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LOCAL SOLVABILITY OF SOME CLASSES OF LINEAR AND

NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS

Abstract.
The paper deals with the local nonsolvability of several examples of linear and

nonlinear partial differential equations. In the linear case we prove nonsolvability
in Schwartz distribution space while in the nonlinear case we prove the nonex-
istence of classical solutions as well as the nonexistence of L∞ ∩ Hs, s > 0,
solutions.

1. This paper deals with the local nonsolvability of severalexamples of linear and nonlinear
partial differential equations (PDE). In the linear case weprove nonsolvability in Schwartz dis-
tribution spaceD′ while in the nonlinear case we prove the nonexistence of classical solutions as
well as the nonexistence ofL∞ ∩ Hs, s > 0 solutions. We hope that some illustrative examples
in the nonlinear case could be useful in a further development of the theory of the local nonsolv-
ability. Y.V. Egorov stated the problem of finding necessaryconditions for the local solvability
of nonlinear PDE having in mind the well known Hormander’s necessary condition for the local
solvability of linear PDE inD′ [2]. We analyse in this paper several examples in order to stress
some difficulties arising in the nonlinear situation.

2. We shall propose at first some results on nonsolvability (nonhypoellipticity) of several
examples of linear PDE inD′. So consider the following class of PDE withC∞ coefficients

(1) P(x, D) =
∑

|α|≤m

aα(x)D
α, aα(x) ∈ C∞ (

R
n)

.

DEFINITION 2.1. The operator (1) is quasihomogeneous if and only if P
(

tµx, t−µξ
)

=
tγ P(x, ξ), ∀t > 0, ∀(x, ξ) ∈ R

2n, γ = const.

As usual,µ = (µ1, . . . , µn), µ j > 0, 1 ≤ j ≤ n, tµx =
(

tµ1x1, . . . , t
µn xn

)

. Without
loss of generality we assume that 0< µ1 ≤ µ2 ≤ µ2 ≤ . . . ≤ µn.

REMARK 2.1. P quasihomogeneous implies that its formal adjoint operatort P is quasiho-
mogeneous too.

Assume that

(i ) Kert P∩S
(

R
n)

6= 0 andS
(

R
n)

is the Schwartz space of the rapidly decreasing functions
at infinity.

THEOREM2.1. The operator R= P + Q, where the quasihomogeneous operator P satis-
fies (i) and R, ord R= s is an arbitrary differential operator with coefficients flat at 0, is locally
nonsolvable at 0 in D′.
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The proof of this theorem is a modification of the proof of the central result in [7] and we
omit the details.

We will illustrate Theorem 2.1 with several examples. Some generalizations will be consid-
ered too.

EXAMPLE 2.1. LetP = x∂y − y∂x + h
(

x2 + y2), h
(

x2 + y2) ∈ C∞ near(0, 0). This is
an operator of the real principal type. We claim thatP is locally nonsolvable at the origin inD′

if and only if h(0) ∈ i {0,±1,±2, . . .} andh
(

x2 + y2) − h(0) is flat at 0.

EXAMPLE 2.2. Let P(t, Dt , Dx) = Dm
t + at Dp

x , p ≥ 1, m -odd. ThenP is quasihomo-
geneous withµ1 = 1, µ2 = m+1

p . The operatorP is locally nonsolvable at 0 inD′ if: 1) p -
even,Ima> 0, 2) p - odd, Ima 6= 0.

EXAMPLE 2.3 (M. CHRIST, G. KARADZHOV [8]). Let L = −X2 − Y2 + i a(x) [X, Y],
whereX = ∂x , Y = ∂y + xk∂t , [X,Y] = kxk−1∂t .

The operatorL is not locally solvable at 0 inD′ if and only if
1) k = 1, a(0) ∈ {±1,±3,±5, . . .}, a(m)(0) = 0, ∀m ≥ 1,
2) k ≥ 2, a(0) ∈ {±1}, a(m)(0) = 0, ∀m ≥ 1.

We shall propose a new and elementary proof of the sufficiencyof this result in the case
k-odd.

The approach used in studying Examples 2.1 and 2.3 enables usto investigate the local
nonsolvability of some operators with coefficients flat at 0.So consider the following model
example from [6]:

(2) L = D2
t + λ2(t)D2

x − a(t)
λ2(t)

3(t)
Dx ,

where3(t) = ei8e−|t |−1
, 8 ∈

[

0, π2
)

, a(t) =
{

a−, t < 0
a+, t ≥ 0,

, a± = const., λ(t) = 3′(t) =

ei8t−2sgnte−|t |−1
, i.e. if we put30(t) = e−|t |−1 ⇒ 3(t) = ei830, λ(t) = ei8t−2sgnt30.

