cuts join is calledrigple point Notice that the Cauchy problem with
initial data along a cut, or an incoming edge of a cut, has twavdrd local solutions.
Starting from a triple point there are three forward solusio

cut point
triple point

incoming cut edge outgoing cut edge
figure 12

Conjecture 2. Let the planar control system (33) be asymptotically cdlatibde, with smooth
coefficients. Then both the asymptotic stabilization peabl(AS) and the suboptimal
zero controllability problem (SOC) admit a solution in terof a feedbacki = U (x) =
U1(X), ..., Un(X)) € K, such that the corresponding vector field

m
g0 = Y fi00U; (x)

i=1
has singularities only of the four types described in fig. 12.
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