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LOCAL SOLVABILITY OF SOME CLASSES OF LINEAR AND
NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS

Abstract.

The paper deals with the local nonsolvability of severahepis of linear and
nonlinear partial differential equations. In the lineaseave prove nonsolvability
in Schwartz distribution space while in the nonlinear cageprove the nonex-
istence of classical solutions as well as the nonexistefide®®n HS, s > 0,
solutions.

1. This paper deals with the local nonsolvability of sevesamples of linear and nonlinear
partial differential equations (PDE). In the linear casepr@ve nonsolvability in Schwartz dis-
tribution spaceD’ while in the nonlinear case we prove the nonexistence o$itiaksolutions as
well as the nonexistence &° N HS, s > 0 solutions. We hope that some illustrative examples
in the nonlinear case could be useful in a further developrogthe theory of the local nonsolv-
ability. Y.V. Egorov stated the problem of finding necessempditions for the local solvability
of nonlinear PDE having in mind the well known Hormander’segsary condition for the local
solvability of linear PDE inD’ [2]. We analyse in this paper several examples in order ésstr
some difficulties arising in the nonlinear situation.

2. We shall propose at first some results on nonsolvabilionipoellipticity) of several
examples of linear PDE iB’. So consider the following class of PDE wii*® coefficients

@ P(X.D)= Y a()D* ay(x)eC®(R").

loe|<m

DEFINITION 2.1. The operator (1) is quasihomogeneous if and only (4, t=#&) =
tY P(x, £), Vt > 0, ¥(X, &) € R2" = const.

Asusual,u = (u1,...,n), j > 0, 1< j < n, thx = (tH1xq, ..., thnxn). Without
loss of generality we assume thatOuq < up < w2 <... < un.

REMARK 2.1. P quasihomogeneous implies that its formal adjoint opera®ais quasiho-
mogeneous too.

Assume that

(i) Ker' PNS(R") # 0 andS(R") is the Schwartz space of the rapidly decreasing functions
at infinity.

THEOREMZ2.1. The operator R= P + Q, where the quasihomogeneous operator P satis-

fies (i) and R, ord R= s is an arbitrary differential operator with coefficientstfit 0, is locally
nonsolvable at 0 in D
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The proof of this theorem is a modification of the proof of tleatral result in [7] and we
omit the details.

We will illustrate Theorem 2.1 with several examples. Someegalizations will be consid-
ered too.

EXAMPLE 2.1. LetP = xdy — ydx + h(x? + y?), h(x? + y?) € C* near(0, 0). This is
an operator of the real principal type. We claim tRais locally nonsolvable at the origin iD’
if and only ifh(0) € {0, 1, £2, ...} andh(x? + y2) — h(0) is flat at 0.

EXAMPLE 2.2. LetP(t, Dt, Dyx) = Dtm + at D)'?, p > 1, m-odd. ThenP is quasihomo-

geneous withuy = 1, uo = mTH The operatorP is locally nonsolvable at 0 i’ if: 1) p -
even,Ima > 0, 2) p-odd,Ima # 0.

EXAMPLE 2.3 (M. CHRIST, G. KARADZHOV [8]). LetL = —X2 — Y2 +jax)[X, Y],
whereX = dx, Y = dy + x¥at, [X, Y] = kxk—13;.

The operatol. is not locally solvable at 0 i’ if and only if
1)k =1,a00) € {1, £3, +5,...},a™©) = 0,vm > 1,
2)k > 2,a(0) € {+1},a™©0) =0,vm > 1.

We shall propose a new and elementary proof of the sufficiefidigis result in the case
k-odd.