Certainly,3 andλ are flat at 0. It is proved in Theorem 2.4.32 from [6] that ifa− = −2n − 1,
a+ = −2l −1 ora− = 2n+1,a+ = 2l +1, l ,n being nonnegative integers then the operator (2)
is not locally solvable at(0,0) in D′. The proof in [6] is based on violation of the well known
Hörmander necessary condition for local solvability from[2]. We give here a rather different
proof of the same result explaining the local nonsolvability of (2) by the existence of infinitely
many compatibility conditions to be satisfied by the right hand side f of Lu = f , u ∈ D′.

EXAMPLE 2.4. Consider now the operator of real principal type

(3) Pc = x∂y − y∂x + c , c = const.

According to Example 2.1Pc is locally nonsolvable at the origin inD′ if c ∈ i Z, while it is
locally solvable at 0 ifc 6∈ i Z.

After the polar change of the variablesx = ρ cosϕ, y = ρ sinϕ we get thatPc → ∂
∂ϕ

+ c

and if c ∈ R
1 we reduce the solvability of (3) inC

(

x2 + y2 < ε2)

to the solvability of the next
ODE:

∂u

∂ϕ
+ cu = f (ρ, ϕ) , u(ρ, ϕ + 2π) ≡ u(ρ, ϕ) ,
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∀ρ ∈ [0, ε], ∀ϕ ∈ [0,2π ].

Thusu(ρ,0)
(

1 − e−2πc) = e−2πc ∫ 2π
0 ecs f (ρ, s) ds.

As e−2πc 6= 1 for c 6= 0 a periodic solution always exists. In the casec = 0 ⇒
∫ 2π
0 f (ρ, s) ds = 0, ∀ρ ∈ [0, ε] and this is the explanation of the local nonsolvability ofP0

at the origin.

EXAMPLE 2.5. Consider now the nonlinear equation

(4) P0u = f (x, y)+ g(u), g ∈ C1
(

R
1
)

, g(u) ≥ 0, g(u) = 0, ⇔ u = 0

and suppose that the necessary condition for the local solvability of P0v = f ∈ C1 near the
origin is fulfilled:

(5)
∫ 2π

0
f (ρ, ϕ)dϕ = 0, ∀ρ ∈ [0, ε] .

Moreover, let the functionf be nontrivial, i.e.

(6) ∃(ρν, ϕν) → (0, ϕ0), f (ρν , ϕν) 6= 0

Then we claim that the equation (4) is locally nonsolvable inC1 near the origin.

Assume now that (5) is violated, i.e.∃ρν → 0 such that
∫ 2π
0 f (ρν, ϕ)dϕ > 0 (< 0),

g(u) ≥ 0 (≤ 0).

Then (4) is locally nonsolvable near 0 inC1. Thus even small nonlinear perturbationsg(u)
of the locally solvable equationP0v = f lead to nonsolvability. The effect just observed is not
only due to the fact thatP0 is locally nonsolvable at 0 inD′. In fact, consider the locally solvable
in L2 operatorPc, c-real valued constant,c 6= 0. We shall investigate the local nonsolvability of

(7) Pcu = f (u), f ∈ C1
(

R
1
)

EXAMPLE 2.6. The equation (7) is locally nonsolvable near the originin the classC1 if
and only if f (λ) 6= cλ, ∀λ ∈ R

1.

Thus each nonlinear perturbationf (λ) of Pc located above (below) the straight liney = cλ
leads to nonexistence of a classical solution (even locally) of the equation (7).

In our previous Examples 2.5, 2.6 local nonsolvability inC1 was shown. Here we study
nonsolvability inHs ∩ L∞, s > 0 as well. For the sake of simplicity we shall investigate second
order PDE with real valuedC∞ coefficients and only real valued solutions will be checked.
Thus assume that the operatorL2 is locally nonsolvable at the origin inD′. More precisely, we
suppose that for the real valued functionf ∈ C∞(ω), ω 3 0 there does not exist a distribution
solutionu ∈ D′ of L2u = f in ω. Putu1 ∈ C∞(ω), L2u1 = f1 ∈ C∞(ω). Then the operator
P is nonsolvable inω for the right hand sidef + f1.

Let us make a change of the unknown functionu in the operatorL2: u = ϕ(v), ϕ ∈ C2(

R
1)

,
ϕ′ > (<)0. Thenuxi = ϕ′(v)vxi , uxi x j = ϕ′(v)vxi x j + ϕ′′(v)vxi vx j .

Putting ϕ′′(v)
ϕ′(v) = g(v) ∈ C(R) we haveϕ(v) =

∫ v
0 e

∫ s
0 g(λ) dλ ds, ϕ′(v) = e

∫ v
0 g(λ) dλ,

ϕ′′(v) = g(v)e
∫ v

0 g(λ) dλ.
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EXAMPLE 2.7. (a) L2 = ∂2
t − a2(t)∂2

x + b(t)∂x (Egorov [5]).

Suppose that the equationL2u = f ∈ C∞(ω) is nonsolvable inC2(ω). Then the nonlin-
ear equation

(8) L̃2(v) = L2(v)+ g(v)
(

v2
t − a2(t)v2

x

)

= f e−
∫ v(t,x)

0 g(λ) dλ

is nonsolvable inC2(ω).

(b) Let L2u1 = f1, u1 ∈ C∞(ω) andL2u = f ∈ C∞(ω) be nonsolvable inC2(ω). Then the
nonlinear equation

(9) ˜̃L2(v) = L2(v)+ g(v)
(

v2
t − a2v2

x

)

− f e−
∫ v

0 g(λ) dλ = f1e−
∫ v

0 g(λ) dλ.

is nonsolvable inC2(ω).

Thus for each functionf2 ∈ C∞(ω), ω 3 0 we can find a nonlinear perturbation of the
locally nonsolvable at 0 inD′ operatorL2 and such that the corresponding nonlinear equation

L̃2(v) = f̃2
( ˜̃L2(v) = ˜̃f2

)

is nonsolvable inC2(ω).

If the function g ∈ C∞(

R
1)

then the nonlinear operatorf (u) is well defined for each
u ∈ L∞ ∩ Hs

loc, s > 0. This way we prove nonsolvability of the equations considered in

Example 2.7 not only inC2(ω) but in the Sobolev spaces as well.

Proof of Example 2.1.After the polar changex = ρ cosϕ, y = ρ sinϕ we have thatP →
∂
∂ϕ

+ h
(

ρ2)

andzn = (x + i y)n, x2 + y2 = 1, ∀n ∈ Z are the eigenfunctions on the torusT1

of the differential operatorddϕ ; Lzn = inzn, L = x∂y − y∂x , z = x + i y.

Let Pu = f ∈ C∞
0 (ω) andω is a circular neighbourhood of the origin. Thenf (x, y) =

f (ρ cosϕ, ρ sinϕ) =
∑+∞

−∞ fn(ρ)einϕ , fn(ρ) = 1
2π

∫ 2π
0 f (ρ cosϕ, ρ sinϕ)e−inϕ dϕ, f (0,0)

= f0(0), fn(0) = 0, n 6= 0. Moreover,| fn(ρ)| ≤ Ck
1+|n|k , ∀k ∈ Z+, Ck = const.,‖ f ‖2

L2(ω)
=

2π
∑+∞

−∞
∫ ε0
0 | fn(ρ)|2ρ dρ, ε0 = diamω.

We are looking for a solutionu which is a vector valued distribution with values inD′(T1)

.
Thus

u(x, y) = u(ρ, ϕ) =
+∞
∑

−∞
un(ρ)e

inϕ , un(ρ) ∈ D′(0, ε0), u ∈ D′
(

(0, ε0)⊗ T1
)

.

So Pu = f implies that

un(ρ)
(

in + h
(

ρ2))

= fn(ρ) ,

as{einϕ } forms a basis inD′(T1).

We shall study several cases:

1. h ≡ in0 for somen0 ∈ Z (⇒ h 6= n,∀n 6= n0)

2. h(0) 6∈ i Z

3. h
(

ρ2)

= in0 + c0ρ
2k + O

(

ρ2k+2)

, k ∈ Z+, k ≥ 1, c0 = const.6= 0

4. h
(

ρ2)

= in0 + e
(

ρ2)

ande
(

ρ2)

is flat at 0.
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Case 1. f−n0(ρ) = 0 in (0, ε0), i.e.
∫ 2π
0 f (ρ cosϕ, ρ sinϕ)ein0ϕ dϕ = 0 ∀ρ ∈ (0, ε0).