The approach used in studying Examples 2.1 and 2.3 enablesingestigate the local
nonsolvability of some operators with coefficients flat at$o consider the following model
example from [6]:

A2(t)

Cn2. 12402
@ L = Df + 37D ~ at) - Dx.
i L a,t<0
whereA(t) = €®Pe ! @ € [0, F), at) = { (o = const, A(t) = A/(t) =

d®t—2sgnte I je. if we putagt) = e ™ = At) = d®Aq, A(t) = €Pt—2sgntAg.
Certainly, A andx are flat at 0. It is proved in Theorem 2.4.32 from [6] thadif = —2n — 1,

ar = -2 —1ora_ =2n+1,a+ = 21+1,1, n being nonnegative integers then the operator (2)
is not locally solvable at0, 0) in D’. The proof in [6] is based on violation of the well known
Hormander necessary condition for local solvability fri@h We give here a rather different
proof of the same result explaining the local nonsolvapibit (2) by the existence of infinitely
many compatibility conditions to be satisfied by the righadhaidef of Lu= f,u e D’.

EXAMPLE 2.4. Consider now the operator of real principal type
©) Pc = Xdy — yox +¢C, C=const

According to Example 2.P is locally nonsolvable at the origin iB’ if ¢ € iZ, while it is
locally solvable at 0 it ¢ iZ.

After the polar change of the variablgs= p cosgp, y = p sing we get thatP; — % +c

and ifc € R* we reduce the solvability of (3) i€ (x* + y? < £2) to the solvability of the next
ODE:

du
@Jrcu: f(o,9), U(p,@+2m)=U(p,9),
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Vp € [0, ¢], Vo € [0, 27].
Thusu(p, 0)(1 — e~%7€) = e=27¢€ fOZ” €St (p,s)ds.
As e 27¢ # 1 for c # 0 a periodic solution always exists. In the case= 0 =

fOZ” f(p,s)ds = 0, Vp € [0, ¢] and this is the explanation of the local nonsolvability Ry
at the origin.

EXAMPLE 2.5. Consider now the nonlinear equation
(@4 Pu=f(x,y)+gu), gect (Rl) , gw=0 gw=0 <<u=0

and suppose that the necessary condition for the locallsiityeof Pov = f € C1 near the
origin is fulfilled:

2
(5) /(‘J f(p,p)dp =0, Vpel0,¢].
Moreover, let the functiorf be nontrivial, i.e.

(6) (v, ov) = (0,00), Tlov,v) #0

Then we claim that the equation (4) is locally nonsolvabl€imear the origin.

Assume now that (5) is violated, i.61p, — 0 such thathZ” f(pv,9)dp > 0 (< 0),
g(u) > 0(<0).

Then (4) is locally nonsolvable near 0@t. Thus even small nonlinear perturbatiagsi)
of the locally solvable equatioRgv = f lead to nonsolvability. The effect just observed is not
only due to the fact tha is locally nonsolvable at 0 iD’. In fact, consider the locally solvable
in L2 operatorP;, c-real valued constant, 0. We shall investigate the local nonsolvability of

@) Peu= fu), fect (Rl)

EXAMPLE 2.6. The equation (7) is locally nonsolvable near the origithe classC? if
and only if f (1) # ci, VA € RL.

Thus each nonlinear perturbatidrir) of Pc located above (below) the straight lige= ca
leads to nonexistence of a classical solution (even locaflyhe equation (7).

In our previous Examples 2.5, 2.6 local nonsolvabilitydh was shown. Here we study
nonsolvability inHSN L, s > 0 as well. For the sake of simplicity we shall investigateosetc
order PDE with real value€® coefficients and only real valued solutions will be checked.
Thus assume that the operatoy is locally nonsolvable at the origin iB’. More precisely, we
suppose that for the real valued functibre C*°(w), @ > 0 there does not exist a distribution
solutionu € D’ of Lou = f in w. Putu; € C*®(w), Louy = f; € C*(w). Then the operator
P is nonsolvable ir for the right hand sidd + f4.