Thus we have infinitely many compatibility conditions to be satisfied by the right handsidef .
So P is locally nonsolvable at 0 inD′.

Case 2. LetP = L + c(x, y), c ∈ C∞ near 0,c(0, 0) 6∈ i Z. Therefore, a more general
case will be treated. ObviouslyP = (L + c(0, 0))+ c(x, y)− c(0, 0) ≡ L0 + d(x, y). Simple
computations show that

‖Pu‖L2(ω) ≥ ‖L0u‖L2(ω) − ‖d(x, y)u‖L2(ω)

≥ ‖L0u‖L2(ω) + O(diamω)‖u‖L2(ω), ∀u ∈ C∞
0 (ω) .

Having in mind that|in + c(0, 0)| ≥ c1 = const.> 0 we conclude that

‖L0u‖2
0 = 2π

+∞
∑

−∞

∫ ε0

0
ρ|un(ρ)|2|in + c(0, 0)|2 dρ ≥ c2

1‖u‖2
0 ,

i.e. ‖Pu‖0 ≥ c1
2 ‖u‖0, ∀u ∈ C∞

0 (ω) taking diamω to be sufficiently small.

So,t P is locally solvable at 0. The same result is valid forP.

Case 3. Letn 6= −n0 and 0< ε0 � 1. Then|i (n + n0)+ c0ρ
2k + O

(

ρ2k+2)

| ≥ 1
2, while

u−n0(ρ) = f−n0(ρ)

c0ρ
2k

(

1+O
(

ρ2
)) ∈ D′(0, ε0).

If we are looking forL2(ω) solution of our problem we must impose the next additional

requirements:f−n0(0) = . . . = f (2k−1)
−n0

(0) = 0 ⇒ u−n0(ρ) will be smooth in(0, ε0).

We point out that in case 3.
∥

∥ρ2ku
∥

∥

0 ≤ d0‖ f ‖0, ∀u ∈ C∞
0 (ω), i.e. we have local solvability near the origin for each

f ∈ C∞
0 (ω) and the corresponding solution is such that

∥

∥

(

x2 + y2)ku
∥

∥

L2(ω)
< ∞.

Assume now that
∥

∥ρ−2k f
∥

∥

0 < ∞. Then for eachu ∈ C∞
0 (ω): | f (u)| ≤ d0‖Pu‖0

(

f (u) =
∫

ω ρ
−2k fρ2ku

)

. According to Riesz representation theorem there exists a function

w ∈ L2(ω) such thatf (u) = (w, Pu), i.e. t Pw = f . Therefore, a local solvability result inL2

is valid under finitely many compatibility conditions onf , namely
∥

∥ρ−2k f
∥

∥

L2(ω)
< ∞.

Case 4. Consider now the functions2
(

ρ2)

(x1 + i x2)
−n0, 2 ∈ C∞

0 , 2 flat at 0,2 6≡ 0,

0 ≤ 2 ≤ 1 for 0 ≤ ρ ≤ ε0
2 and2

(

ρ2)

(x1+ i x2)
n0. Obviously2

(

ρ2)

(x1+ i x2)
−n0 ∈ Ker L1∩

S
(

R
2)

, L1 = x∂y − y∂x + in0. As the operatorL1 is quasihomogeneous withµ1 = µ2 = 1 we
apply theorem 2.1 and conclude that the operatorP is locally nonsolvable at 0 in case 4.

Proof of Example 2.2.In case 1 we find a rapidly decreasing exponent in the kernel ofDm
t − at

and in case 2 in the kernel ofDm
t ± at by using Fourier transformation int .

Proof of Example 2.3.Case 2. ThenL = D2
x +

(

Dy +xk Dt
)2−ka(0)xk−1 Dt −kxk−1(a(x)−

a(0))Dt = P + Q andQ has flat coefficients at 0. PutP = ξ2 +
(

η + xkτ
)2 − ka(0)τxk−1.