Let us make a change of the unknown function the operatot.o: U = ¢(v), ¢ € CZ(Rl),
¢’ > (<)0. Thenuy, = ¢’ (v)vx;, Uxxj = @' (v)vy; xj + ¢" (v)vy; vx; -

Putting zl,/((;’)) = g(v) € C(R) we havep(v) = [3 elogmdiyg o' (v) = elo 9 dA
¢ (v) = g(v)efo 9P I,
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EXAMPLE 2.7. (@) Ly = 9% — a2(t)d2 + b(t)dx (Egorov [5]).
Suppose that the equatitipu = f € C*®(w) is nonsolvable irC2(w). Then the nonlin-
ear equation

®) [2) = Lo) +gw) (1 — &2(tnf) = fe o 90 e

is nonsolvable iIfC2(w).
(b) LetLou; = f1,u; € C®(w) andLyu = f € C*®(w) be nonsolvable iIC2(w). Then the

nonlinear equation
9 Ez(v) = Lo(v) +9(v) (vtz — azv)z() _ feJogmdr _ fie™ Jo 90 da,

is nonsolvable irC2(w).

Thus for each functiorf, € C*°(w), w > 0 we can find a nonlinear perturbation of the
locally nonsolvable at 0 ifD’ operatorL, and such that the corresponding nonlinear equation

o) = fo (Iiz(v) = f~2) is nonsolvable irC2(w).

If the functiong € Coo(Rl) then the nonlinear operatdr(u) is well defined for each
uelL®nHS , s> 0. This way we prove nonsolvability of the equations considein
Example 2.7 not only iC2(w) but in the Sobolev spaces as well.

Proof of Example 2.1 After the polar changex = p cosp, y = psing we have thatP —
% +h(p?) andz" = (x +iy)", x2 + y? = 1,Vn € Z are the eigenfunctions on the torti$

of the differential operatob%; LZ" =inZ", L = xdy — ydx, z= X +1y.

LetPu= f ¢ Cgo(w) andw is a circular neighbourhood of the origin. Thérix, y)
f(p cosp, psing) = 1L fn(0e"?, fa(p) = & [ f(pcose, psing)e "¢ dy, f(0,0)
= fg(0), fn(0) = 0, n # 0. Moreover,| fn(p)| < %“‘mg vk € Z, Cx = const.,| f HZLZ(w) =
27 Y2 [0 1fn(0)1?p dp, £g = diam.

We are looking for a solution which is a vector valued distribution with values[Dﬁ(Tl).
Thus

+0o0 .
U Y) = U(p.9) = Y Un(p)€™. Un(p) € D'(0.e0). ue D' ((0.e0 ®T?).

—00
SoPu= f implies that
un(p)(in +h(p?)) = fn(p),

as{€"?} forms a basis iD’(T1).

We shall study several cases:
. h=ingforsomeng € Z (= h # n, ¥n # ng)
. h©) ¢iZ
h(p?) = ing + cop + O(p?+2),k € Z4, k > 1,9 = const. 0
h(p?) = ing + &(p?) ande(p?) is flat at 0.

N
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Case 1.f_ny(p) = 01in (0, &g), i.e. fOZ” f (p cosg, psing)eMo?dy = 0Vp e (O, &g).
Thus we have infinitely many compatibility conditions to laisfied by the right handsidé.
So P is locally nonsolvable at 0 iD’.

Case 2. LetP = L +c(X, y), c € C* near 0,c(0,0) ¢ iZ. Therefore, a more general
case will be treated. ObviousR = (L + ¢(0, 0)) + c(X, y) — ¢(0, 0) = Lg + d(X, y). Simple
computations show that

\

[ Pull L2(w) = ILoull L2(w) — ld(x, y)ull L2(w)

v

Having in mind thatin + c(0, 0)| > ¢; = const.> 0 we conclude that
10 g
ILoul§ = 2n Z/O plun(p)I2lin +c(0,0)[2dp = c2|ull3 .
—0o0

i.e.||Pullg > C—21||u||0, Yu e Cgo(a)) taking diamw to be sufficiently small.
So,! P is locally solvable at 0. The same result is valid fr
Case 3. Leh # —ng and 0< gg < 1. Then|i (n+ ng) + cop® + 0(p%*+2)| = 1, while

% € D'(0, &g).