Obviously P is quasihomogeneous withµ1 = µ2 = 1,µ3 = k + 1, γ = −2. In order to apply
Theorem 2.1 we are seeking for a nontrivial solutionϕ ∈ S

(

R
3), P(ϕ) = 0. A partial Fourier

transformation with respect to(y, t) gives us:

P̂ = D2
x +

(

η + xkτ
)2 − kxk−1τ =

(

Dx + i
(

η + xkτ
)

) (

Dx − i
(

η + xkτ
)

)
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(To fix the ideas we assume thata(0) = 1)

Evidentlyû = e−ηx−τ xk+1
k+1 ∈ Ker

(

Dx − i
(

η+ xkτ
))

. We point out that̂u depends on two
parametersη, τ andû ∈ S

(

R
1
x
)

if (η, τ) belongs to a compact set inτ > 0. So let

ϕ(x, y, t) =
∫∫

R2
ei (ηy+tτ )e

−
(

ηx+ τxk+1
k+1

)

h1(τ)h2(η) dτ dη ,

whereh1,2 are cut off functions, supph1 ∈ [1,2], 0< h1(τ) < 1 if τ ∈ (1,2), supph2 ∈ [0, 1],
0< h2(η) < 1, if η ∈ (0,1).

We claim thatϕ ∈ S
(

R
3), ϕ 6≡ 0. This fact can be verified by integration by parts, namely

∂η

(

ei (ηy+tτ )
)

= ei (ηy+tτ )i y ,

∂τ

(

ei (ηy+tτ )
)

= ei (ηy+tτ )i t .

The more complicated cases are(i ) |y| ≥ A = const.> 0, |t | ≤ A, (i i ) |t | ≥ A, |y| ≤ A,
(i i i ) |t | ≥ A, |y| ≥ A. In case(i ) we use the identity

ϕ = (−1)N

(i y)N

∫∫

R2
ei (ηy+tτ )∂N

η

(

e−ηx−τ xk+1
k+1 h2(η)

)

h1(τ) dτ dη

and the fact thatN is an arbitrary integer ande−ηx−τ xk+1
k+1 ∈ S

(

R
1
x
)

form a bounded family in
S
(

R
1
x
)

for {0 ≤ η ≤ 1, 1 ≤ τ ≤ 2}.
The case(i i ) is treated similarly as(i ). In case(i i i ) we apply the identity

ϕ = 1

(i t )N (i y)N

∫∫

R2
ei (ηy+tτ )∂N

τ ∂
N
η

(

h1(τ)h2(η)e
−ηx−τ xk+1

k+1

)

dη dτ .

There are no difficulties to see that both the operatorsP, t P are locally nonsolvable at 0
which implies the nonsolvability ofL , t L .

Case 1. We make the changez = η + xτ , τ 6= 0 in the equation

[

D2
x + (η + xτ)2 − a(0)τ

]

û = 0, a(0) ∈ {±1,±3, . . .}

and we obtain
[

D2
zτ + z2

τ
− a(0)

]

û(z) = 0 .

The changez = √
τ y, τ > 0 leads us to the equation

(

D2
y + y2 − a(0)

)

v(y) = 0 .

This is the harmonic oscillator equation ifa(0) ∈ {1,3, . . .}. We remind to the reader

that vn(x) = (−1)ne
x2
2

(

e−x2)(n) ∈ S(R) are the solutions of
(

D2
x + x2)

vn = (2n + 1)vn,
n ∈ {0,1, 2, . . .}. So we takeû = vn

(

τ−1/2η + xτ1/2)

and thenû form a bounded family in

S
(

R
1
x
)

for {1 ≤ τ ≤ 2, 0 ≤ η ≤ 1}.
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There are no difficulties to verify that the function

ϕ =
∫∫

R2
ei (ηy+tτ )vn

(

τ−1/2η + τ1/2x
)

h1(τ)h2(η)dη dτ

is nontrivial and belongs toS
(

R
3)

.

According to Theorem 2.1 both the operatorsL , t L are locally nonsolvable at 0 and are not
C∞ hypoelliptic too.

Proof of Example 2.4.Let us make a partial Fourier transformation with respect tox in Lu = 0
and putx → ξ , û = û(t, ξ). So we have

ût t − λ2(t)ξ2û + ã
λ2(t)

3(t)
ξ û = 0, ã = const.

The changêu = tŵ(t, ξ) in the previous equation leads to

ŵt t + 2

t
ŵt − λ2ξ2

(

1 − ã

ξ3

)

ŵ = 0 .

Entering in the complex domain by the changeτ = i3(t)ξ we get

ŵττ + 1

τ
ŵτ +

(

1 − i
ã

τ

)

ŵ = 0 ,

i.e.
τŵττ + ŵτ + (τ − i ã)ŵ = 0 .

Another change of the unknown function

ŵ

( z

2i

)

= e− z
2 f (z) , z = 2i τ = −23(t)ξ

enables us to conclude that

(10) z fzz+ (1 − z) fz − α f = 0 , α = 1 + ã

2
.

But (10) is the confluent hypergeometric equation (Kummer’sequation). As it is well known [1]
the ODE (10) has two linearly independent solutions

f1(z) = ψ(α,1, z) , f2(z) = ψ(1 − α,1,−z) ,

the functionψ being given by a rather complicated integral formula. In ourspecial casẽa =
±(2n + 1), n nonnegative integer, or̃a = ±(2l + 1), l - nonnegative integer⇒ α = −n if
ã = −2n − 1, and 1− α = −n if ã = 2n + 1, α = −l if ã = −2l − 1, and 1− α = −l if
ã = 2l + 1.

To fix the things let

{

a+ = −2l − 1
a− = −2n − 1

. According to the theory of special functions [1]

ψ(−n,1, z) = (−1)nn!L0
n(z) , ψ(−l ,1, z) = (−1)l l !L0

l (z) ,

andL0
n(z) = 1

n! ez dn

dzn

(

e−zzn)

are the famous Laguerre polynomials,z
(

L0
n
)′′ + (1 − z)

(

L0
n
)′ +

nL0
n = 0. Obviously,L0

n(0) = L0
l (0) = 1.
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So û = tŵ =
{

te3(t)ξ L0
n(−23(t)ξ) , t ≤ 0,

te3(t)ξ L0
l (−23(t)ξ) , t ≥ 0.

is aC∞ solution of (2) with right-hand

side 0.

Consider now the Fourier integral operator (FIO)

(11) Ew1(t, x) = u(t, x) =
∫ ∞

−∞
h(ξ)eixξ û(t, ξ)ŵ1(ξ) dξ ,

whereh ∈ C∞(

R
1)

, h(ξ) = 1, ξ ≤ −1, 0≤ h(ξ) ≤ 1, h = 0 for ξ ≥ −1/2,w1 ∈ E ′(
R

1).

Our investigations are microlocal in the cone0 : −ξ ≥ c0|τ |, c0 > 0, (t, x) ∈ ω, (0,0) ∈
ω.

Obviously, Re3 > 0 for t 6= 0.

The kernel of (11) is given by

∫ 0

−∞
h(ξ)ei (x−y)ξ te3(t)ξ L0

n(−23(t)ξ) dξ for t ≤ 0

and by
∫ 0

−∞
h(ξ)ei (x−y)ξ te3(t)ξ L0

l (−23(t)ξ) dξ for t ≥ 0

i.e. the phase function is(x − y)ξ while the amplitude

a(x, y, t, ξ) = th(ξ)L0
n(−23(t)ξ)e3(t)ξ for t ≤ 0 .

We shall prove thata ∈ Sn
1,1/2(0). The same results are valid fort ≥ 0.

So we have to show thate3(t)ξ ∈ S0
1,1/2(0).

In fact, ∂
k

∂tk
∂ l

∂ξ l e3ξ = ∂k

∂tk

(

3l e3ξ
)

and we have to prove at first inductively that

(12)

∣

∣

∣

∣

∣

∂k

∂tk
e3(t)ξ

∣

∣

∣

∣

∣

≤ ck|ξ |
k
2 e

Re3 ξ

2k , k = 0, 1, . . . .

The observations that
(

3′
0

)2 ≤ const30 ande
cos830

ξ

2k 30 ≤ const|ξ | complete the proof of
(12).

The estimation
∣

∣

∣

∣

∣

∂k

∂tk

∂ l

∂ξ l
e3ξ

∣

∣

∣

∣

∣

≤ dk,l |ξ |−l+ k
2 e

Re3 ξ

2k

is proved inductively too with respect tok having in mind that

|3l e3ξ | ≤ cl |ξ |−l eRe3 ξ
2 , l ≥ 0

and that
|3′e3ξ | ≤ const|ξ |−

1
2 eRe3 ξ

2

Thus according to [3]

0
⋂

W F′(E) ⊆ {(t, x, y; τ, ξ, η) : x = y, τ = 0, ξ = η < 0, t = 0}

asa ∈ S−∞
1,1/2 for t 6= 0.
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ObviouslyL Ew1 = 0. The restrictionEw1|t=0 is well defined asW F′(E)
⋂

{τ 6= 0} = ∅
and

∂

∂t
u(0, x) =

∫ 0

−∞
h(ξ)eixξ ŵ1(ξ)dξ .