If we are looking forL2(w) solution of our problem we must impose the next additional

requirementsf_n,(0) =... = ffznlz_l) (0) = 0= u—_ny(p) will be smooth in(0, q).
We point out that in case 3.

||,02ku||0 < dol fllo, Vu € CF(w), i.e. we have local solvability near the origin for each

U—no(;O) =

f € C3°(w) and the corresponding solution is such that2 + y2)¥u| L2(@) < O
Assume now thaf|p~2¢ f lo < oo. Then for eachu € C5°(w): |f(W)| < dolPullo
(f(u) =/, p*Zk prku). According to Riesz representation theorem there existmetibn

w € L2(w) such thatf (U) = (w, Pu), i.e.!Pw = f. Therefore, a local solvability result in?
is valid under finitely many compatibility conditions dn namely||p—2kf | L2(e) < OO
Case 4. Consider now the functioﬁ}(pz)(xl +ixp)™M0, @ € Cg°, ©flatat 0,0 # 0,
0<®=<lfor0<p=<% and®(p?)(x1 +ix2)™. Obviously®(p?)(xy +ix2) ™" € KerLiN
S(R?), L1 = xdy — ydx +ing. As the operatot 1 is quasihomogeneous withy = 2 = 1 we
apply theorem 2.1 and conclude that the oper&ds locally nonsolvable at O in case 4.
|

Proof of Example 2.2In case 1 we find a rapidly decreasing exponent in the kernBffdf- at
and in case 2 in the kernel & £ at by using Fourier transformation in

a

Proof of Example 2.3Case 2. Thet. = D2+ (Dy +xX Dt)2 —ka0)xk—=1 Dy —kxk—L(a(x) —

a(0)Dt = P + Q andQ has flat coefficients at 0. P& = &2 + (n + x"r)2 — ka(0)rxk-1,
Obviously P is quasinomogeneous witly = uy =1, uz3 = k+ 1,y = —2. In order to apply
Theorem 2.1 we are seeking for a nontrivial solutio S(]R?’), P(p) = 0. A partial Fourier
transformation with respect tg, t) gives us:

P=D2+ (n+x7)? —kxk~1r = (DX +i(n+ xkr)) (Dx —i(n+ Xkr))
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(To fix the ideas we assume the&0) = 1)

k+1
Evidently( = e Tt ¢ Ker(Dx —i(n+ xkr)). We point out thati depends on two
parameters, T andd € S(R%) if (n, ) belongs to a compact setin> 0. So let

k1

ooy = [[ g (D oy e,

wherehy , are cut off functions, supp € [1,2], 0 < hy(r) < 1if r € (1, 2), supph; € [0, 1],
0<ho(n) <1,ifne(0,1).
We claim thatyp € S(R3), ¢ # 0. This fact can be verified by integration by parts, namely

o (ei(r;y+t1:)) = dy+oiy

dr (ei(ny+tr>) — doy+toijt

The more complicated cases @rg|y| > A =const.> 0, |t|] < A, (i) [t] = A, |y| < A,
@iii) |t = A, |yl > A. In case(i) we use the identity

(=N oyt aN —nx—erH
Y= iyN //Rze Iy \e T hy(n) ) hy(v) drdy

k+1
and the fact thaN is an arbitrary integer ang T € S(R}) form a bounded family in
S(R}) for{0<n<11<t <2,
The casdii) is treated similarly ag). In case(iii ) we apply the identity

i k+1
0= m//uxz &V HDHN N (hl(r)hz(n)e*’”‘*kaﬁ) dnds

There are no difficulties to see that both the operafr§P are locally nonsolvable at 0
which implies the nonsolvability of , tL.