The ψ .d.o. just obtained is microlocally hypoelliptic forξ < 0 ⇒ W F(∂t u(0, x))
⋂

0 =
W F(u)

⋂

0.

Takingw1 ∈ E ′(
R

1) s.t. W F(w1) = {(0, ξ), ξ < 0} we conclude that0
⋂

W F(u) =
{(0,0, 0, ξ)in − ξ ≥ c0|τ |}.

The well known properties of the FIO E [3] enable us to define its formally adjoint operator
t E by the formula

〈t Ew(t, x), v(x)〉D′(R1
) = 〈w(t, x), Ev(x)〉D′(R2

) .

Let v ∈ E ′(
R

2)

andt Lv = f
(

⇒ f ∈ E ′(
R

2)) ⇒ t E t Lv = t E f ⇒

(13) t E f = 0

asL E = 0.

So the solvability of the equationt Lv = f in E ′ leads to the fulfillment of infinitely many
compatibility conditions by the right-hand sidef .

Obviously, for eachg ∈ D′(
R

2) (

E ′(
R

2))

t Eg(y) =
∫∫

R2
e−iyξh(ξ)û(t, ξ)ĝ(t,−ξ) dξ dt

andĝ(t,−ξ) is the partial Fourier transformation ofg with respect tox.

The necessary condition (13) on the right-hand sidef of t Lv = f for local solvability at
the origin can be rewritten in the next form:

(14)

∫∫

t≥0
e−iyξ h(ξ)te3(t)ξ L0

l (−23(t)ξ) f̂ (t,−ξ) dt dξ+
∫∫

t≤0
e−iyξ h(ξ)te3(t)ξ L0

n(−23(t)ξ) f̂ (t,−ξ)dt dξ = 0 ,

∀y ∈ R
1.

This way we proved the local nonsolvability oft L and the existence of a solution ofLu =
f ∈ C∞ havingW F(u) = {(0,0,0, ξ), ξ < 0}, i.e. a solution with an isolated singularity along
a conic ray.

REMARK 2.2. The coefficients of (2) belong to Gevrey classG2 and the projector on the
kernel (11) can be estimated in the ultradistribution spaces G′

θ
, θ ≥ 2. This way we have results

on the existence of a solution with a prescribed Gevrey singularity along a conic ray as well we
can prove a theorem on local nonsolvability in the corresponding ultradistribution spaces. To do
this we use several results from [3] and the fact that the cutoff symbol h(ξ) can be chosen inGθ ,
for eachθ > 1.
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Proof of Example 2.5.According to the necessary condition for local solvabilityestablished in
the linear case we have that under the assumptions (5), (6)

∫ 2π

0
f (ρ, ϕ)dϕ +

∫ 2π

0
g(u(ρ, ϕ))dϕ = 0 , ∀ρ ∈ [0, ε0] , ε0 > 0

⇒ g(u(ρ, ϕ)) = 0 , ∀ϕ ∈ [0,2π ] , ∀ρ ∈ [0, ε0] ⇒ u(ρ, ϕ) ≡ 0 ⇒

⇒ contradiction with (6).

Proof of Example 2.6.Assuming the existence of a solutionu ∈ C1(

x2+ y2 < ρ2
0

)

we get from
(7)

∂u

∂ϕ
+ cu = f (u) , u(ρ,2π) = u(ρ,0) ,

∀ρ ∈ [0, ρ0], ρ0 > 0. Thus for eachρ ∈ (0, ρ0] there existsϕ(ρ), 0 < ϕ(ρ) < 2π s.t.
∂u
∂ϕ
(ρ, ϕ(ρ)) = 0 ⇒

⇒ cu(ρ, ϕ(ρ)) = f (u(ρ, ϕ(ρ))) .

So the equationcλ = f (λ) possesses a real root. Letλ0 be a real root of the equationcλ = f (λ).
Thenu ≡ λ0 is a solution of (7).

Proof of Example 2.7(a). Let v ∈ C2(ω) be a solution of (8) and make the changeu = ϕ(v),

ϕ ∈ C2(
R

1), ϕ′(v) > 0, g = ϕ′′(v)
ϕ′(v) . Then the functionu will satisfy in ω the equationL2u =

f ⇒ contradiction.

The case 2.7(b) is obvious.
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