Case 1. We make the change- n + xt, T # 0in the equation
[D§ +(+x0)2— a(O)r] 0=0, a0 e {£1, 43, ..
and we obtain
[D%r + 2?2 - a(O)i| 0(z) = 0.
The change = /Ty, t > 0 leads us to the equation
(D3 +y?—a0) vy =0.

This is the harmonic oscillator equationaf0) € {1,3,...}. We remind to the reader
2
that vn(X) = (—1)nexT (e—Xz)(n) e S(R) are the solutions o(D)% + Xz)vn = (2n + Dvn,
ne{0,1,2...). Sowe takel = vn(v Y2y + xr1/?) and thenli form a bounded family in
S(R})for{l<t<20=<n<1).
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There are no difficulties to verify that the function
0= // ) d y+to) (rfl/zn + ‘L'l/ZX) hy(t)ha(n)dndt
R

is nontrivial and belongs t&§(R3).
According to Theorem 2.1 both the operatbrg L are locally nonsolvable at 0 and are not
C®° hypoelliptic too.
O

Proof of Example 2.4Let us make a partial Fourier transformation with respectitoLu = 0
and putx — &, 0 = ((t, £). So we have
A2

N 2, .2 PP
Uit — A°(H)E U+am§U—0, a

const.

The changdl = tw(t, &) in the previous equation leads to
. 2, 2.2 ay .
—Wt — A 1- — =0.
it + Lt 3 ( gA) w
Entering in the complex domain by the change- i A (t)¢ we get
N 1, Say
Wer+—we+(1—-i—)w=0,
T T

i.e.
TWrr + Wr + (z —i&)w =0.

Another change of the unknown function
. Z _Z .
W (5) —e3f(2), z=2it = —2A(t)E

enables us to conclude that
1+4a
5

But (10) is the confluent hypergeometric equation (Kummengigation). As it is well known [1]
the ODE (10) has two linearly independent solutions

f10=v(. 12, h@=y1-al-2),

the functiony being given by a rather complicated integral formula. In special cas@& =

(10) Zfzz-l—(l—z)fz—af:O, o =

+(2n + 1), n nonnegative integer, & = +(2 + 1), | - nonnegative integet> a = —n if
a=-2n—-1,andl-a=-nifa=2n+1,0a=-lifa=-2-1,and 1— o« = —I if
a=2+1.

To fix the things Iet{ Zt B :gln__ 1 - According to the theory of special functions [1]

¥(-n,1,2 = ()", v(-1,1,2 = D110,

andL%(2) = %ezad%(efzz”) are the famous Laguerre polynomiatél-9)” + (1 — 2)(LY)" +
nLY = 0. Obviously,L3(0) = L2(0) = 1.
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terO5L0(—2A18), t <0,

teA(t)SLIO(—ZA(t)&), t>o0. is aC® solution of (2) with right-hand

Sol =tw = {
side 0.

Consider now the Fourier integral operator (FIO)

(11) Ewy(t,x) =u(t,x) = /Oo h)e*sac, £)iy () d ,

whereh € C*(RY), h(¢) =1, < —1,0<h() <1, h=0for¢ > —1/2,wq € &'(RY).
Our investigations are microlocal in the cofe —& > cg|t], ¢ > O, (t, X) € w, (0,0) €

w.
Obviously, Rex > 0 fort # 0.
The kernel of (11) is given by
0 .
/ h(g)e X—Véter O O_2A(t)e) d& fort <0
—00
and by

fo h(&)e X Véter®F 024 (t)&) dé fort > 0
i.e. the phase functio;o':& — y)& while the amplitude
a(x, y.t, &) = th)LI(—2At)&)e* V% fort < 0.
We shall prove thad Q 1/2(1“). The same results are valid for- 0.
So we have to show that* (% ¢ §,1/2(F)'
In fact, ditkg %ref\s = gtk (A'eA§) and we have to prove at first inductively that

3k
9 oA

K 3
= < ole)3eR®F k=01, .

(12)

£
0s® Aoz Ag < const&| complete the proof of

The observations the(m6)2 < constAg ande”
(12).

The estimation
ok 9
——e
atk agl

is proved inductively too with respect kohaving in mind that

1ok Rent
AE| < g2

£
IA'erE| < qlg'eR®2 1> 0

and that
Ren

|A’eME | < consts|~Ze
Thus according to [3]
FAWF(E) S {t.x.yit.&.m:x=y.1=0&=n<01t=0

asaeSfi‘;zfort # 0.
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ObviouslyL Ew; = 0. The restrictiorEwj |i—g is well defined a®W F'(E) ({r # 0} = ¢
and

9 0 .
LU0, = / h()eX (&) de .
—00

The v.d.o. just obtained is microlocally hypoelliptic f¢r < 0 = WF(u(0,x))(\ I =
WFu) NOT.

Takingwq € 5/(R1) s.t. WF(wy) = {(0,£),& < 0} we conclude thal' W F(u) =
{(0,0,0,8)in — & > colzl}.

The well known properties of the FIO E [3] enable us to definédtmally adjoint operator
LE by the formula

(Ew(t, x), v00)pr(rt) = ((t. %), Ev(X) pr(r2) -
Letv e &'(R?) andiLv = f (= f € &'(R?)) = 'ElLv="Ef =
(13) tEf=0

asLE =0.

So the solvability of the equatidiLv = f in £ leads to the fulfillment of infinitely many
compatibility conditions by the right-hand side

Obviously, for eacty € D’(R?) (£/(R?))

‘Eaw) = [[ e h@nt gt~ de dt

andq(t, —&) is the partial Fourier transformation gfwith respect tox.

The necessary condition (13) on the right-hand sidef !Lv = f for local solvability at
the origin can be rewritten in the next form:

// e VenE)ter WELO(—2A (t)e) f(t, —&) dt de+

(14) t>0 A

// e YehEre* DELR(—2A %) f(t, —) dtdg =0,
t<0

vy e R,
This way we proved the local nonsolvability df and the existence of a solution bfi =
f € C*® havingW F(u) = {(0,0, 0, &), £ < 0}, i.e. a solution with an isolated singularity along
a conic ray.
O

REMARK 2.2. The coefficients of (2) belong to Gevrey cl&s and the projector on the
kernel (11) can be estimated in the ultradistribution spﬁi{@ 6 > 2. This way we have results
on the existence of a solution with a prescribed Gevrey $amgy along a conic ray as well we
can prove a theorem on local nonsolvability in the corredpanultradistribution spaces. To do
this we use several results from [3] and the fact that theficsymbol h(€) can be chosen iGg,
for eachd > 1.
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Proof of Example 2.5According to the necessary condition for local solvabiéstablished in
the linear case we have that under the assumptions (5), (6)

2 2
/0 f(p,p)de + A g(u(p,9))de =0, Yo [0, 0], &0 >0

= gU(p,9)) =0, Yo €[0,27], Vp €0, eq] = U(p,p) =0=

= contradiction with (6).
|

Proof of Example 2.6 Assuming the existence of a solutiore C1(x?+y? < p3) we get from
™
au
3, TOU= f(u, u(p,2r) =u(p,0),
4

¥p € [0, pol, po > 0. Thus for eaclp € (0, pg] there existsp(p), 0 < ¢(p) < 27 s.t.
G (0. 0(p) = 0=
= cu(p, 9(p)) = F(u(p, 9(p))).

So the equation) = f (1) possesses areal root. Lgtbe areal root of the equatian = f (1).
Thenu = Aq is a solution of (7).

|

Proof of Example 2.7a). Letv € C2(w) be a solution of (8) and make the change= ¢(v),
¢ € C’(RY), ¢'(v) > 0,9 = ‘Z((:)})) Then the functioru will satisfy in » the equatiorLou =
f = contradiction.

The case 2.7Tb) is obvious.
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